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Abstract

In this paper, stochastic analytical equations for obtaining the vibratory response of bundles of cylinders
in turbulent axial flow, with various degrees of computational efficiency, are presented. Lateral components
of the turbulent fluid force-per-unit-length cross-spectral densities in a bundle of cylinders are obtained by
the integration of differential wall-pressure fluctuations around the circumferences of the cylinders. These
quantities are used as excitation in the calculation of random vibration response spectral densities of the
cylindrical structures. Properties of symmetry applicable to lateral forces in bundles of symmetrically
arranged cylinders are also discussed.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The calculation of turbulent fluid forces acting on cylindrical structures subjected to axial flow
is important to the study of vibration of bundles of fuel rods in nuclear reactor cores and tube
banks in heat exchangers.

Previously [1-3], it was shown that the dynamical equations governing the vibratory motions of
such structures can be expressed in matrix form as’

Fou 0 wixn) | [ f(x0)
M(x) EP + C(x) EY + K(x)] { veu ) } = { £,0x, 1) }, (1)
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2In Refs. [1-3], for the sake of generality, these equations were presented in non-dimensional terms. Here they are
presented dimensionally.
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Fig. 1. Definition of Cartesian co-ordinates (x, y,, z,), lateral displacements (v,, w,) and azimuthal co-ordinate (0,) for
cylinders in a channel; r = 1,2, ..., K, where K is the number of cylinders in the channel. Pressure fluctuations are also
illustrated laterally around cylinder 2. ¥, is the angle subtended from the z, axis by cylinder s; ¢, is the distance
between the centres of cylinders r and s.
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where M(x), C(x) and K(x) are the mass, damping and stiffness matrices of the system,
respectively, and they are square matrices; x, y, and z are the Cartesian co-ordinates illustrated in
Fig. 1; t represents time; w(x, ) and v(x, ¢) are the vectors of lateral cylinder displacements from
equilibrium in the z and y directions, respectively; f.(x, 7) and f,(x, 7) are the vectors of net lateral
turbulent fluid forces per unit length acting on the walls of the cylinders in the z and y directions,
respectively (see Appendix A).

2. The stochastic equations
2.1. The full equation

To obtain a solution for random cylinder vibration, manipulation of Egs. (1) by a combination
of Galerkin and Fourier methods gives rise to fluid force-per-unit-length cross-spectral densities
(CSDs), which can be written in terms of a weighted double integral of the turbulent wall-pressure
fluctuation CSDs around the circumferences of the cylinders [1,4,5]. Previously [3.6],
measurements of the latter were obtained so that an analytical representation of the former can
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now be achieved. This will be done shortly. The most general of the stochastic equations of which
these forcing functions form a major part are as follows.
Writing for simplicity

f(x, 1) = {(£.00,0,0,00, 01T, 06, 1) = {(wlx, 0, ¥(x, 1)} T, 2)

the solution of Eq. (1) for random cylinder response can be written as [1,2]

1 [ -
Ry (x,x', 1) = —/ Sy (x, X', Q) e dQ,
J 275 e lj

N 2KN 2KN

N
Sy (6 XD =" > $,(0),(x) D Z{H;}f,i),,,<9>Hﬁw>,q(sz)
n=1 p=1 g=1

/=1

L L
X /0 dxl /0 dX2 d)a(p)(xl)d)a(q)(XZ)Sﬁ;(p)ﬁ,(q)(xla X2, Q)},
ij=1,2,..,2K, 3)

where Ry, (x, X', 7) is the cross-correlation of 17,(x, 7) and n,(x’, 1), and S, (x, x', Q) is defined as the
corresponding CSD; ¢,(x), ¢,(x') are comparison functions which satisfy the boundary conditions
of the problem;® N is the number of comparison function modes selected, K is the number of
cylinders in the channel (see Fig. 1); Hpy ) ,(2) and Hg,j) ,(€2) are elements of the frequency
response function matrix of the system and are given by Egs. (A.5b) and (A.3c)-(A.3e) in
Appendix A with Wy = ¢, [14]; Sj,i, (X1, X2, Q) is the CSD of fy)(x1,7) and fig(x2,1); Q =
2znf, where f is frequency in Hz; 7 represents time delay in s; L is the cylinder length; f(/,i) =
2K(Z — 1) +i; a(p) = {largest integer<(2K +p—1)/2K} =1,2,... or N, and b(p)=p—
2K[a(p) — 1] = 1,2, ... or 2K. The derivation of Eq. (3) is given in Appendix A.

Now, certain practical applications may be such that the generality of Eq. (3) is unwarranted,
and certainly in some situations (e.g., very large cylinder bundles and single-cylinder (annular)
flows) the vast amount of numerical computation that ensues can be drastically reduced without
excessive loss in accuracy and meaning of the results. Thus, special cases of Eq. (3), which are
numerically more efficient, are to be utilized where advantageous. Some of these special cases now
follow.

2.2. Case 1 (no excitation coupling)
Suppose, for instance, that inter-cylinder fluid excitation coupling is very much smaller than

correlations between points on the same cylinder, which is the case in a relatively large and sparse
cylinder bundle [3]. Then, the inter-cylinder cross terms of Sy 7. (x1,x2,€Q) in Eq.(3) are

3These are taken in the calculations as the Euler Bernoulli beam eigenfunctions.
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negligible, and the equation reduces to
N 2KN 2N

N
Snmj (x,x,Q) = Z G (X)P,(x) Z Z{H ;X;(/,i),p(Q)H Bin).q' o p)(€2)
=1 p=1 =l

/=1 n

L L
X /0 dx; /0 dx; d)a(p)(xl)d)a(q’(n’,p))(x2)Sf},(1,)f},(qr(n/’p))(xl:x2a‘Q)}:
ij=1,2,...,2K, “4)
where

/ J—
q/(n/,p) — (n 2)K + b(p): b(p) > K:
("' — DK + b(p), b(p)<K.
Eq. (4) is derived in detail in Appendix A. The number of summed elements indicated by #’ (the
4th summation) has been reduced considerably compared to Eq. (3). Ignoring other parts of the
overall calculation, this manipulation has resulted in computational savings of the order of K : 1.

For example, every hour of computation of the sums using Eq. (4) for a 16-cylinder bundle
(K = 16) corresponds to approximately 16 hours of computation for the same result using Eq. (3).

2.3. Case 2 (no excitation coupling—mode 1)

In addition to the above, assume that contributions by the first mode ¢, to the cylinder
response far outweigh those of higher modes ¢,;7 > 1. Eq. (4) can then be further reduced to

2K 2
S (6 X, Q) = (0, ()Y HE@ Y {quwnzp)(@)
p=1 n'=1

L L
x/ dxl/ dx, qb](XI)(Pl(xz)Sﬁ)fq,,(n,wp)(XI,XQ,Q)}, i,j=12,...,2K, (5a)
0 0

where H;,(2) are elements of the now unimodal frequency response function matrix
-1

L
[H(@)] = [ / S PM() +iC() + KW)] dx] (5b)
0
and

(n"—-2)K+p, p>K,

Z n, —
7o) {(n'—l)K+p, P<K.

This too is derived in Appendix A. Increased savings in computation of the sums over the full
Eq. (3) has been achieved (KN* : 1), e.g., for every second of computation of the sums required by
Eq. (5a) for a 16-cylinder bundle (K = 16), approximately 6 h of computation would be required
by Eq. (3) employing six modes (N = 6), while Eq. (4) would require the order of 22 min.* Note
that with K = 1, Eq. (5a) reduces to the eccentric, annular flow problem.

“The reasoning that leads to this is as follows. Consider 1 s of computation using Eq. (5a). In Eq. (3) this corresponds to
KN* =16 x 6* = 20736 s = 5.76 h. Similarly, in Eq. (4) it corresponds to 5.76 h/K = 5.76 h/16 = 0.36 h = 21.6 min.
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2.4. Case 3 (no excitation and no response coupling)

In a third possibility, higher vibration modes remain important but all inter-cylinder fluid
coupling (i.e., both excitation and response) becomes negligible [5]. Eq. (1) then becomes
completely uncoupled and the matrices M, C and K are diagonal. A multi-cylinder bundle can
then be treated as one cylinder and one degree of freedom at a time [5]. Hence, from Eq. (3) we
may write

N N N N , _
S X Q=" D" ,(06,() D > Hy (DHY(Q)
n=1 p=1 g=1

/=1
L L

< / dx, / dxs §, ()9, (S (61,300, @), =12, 2K, (6)
0 0

where H/(Q(Q) are elements of the single-degree-of-freedom frequency response function matrix
| 21001 (x) @1 ()Pa(x) - PPy (x)
@)= [ s s
Pn(x)P1(X)  Py()Pa(x) -+ Py(X)Py(x)
X (—Q2My(x) + iQCi(x) + Ki(x)) dx] . (6b)

Eq. (6b) can be easily verified using Eq. (A.3) in Appendix A, and Equation (6a) can be derived
using the method of Appendix A for a single-degree-of-freedom system. The savings in numerical
computation of the sums realized here over the full Eq. (3) are of the order of 4K : 1.

2.5. Case 4 (no excitation and no response coupling—mode 1)

Finally, we consider non-eccentric annular flow. Here, the only two existing degrees of freedom
are uncoupled, and assuming higher modes are also negligible, Egs. (5a) and (6a) both reduce for
first mode vibration to [7-9]

L L
Sy, (X, X', Q) = ¢1(X)¢1(X/)HT1(Q)H11(Q)/O dxl/o dx2 @1 (x1)P(x2) S (x1,x2,92).  (7)

This is the simplest and most common of all these expressions. Consequently, the greatest savings
obtain (4K>N* : 1). All of the foregoing different possibilities are summarized together in Tables 1
and 2.

2.6. Temporal response and principal directions of vibration

The inverse Fourier transforms of the foregoing response spectral densities give rise to temporal
response correlations, including r.m.s. vibration amplitudes (see Eq. (3)). There is a need, for the
purpose of design, to study the relationships between dominant frequencies or frequency bands, in
the system frequency response functions and the excitation spectral densities, to see how they
interact, with respect to changing parameters such as flow velocity and cross-sectional geometry,
to affect temporal observations such as r.m.s. vibration amplitudes and correlations [8,10]. This
should be a consideration of future research.
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Table 1
Summary of the full and reduced equations
Equation Characteristics
3) Full, unabridged (FULL)
4 No inter-cylinder excitation correlation (NOINTEC)
(5a) No inter-cylinder excitation correlation and
first mode response only (NOINTEC 1)
(6a) No inter-cylinder excitation correlation and

no inter-cylinder response correlation (NOINTERC)
(This is identical to the problem of annular flow)
@) Single cylinder annular flow and
first mode response only (ANNULAR)
(This is the same as NOINTERC with N = 1)

Table 2
Ratios of the number of terms in the summations—Eq. x : Eq. y
Eq. y
3) “4) (5a) (6a) (N
Eq. x 3) 1:1 K:1 KN*: 1 4K%: 1 4K>N*: 1
(16:1) (20736:1) (1024:1) (1327104:1)
4:1) (324:1) (64:1) (5184:1)
@ 1:1 N*:1 4K : 1 4KN* : 1
(1296:1) (64:1) (82944:1)
(81:1) (16:1) (1296:1)
(5a) 1:1 4K/N*: 1 4K : 1
(0.05:1) (64:1)
0.2:1) (16:1)
(6a) 1:1 N1
(1296:1)
(81:1)
@) 1:1

Upper parantheses values are for K = 16, N = 6; lower parantheses values are for K = 4, N = 3.

Also, since the cylinder vibrations are random, in both amplitudes and directions [§8], further
operations on Sy, will be required to determine the preferred or principal planes or directions
of oscillation where vibration amplitudes and correlations will be greatest and more focused
[1,10-16].° The responses in any given directions around the cylinders can be determined, by
resolving vectors, from those in the Cartesian directions [1,10].

SRecall that 11; and 7; are displacements in the fixed Cartesian directions illustrated in Fig. 1. The principal directions
are not necessarily those defined as the Cartesian.
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3. Characterization of differential wall-pressure CSDs

Differential wall-pressure CSDs constitute the force-per-unit length CSDs via the following
equations [1,10]:

S V) = [ [ S50, 0500000V Trig (0 Triq 040, 0,

ij=1,2,...,2K, 3
where
N L] Lj<K,
r(i), s(j) = { . . .
i—K,j—K, i,j>K

and R is the cylinder radius; p.;) = pri)(x, 0, 1) — pri)(x, 0, + 180°, 1), the differential wall-pressure
acting on the wall of the rth cylinder (p,;(---) being the “point” wall-pressure and 0, the
azimuthal co-ordinate measured from Cartesian direction z,—see Fig. 1); S;.5,,(...f) 1s the
differential wall-pressure CSD between p(x,0,,7) and py;(x', 05, 1), f = Q/ 2n (Hz):® and
Trig0,) = cos 0, if fi(x, 0,, t) points in the z direction, = sin 0, if f;(x, 0,, t) points in the y direction
(this depends on the value of i—see Egs. (1) and (2)).

From previous measurements [3,6—8,16-22], it can be shown that it is possible to characterize to
some degree the boundary layer differential wall-pressure CSD in a bundle of stationary cylinders
by an expression of the following form:’

1 Dy, |x — X
Sl-’rl-’s(xﬂ xla HV: Bs,f) p(XO: Hoaf)/d0a0ﬁ< d r S: “')V (fU/ ) | Dh I» 95‘5 "')

Dy x fDy X Dy,
x{ (U "Dy ,0,, )d<U’Dh’GS"">(x<U’H""")

12
cx<f£Uh, Os, )} exp[—i2nf (X' — x)/U.(05)], r,s=1,2,...,K, (9a)

where S35 is a differential wall- pressure PSD on one of the cylinders in the bundle at a reference
location (xg, 6), and is given by®

S(x0, 00, /) = byp® U Dy (D) Dy)dooo [P(p UDy /1, ...)], (%b)
where

d() = d(th/U,X()/Dh,Go, ), oy = OC(]FDh/U, 00, ) (90)

®Note that if point pressure CSDs, S, ,, are utilized in Eq. (8) instead of the differential ones, Sj ., the integrals
should be taken from 0 to 2x instead of from 0 to =.

"See Egs. (20) and (28a) of Ref. [3].

8 Note that the physical measurements in Ref. [3] are of Gyp(...f), the one-sided PSD, while Sz;(...f), the two-sided
PSD, is % X Gz(...f), hence the factor of% is here but not in Ref. [3]. Also, b, from Ref. [3] has been replaced here by
by x ¢*(D/Dy,), in order to reveal or rather separate the effect of confinement of the flow on the wall-pressure PSD, due
to D/Dj, [6]
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where b; is a system-dependent ‘“quictness” function of proportionality (or bundle system
“constant’”) which accounts for the differences in magnitude of the CSD (or PSD) from one
system to another, p the fluid density, U the spatially averaged mean flow velocity, Dy, the cross-
sectional hydraulic diameter of the bundle, D = 2R = cylinder diameter, ¢ is a function that
describes the effect of confinement on the wall-pressure CSDs [6]; P is a function that accounts for
power level changes due to varying Reynolds number (Re), and the remaining functions S, 7, d, «
and U, are defined as follows [3]:

f a function, dependent mainly on fD;,/U,0, and 0,, that accounts for the decay of
correlation laterally between different points in the bundle (f—1 as 0, — 0, on the same
cylinder and, in a laterally symmetric arrangement, = 0 between points 90° apart on a
given cylinder—see Appendix B, item 3)

y a function, dependent mainly on fD,/U, |x — x| and 6;, that accounts for the decay of
correlation longitudinally (y — 1 as x’ — x)

d a function (which is postulated to be dependent mainly on fD;,/U, x, x/, 0, and 0;, as
well as varying bundle entrance conditions [3,23,24]) that accounts for changes in the
turbulent pressure field with distance travelled into the bundle before full development is
reached (at full development, d = 1)

o describes the azimuthal variation in shape of the wall-pressure PSD around a cylinder and
is dependent mainly on fD;/U and 6

U.(0,) the average velocity of convection of wall-pressure disturbances longitudinally
with the flow (= (x' — x)/7.; X' >x, where 7, is the time delay for correlation maximum
between x and x'); it is only slightly influenced by azimuthal location of the longitudinal
plane (i.e., 0y)

Using the above definitions, a quick check shows that Eq. (9a) reduces to an identity when
x=x = xg and 0, = 0, = 0y, as it should.

Previously [3,6], it was found for a rectangular array of eight stationary cylinders, such as that
illustrgated in Fig. 2, that in the fully developed part of the flow, the following approximations
hold:

ex~[1+4 (D/Dy)"*17%, (10a)
P~1/Re = pu/(pUDy), (10b)
y~exp(—0.7f|%|/U)[1 + {exp(—=0.2f|x|/U) — 1}sin> 2], fD;/U>0.25, (10c)
a~d {1 —sin’ 2¢,[0.36 — 50(fD;,/ U)’ exp(=3(fDy/ U]}, [fDp/U=0.25 (10d)

°In the absence of data to the contrary, the assumption will be that these functions remain more or less the same in
the developing part of the flow, as in the fully developed part, for the sake of making sample calculations via Eq. (3).
Furthermore, the expressions for y, o« and U. are based only on data in the relatively low range of Re = 6800-48 000
and at a fixed value of D/D; = 2.095 [3].
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Fig. 2. Cross-section of the square array of eight cylinders in which the wall-pressure measurements of Egs. (10a) to
(10g) were made. The azimuthal co-ordinates ¢ in relation to 0 [3,6] are defined.

and
0.0)~aU/[1 +f(6,)], fDy/U=>0.25, (10¢)

where ¥ = x' — x; ¢, and ¢, are related to 6, and 0, as in Fig. 2; and

D\’ ’ D\’ o
a = <1 — <3U> ) —|—<2C1 3U>

-1/2
D\’ ’ Dy
I. - (—— 20—
31,986 ( <0.1349U) ) +< C20.1349U> ’
(=06, ( =8.68582, (10f)
a~1.129 (constant) and f(0,)~0.05 sin’ 2¢,(0y), (10g)

f(6)) is notably a very weak function of 6,. Also, as indicated, the above approximations are not
valid for fD;,/U <0.25 approximately. The error or uncertainty in the above equations was
determined to be of the order of 20% [6]. Plots of y versus fx/U (Eq. (10c)) have shown that the
longitudinal correlation is significant over approximately 4 or 5 cycles (fx/U,~fx/1.129U <4
or 5) [3].

For the purpose of obtaining response calculations near zero frequency, the wall-pressure PSD
and CSD in the small frequency range below fD;,/U = 0.25 are needed. In the absence of
empirical data in this range, a reasonable estimate of the PSD will be obtained in this paper by
linear extrapolation of that portion of the PSD measured above fD;,/U = 0.25 to zero magnitude
at fD;,/U = 0. The justification for doing this will be given shortly. Lateral spectral density factors
derived from the CSD will be treated similarly.

Finally, it was desirable to test the waters and apply the above approximations
to other stationary cylinder bundles by utilizing Egs. (10a), (10b), (10d) and (10f) as they
are in Eq. (9b) in the fully developed region of the flow (i.e., where dy = 1) and determine
the resulting values, or approximations, for b;. This was done for a number of systems
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from the literature and the results are summarized in Fig. 3(a), (b) and Table 3.'° For calculation
purposes the ranges of b, shown may be arbitrarily extended on the low-frequency side to
fD;/U =0, if it can be assumed that b, inherently changes very little or even not at all with

D/ U.
4. Empirical force-per-unit-length CSDs

Eq. (9a) may be substituted into Eq. (8) and the double integration performed to yield, for
stationary cylinders,"!

48746 X f) _ Sy, bo.f) ~<@ xS ..)exp(—ian(x’ — 0)/(al))

p2U3DyD?> — p*U3Dypdyo, "\ U’Dy U’
ij=12,..,2K, (11)

th X fl)_cl _ T
K,.j(U,D—h,v,..) _/0 /0 B 00,00, )00, )
[d(

s X, 00 (X0, o, 0, )l 0, ]
x exp[—12nf (x" — x)f (05)/(aU)] Trig:(0,) Trig;(05) dO, d0;,
r,s = r(i), s(j), (12)

defined earlier in Eq. (8), and use has been made of Eq. (10e). Note that Kj; above is a complex
function.

4.1. The differential pressure lateral spectral density factors (LASDF)

Neglecting the weak effect of 0; on y and f(6,), Eq. (12), reduces to

) D
Kij§7)<f—Uh,Dihw-->Kij,0<f_Uh’"‘>’ (13)
where
Kjp = / n / " B0, 0)d(x. 0,) d(¥, 020,020, *Trig(0,) Trigy(0,) do, do,. (14)
o Jo

101t is, strictly speaking, not valid to use these correlation functions, particularly the wall-pressure PSD shape
function given by o, = (Eq. (10f)), in arbitrary cylinder bundles and tunnel systems, as geometric and other
characteristic differences would render these functions slightly or perhaps greatly different from one system to another.
In fact, the relatively large variance of b, for the Clinch and Ohlmer et al. systems in Fig. 3(b) and Table 3, compared to
the others, gives evidence that a,, given by Eq. (10f), is less applicable to the Clinch and Ohlmer et al. systems than to
the others. In order to alleviate, or rather characterize, the effects of some of these differences one might try to restrict
the functions to a particular flow geometry and use turbulence correlation length scales to help characterize the
turbulent pressure field over different bundle systems [6].

"'This assumes that b of Eq. (9b) does not vary with location, 6, or is negligibly variant.
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Fig. 3. Measured differential wall pressure PSD data from the literature: (a) normalized with respect to p>U3D), x
P(Re) x [e(D/Dy)]? to illustrate the scaling effect of by; (b) data of part (a) normalized by o of Eq. (10f) to give
estimates of b,. In both (a) and (b): 4+, Ohlmer et al. [17,25]; o, Clinch [20]; A, Curling and Paidoussis [3,6,26]; x, Lin
et al. [21] and Mulcahy et al. [22]; %, Bakewell et al. [18]; B, Gagnon [unpublished].

y is the longitudinal correlation decay function defined earlier, with the exception that the weak
dependence on 0, (see Eq. (10c)) has been neglected, so that y could be factored out of the
integrand of Eq. (12); y is therefore considered to be responsible for variations of correlation in
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Table 3

Estimates of by corresponding to wall-pressure data from the literature

Reference (dy = 1,09 = @' [of Eq. (10f)]) by Range Variation

Clinch [20] 12.0 1.25<fDy/U<2.5 +4.0

Ohlmer et al. [25,17] 12.0 0.25</D,;,/U<2.0 +6.0

Curling and Paidoussis [3,6,26] 2.94 0.25</D;,/U<3.0 +1.0
-0.2

Lin et al. [21], Mulcahy et al. [22] 0.6 0.5</D;,/U<3.0 +0.5

Bakewell et al. [18] 0.6 0.5</D,/U<L2.5 +0.1

Gagnon (unpublished) 0.5 0.25</D;,/U<3.0 +0.4

longitudinal planes only. Kj;y is a collective quantity and is termed the differential pressure lateral
speclzlfézl density factors (LASDF) and is responsible for variations of correlation in lateral planes
only.

Note that K is a real function; note also that, by reason of d, it might reasonably be expected
to vary in magnitude and shape with axial co-ordinates x and X/, in the developing part of the flow
[3,26]. In the fully developed region, however, where d = 1, it is invariant with changing axial
location [3]. In what follows, the analysis will be restricted to the fully developed part of the flow.

If one sets X = x’ — x = 0.0 in Eq. (13) so that y = 1.0 and Kj; reduces to Kj; ¢, one obtains using
Egs. (11) and (9b) that

48y (x, x" = x, f)dooto _ 8Sp(x, X' =x,f)

Ko = = '
D S(x0,00./)  pPURD,D?bc?P

(15)

Given the complexities of (6,, 0y) for a bundle of cylinders [3] (as opposed to the much simpler
cases of annular and pipe flows [7,8]) Eq. (15) is a welcome circumvention of the need for direct
evaluation of Eq.(14), as Ss/(x,x' = x,f) is a directly measurable quantity. In a previous
analytical study, a so-called shortest lateral fluid distance (SLFD) point-pressure correlation
scheme was utilized, enabling an analytical approximation for Kj;y (see the next section and also
Refs. [1,10,16]). Here, however, an experimental determination of Ky will be made and
contrasted with the previous SLFD scheme.

Shown in Fig. 4 are measurements of 8Sys. /(p* U D;,D?) at two different Reynolds numbers in
the fully developed flow regime of a square array of eight stationary cylinders (see Fig. 2 and
Ref. [3]). Approximating analytical curves have been fitted to the data. Due to cross-sectional
geometric symmetry, the direction of f; is arbitrary in this bundle with respect to the quantity
measured (see Appendix B). Furthermore, by reason of Appendix B, on the same cylinder,
the real function K;;y = 0 when i#j. Inter-cylinder excitation correlations are also negligible in
this example [3]. Hence, in general, for all cylinders, K;y~0;i#j, and the applicable
analytical equation for the response is Eq. (4). The analytical approximation of the data in

2In pipe and annular flows, +/Kijo is related to Reavis’ and Gorman’s effective rod diameter [7.8]. It is a
generalization of their “effective diameter ratio” for cylinder clusters.
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Fig. 4. Approximation of measured force-per-unit-length PSDs by Eq. (16). Data obtained in the bundle arrangement
shown in Fig. 2 near mid-cylinder (x/L = 0.494) in the directions ¢ = 0° and 90°, at two different Reynolds numbers, as
shown. Different symbols are for the different ¢p and Re from two separate tests for repeatability; see Refs. [3,26].

Fig. 4 is given by

8S; x Re 1D\ "
S X~ 7000 exp | —10.13 (L0
P> U3 D, D’ eXp[ ( U

fDy
—>=0.25. 16
T (16)

D1 0.07
+ 17 000 exp [—11.18<fU’>

This is applicable for Re = 6800-48 000 and D/D;, = 2.095 [see footnote at Eq. (10a)]. Also, for
this data we note [3,6] that by = 2.94 and ¢ = 0.322 (using D/D;, = 2.095 in Eq. (10a))."® Thus,

invoking Egs. (15) and (10b), we obtain
0.07
+ 55740 exp [—11.18<f3’1> ]

i=j=12,...,2K; fD,/U>0.25
~0, i#]. (17a)

D1 0.09
Ko~ 22950 exp [— 10.13 (f U’)

From Fig. 4, a margin of error of approximately 30% can be estimated. Note the applicable
frequency range, fD;,/U >0.25. The unspecified low frequency range from 0 to 0.25 will be treated
as follows. First, Eq. (14) can, in principle, be evaluated at zero frequency, reasoning as follows. If
there is no sensible lateral variation of static pressure throughout the bundle, diametrically
opposing static pressures acting on the surface of a cylinder will be equal in magnitude and
opposite in direction. The differential static component of wall-pressure will therefore equal zero.
Consequently, in an infinitesimal frequency band at zero frequency the differential wall-pressure

3 In Refs. [3,6], byc? = 0.305, hence the value given here for b,. Also, depending on the explicit forms of the functions
p,a, etc., or alternatively, the analytical expressions assumed for them, »; may be found to vary somewhat with
frequency and/or location in the bundle. In this case, it is relatively constant (see Fig. 3(b)).
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PSD will be zero.'* This leads to the conclusion that o9 = 0 in Eq. (9b) for all values of 6, at
fD;/U =0, hence Eq. (14) evaluates to zero at fD,/U = 0. For calculation purposes, a linear
variation (“‘descent to zero”’) of LASDF is then assumed between fD;,/U = 0 and 0.25, and since
the gap, 0 to 0.25, is relatively small, this assumption should involve minimal error. Accordingly,

Ky o(fDy/U = 025)  fDy 1D,
K; 5,00/ 20 _ 07570
0= 0.25 T U’
i =j and 0</D;/U<0.25. (17b)

The differential pressure LASDF, Ky, as quantified by Egs. (17a) and (17b) is illustrated in
Fig. 5(a) where comparisons are also made to a previous approximation for the point pressure
LASDF, Kg’(,, obtained using pipe and annular flow pressure measurements (see the SLFD
correlation scheme later) and a “PSD-factored” differential pressure LASDF, Kg'/j,() (see Eq. (20b)
later).

4.2. The longitudinal spectral density factors (LOSDF) and final formulation of the response

Egs. (11) and (13) are combined to yield
4875 (x1,x2,f) _ Szp(x0, 0o, 1) K. /Dn /Dy X
2U3D D pPUsDdony P\ U )"\ U Dy
x exp[—i2nf(x; — x1)/(aU)], i,j=12,...,2K, (18)

where x; and x, are dummy variables replacing x and x’, and X = x, — x;. Recall that this
equation represents the fluid excitation forces acting on rigid, stationary cylinders. One now
invokes the quasi-static assumption where, if the vibration is sufficiently small, the excitation on
moving cylinders is approximately the same as that on corresponding stationary ones.
Substituting Eq. (18) into Eq. (3) written in terms of /' = Q/27, one obtains

4dooo Sy, (x, X', f) N 2KN 2KN
DZS;;(;O,BO,/‘) - ; Z P30 (x); qz Hi.p O Hpinpaf)

D, D ..
X Kb(p)b(q),@ <fU/, --->Ka(p)a(q),x (J[Uh, ), 1,] = 1,2, ...,2K, (19&)

14 Alternatively, it can be stated that we are concerned only with dynamic differential pressures. Therefore, the static
component can be neglected. Nevertheless, it is to be emphasized that the “zero-frequency/zero-PSD” assumption
depends on the static pressure balancing out in the differential pressure measurements, as stated from the outset.
Moreover, under this condition, the same conclusion can be reached in a different way, as follows. In terms of point
pressure PSDs and CSDs, the differential pressure PSD can be written as [26] Gy = G, —po)pi—p2) = (Gpipy + Gpopy) —
(Gp,p, + Gpyp,), Where py and p, are diametrically opposed point pressures. Two facts should be noted. First, there is no
convection of disturbances laterally. Hence, in a lateral plane the CSD is real (i.e., not complex) and G,,,, = |Gp,p,| =
Gy.p, = |Gp,p,|. Second, at zero frequency, or more precisely, in an infinitesimal frequency band at zero frequency, the
point static pressure is, by definition, fully coherent around and along the cylinder (this is corroborated by the fact that
point pressure measurements of  and y all tend to 1.0 as frequency tends to zero—see Eqgs. (21b) and (21c) later).
Together these two facts imply that Gp| p = Gpopy = /Gpip/Grop, In the above at zero frequency, and leads to the
factorization, Gg; = (\/Gpp, — +/ p,pz) When the static pressure balances diametrically, G, , = Gy,,, and hence
Gpp = 0 at zero frequency.
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Fig. 5. (a) LASDF versus reduced frequency for the same cylinder (r = s), with i = j, by the empirical and SLFD
correlation schemes: ——, empirical scheme, Kj;9, Egs. (17a) and (17b), and S = fD;,/U; ---, empirical scheme, Ki/j,U’
Eq. (20b) and S =/D,/U; — — —, SLFD scheme, K},, Eq.(23a) and S =fD/U,.. (b) LASDF versus reduced
frequency for different cylinders (r#s) by the SLFD scheme [K,f/(ﬁ, represented by J.., and J,., Eq. (23a)]: —,

Srs:z; - - 3;‘x:3; ) grx:6-

where

D L L Dy x» — X
Kupyatg).x (f—Uh, > = /0 dx; /0 dx2 ) (XD P () (X2)7 (J’_Uzj%, >

x exp[—i2nf (xy — x1)/(@U)], a(p),a(q) =1,2,...,N. (19b)
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These quantities (Ky()a(q).x) are defined collectively as the longitudinal spectral density factors
(LOSDF) [1,10], elsewhere also called “acceptance” [27]. In keeping with the nomenclature of
Reavis [7] and Gorman [8], when a(p) = a(q) = 1, the real part of Eq. (19b) reduces to L? lP%,
where ¥, refers to the ratio of an effective rod length to actual rod length (obtained by factoring
out L? from the integration—see Appendix C). Eq. (19b) is a generalization of the “‘effective rod
length™ for cylinder clusters. Details of the evaluation of K,g)uq),x,» When 7 is an exponential
function as it is here when the minute effects of 0 are neglected (i.e., set ¢, = 0 in Eq. (10c)), and
the ¢,,’s are the Euler-Bernoulli beam eigenfunctions, can be found in Refs. [10,14] and to some
extent in Refs. [7,28]. See Appendix C for a summary. Since low-frequency effects (fD;,/ U <0.25)
have already been accounted for by Kj;, the range of y (i.e., Eq. (10c)) and hence K/, will be
extended in the calculations to fD;,/U = 0, noting that y should in any case tend to 1.0 as f tends
to zero. A similar rationale applies to U.(0,) (Eq. (10e)).

4.3. An alternative formulation of the response

By repositioning dyay, Eq. (19a) can obviously be alternatively written as

4Sﬂ n,(x x' f) N 2KN 2KN th
D2S5(x0,00./) Z Z b/ (x) b, (x') Z Z 50000 Hpnpa Ky, 9( U >
D
X Ka(p)a((]),c<fUh, ), l,j: 1,2’ ...,Ka (203)
where
D Kopypi).0(Dn/ U, ...)
Kb(p)b(q) ’ ( vt) T doog ’ (20b)

a “‘normalized” LASDF, and K,()uq)x(fDr/ U, ...) is the same as before. Both expressions (19a)
and (20a) have merit. In the first, the “normalized” wall-pressure PSD, S35(x0, 00,/)/dooo, is
independent of dyoy and therefore is transferable between systems with different dyop
characteristics, while Kj; is dependent on dyo and is therefore not transferable. In the second,
Sz5(x0, 00,/) 1s dependent on dyx and is not transferable, while the “normalized” LASDF, Klfj,g,
does not depend on dyxy and therefore is a bit more transferable than the ‘“‘unnormalized”
LASDF."® This will be borne out in the sample calculations presented later. K .0 is shown
graphically in Fig. 5(a), for dy =1 and oy given by Eq. (10d) with ¢, =0 [i.e., oco is given by

Eq. (10)].'¢

'5In other words, for two different bundles, the assumption is that the normalized quantities, K, 00 and
Sip(x0, 00, )/ doog, are the same in both, whereas the unnormalized quantities, K9 and Sz;(xo, 0o, /), may be dlfferent
in both. Unfortunately, the two normalized quantities cannot be used simultaneously, therefore the choice has to be
made between normalizing the PSD and normalizing the LASDF. The sample calculations explore both choices.

1® As in Egs. (17a) and (17b), K o =0 when i#j, for the eight-cylinder system under consideration.
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5. The SLFD wall-pressure and force-per-unit length CSDs
5.1. Point pressure correlations and CSDs

The shortest lateral fluid distance (SLFD) force-per-unit-length CSDs of a previous study [1,14]
stem from single-cylinder and pipe-flow, point'” wall-pressure correlation measurements
[18-20,22,29] and, an assumed inter-cylinder point wall-pressure correlation scheme [1,10,16].
In a single-cylinder system, measurements have shown that point wall-pressure correlations
between two different points in a lateral plane on the cylinder decay in strength with the shortest
distance between the two points around the circumference of the cylinder. Measurements of
lateral point wall-pressure correlations being unavailable for bundles of cylinders at the time of
developing this model of the correlations, the assumption was made that, in a bundle, the point
wall-pressure correlations on stationary cylinders between any two points in a lateral plane decay
in strength with the shortest lateral distance through the fluid between the two points. Thus, the
lateral decay function for points on the same (stationary) cylinder is taken in the model to be that
of the single-cylinder (annular flow) measurements, which are similar to and hence approximated
by those measured in pipe flow [7,8,10,17-20,22,28-31]. The lateral decay function for points on
different (stationary) cylinders in the bundle is taken to be of the same form as that measured
around the circumference of a single cylinder or inner pipe wall, but having the distances around
the cylinder walls and shortest extension out into the fluid from a point on one cylinder to a point
on the next as the spatial separation parameter. This is done without regard for the presence of
obstructions, such as other cylinders, along the shortest path through the fluid, for the sake of
simplicity. This simplification has negligible impact on the cylinder vibration calculations if inter-
cylinder correlations beyond the nearest neighbouring cylinders are negligible, which is indeed the
case in the set of empirical correlations given in the previous section of this paper, in which all
inter-cylinder wall-pressure correlations are negligible.

Wall-pressure correlations in the longitudinal direction on cylinders in a bundle are taken to be
the same as those measured in the longitudinal direction on a single cylinder (annular flow) and in
pipe flow. Thus, the pressure field in annular and pipe-flow systems being characteristically
homogeneous, the bundle-flow longitudinal correlations are assumed to be the same in all
longitudinal planes on all cylinders in the bundle, which is a reasonable approximation in the light
of the preceding empirical longitudinal correlations, where the effects of ¢, (azimuthal co-
ordinate) on the longitudinal correlation functions, y and U, are small [see Egs. (10c) and (10e)].
Correlation decay in oblique directions, whether between points on the same cylinder in the
bundle or between points on different cylinders, is represented by the product of the lateral and
longitudinal decay functions. (This independent-planes model of the pressure field for
oblique directions was first suggested by Corcos [32] based on existing measurements and is
justified analytically here in Appendix D.) Putting all of this together, the SLFD wall-pressure
CSD for point pressures in the cylinder bundle in the fully developed flow region can be written as
[1,10,16]

SPrPx(xv xl’ 01‘9 Qs,f) = Spp(f)ﬁ(Sg)y(Sx)e_ianX: (2 1 a)

7«Point” as opposed to “differential”, as discussed in the preceding.
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where, using the Bakewell [18] and Bakewell [19] pipe-flow correlation functions,

B(Se) = (1 + ¢S5)"'[2 — exp(—dSH)] ", (21b)
1(Sx) = exp(—bISk]), (2lc)

:f(xl__ X) SH :fLmin(_Hr, 05)

S
X U, U,

21d)

100 000 < Re<<300000; D/Dj—0.

L,.in(0,,0,) is the shortest lateral fluid distance between the points (x,0,) and (¥, 0,). U,, the
average, frequency-dependent pressure disturbance convection velocity between x and X/, is
independent of lateral co-ordinates (a characteristic of pipe and annular flows—taken here as
being equal to the bulk channel flow velocity U for the frequency range of interest [14,16]—cf.
Eq. (10e)), the constants (b,c,d) = (0.7,10,80) and S,,(f) is the point reference or *‘signature”
wall-pressure PSD of the system similar to its differential counterpart discussed earlier. Note that
Spp(f) corresponds to %Sp—p(xo, 0o,/) (Eq. (9a)) discussed earlier'® and is invariant with 6y, as the
correlation functions in this scheme were derived from pipe and annular flow correlations where
the pressure field is characteristically homogeneous with respect to lateral co-ordinate, 0. Note
that B(Sp) tends to unity as the reduced frequency Sy tends to zero, as expected [see footnote
preceding Eq. (17b)]. This model of the pressure field is “‘exact” for a single-cylinder annular-flow
system, wherein inter-cylinder correlations become irrelevant. It is used here in bundles of
cylinders for comparison purposes and as a guide to the development of a more elaborate
empirical model for bundles. Accordingly, Eq. (21a) is to be compared to Eq. (9a). In Eq. (9a), the
generalizations from fully developed, homogeneous, pipe and annular flows, required by bundle
flows (i.e., clusters of cylinders), are evident. The form of Eq. (9a) reduces to that of Eq. (21a) for
a fully developed flow around a single-cylinder system, as it should.

5.2. Point pressure LASDF and LOSDF, and the SLFD formulation of the response

The operations required by Eq. (8) for point pressures integrated completely around the
cylinders (6,, 6, from 0 to 27) can be carried out using the above SLFD point pressure correlation
scheme (Egs. (21a)—(21d)) and the result utilized in Eq. (3), under the quasi-static assumption, to
yield an equation similar to Egs. (19a) and (20a), i.e.,

4S,1_,7_(x, x’,f) N N 2KN 2KN
— =N S 40, (DYDY HE HOK” K (22a)
D Spp(f) /=1 n=1 p=1 q=1 ' |

where, the missing subscripts being the same as in Eq. (19a),

2 2n
K, = /0 B Trig O Trigi0) d0, 0y, 1j=1,2, .. 2K (22b)

J

'8 Assuming that it is valid to take differential PSDs as being twice the corresponding point PSDs [3,14].
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(this is the point pressure LASDF—cf. Eq. (14)) and

L L
K, = / / b/()P, (X W(Sy) e P dxdy, Lin=1,2,...,N (22¢)
o Jo

(this is the point pressure LOSDF—cf. Eq. (19b)). Numerically evaluating Eq. (22b), coupled with
Eq. (21b), and curve fitting the result yields the following analytical approximation for the point
pressure LASDF [10,14,16]:

v ailSgl
(1 + ar %)
—0 if (i) = 5(j) and i%)
~ Trigi(\Prs) Trigi(Wrs)ons + [Ny — Trigi(Prs) Trigi(Pr)yes  if 1(0) #5(), (23a)

(1+ efa3|SR|) if r(i)=s() and i =

where r, s = r(i), s(j) and Trig; are defined in Eq. (8), Sk = fR/U,; the angle ¥, is defined in Fig. I,
and where

1 (both i and j<K) or (both i and j > K),
Njj = . (23b)
0 otherwise,
(a1, ar,a3) = (38.344,40.611, 19.091), (23¢)
b1&;}|SRl bylS
Jos = — B2 (1 31l 23d
ERRCE S 239
with
(b1,by,b3) = (—33.795,44.342,0.06283), (c1,c2) = (—1.7348,0.62895). (23e)
Jyrs 1s similar to J.., but with the constants
(b1, by, b3) = (52.183,140.666,0.03942), (c1,¢2) = (—1.3449,1.2100), (23f)
Eps = Rrs/Ra (23g)

where R is the distance between centres of cylinders r and s, and R = D/2, cylinder radius.

K”@ as given above is valid for —50<Sg <50 and 2 <¢,;<6. Components of the point pressure
K” by the SLFD scheme are illustrated in Figs. 5(a) and (b), where a comparison is also made in
Flg 5(a) to the empirical differential schemes discussed earlier.

The LOSDF, K;’n .» are of the same form as given previously (Eq. (19b) with a = 1,U = U,).
Examples of the evaluated integrals for LOSDF can be found in Refs. [10,14] and to some extent
in Refs. [7,28]. See Appendix C for a summary.

The similarities among the response equations (19a), (20a) and (22a) are to be particularly
noted. The only significant differences lie in the use of point or differential wall-pressure schemes
and the interpretations and characterizations of the wall-pressure PSD and the lateral and
longitudinal spectral density factors.



814 LLR. Curling, M.P. Paidoussis | Journal of Sound and Vibration 264 (2003) 795-833
6. The single-cylinder stochastic response equation

Considering annular flows (i,j = 1,2), simplifying to the first mode and assuming no fluid
coupling between the two degrees of freedom (i.e., zero eccentricity), Eq.(19a) reduces

significantly to
D?*S55(x0, 00, -
Spn (x, X', 1) = %OOJ() $1(x)0 1 (X)HT, () Hi1(F)Ki1,0(f)Kii <(f) (24)

This also follows from Egs. (7), (18) and (19b). An equation like this has been derived by
Thomson [9].
This equation can also be written in terms of K110 (see Egs. (20a) and (b)), as well as
Spp(x0,00,/), Ki; o and K7, | (see Egs. (22a)~(22¢)). The latter form, using different terminology
from the above, has been derived and utilized previously by Reavis [7] and Gorman [8].

7. Sample calculations of the cylinder response spectra

Sample calculations are presented for the response of the four-cylinder system (K =4)
described in Ref. [16] and shown here in cross-section in Fig. 6. Measurements of the response of
this system are available for comparison with theory. The system has clamped—clamped boundary
conditions, p = 1000 kg/m?, u=0.00101 Ns/m?, D =253mm, D,=1286mm, m=
0.577 kg/m, L =470 mm, E = 2780 kPa, and G, = 0.75; these parameters are, respectively, the
fluid density, viscosity, cylinder diameter, hydraulic diameter, cylinder mass per unit length, cylinder
length, modulus of elasticity and smallest inter-cylinder gap divided by cylinder radius. From
unpublished data by Gagnon, b, for this system is approximately 0.5+ 0.4 (see Fig. 3(b) and Table 3).
The response will be determined at flow velocity U = 2.13 m/s, or non-dimensionally, u = 3.0 [16]."

7.1. The response using Eq. (19a)

The differential wall-pressure PSD is given by Eq. (9b) which, using Egs. (10a) and (10b), reduces to
Spp(x0, 00..1) =3 bspuU2domo[1 + (D/Dp) ] 1. (25)
Inserting the values for the K = 4 system described above, this becomes
Szp(x0, 00, /)
dooio

Using this in Eq. (19a), the response PSDs and CSDs, Sy (...) /D?, of mid-cylinder displacements
were calculated on the computer.”® The results, plotted versus reduced (or scaled) frequency , are
shown in Figs. 7 and 8. o (measured in rad) is related to frequency /' = Q/2n (Hz) by the equation

o = 2nL*[(m + pA)/EI"? f = 6.1016f, (27a)

~9.153 x 10”7 kPa?/Hz. (26)

19 Re for this example is approximately 270 000—well beyond the range of the empirical expressions of Sections 3 and
4 but not outside that of the expressions of Section 5. Additionally D/D;, = 0.197, compared to 2.095 for some of the
expressions of Sections 3 and 4, and 0.0 for the pipe-flow based expressions of Section 5.

20 As stated earlier, these calculations neglect the developing part of the flow, characterized by d(fDu/ U, ...).
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Fig. 6. Cross-section of the four-cylinder system used in experiments [16] for which the sample calculations of Section 7
were made. Radial and tangential directions are defined.

where I is the area moment of inertia of the cylinder (= nD*/64). The CSDs are shown in the form of
coherences, 1.e., |CSD 1,2|2 /(PSD; x PSD,), and phases. Conforming with the definitions used in Ref.
[16], the PSDs are shown as
Q Q
:/1111 = % G’ﬁ'll = % S’Il’?l’ (27b)
where S, , is defined by Eq. (3).!

Experimental measurements of the response by Gagnon and Paidoussis [16] are also shown in
Figs. 7 and 8 for comparison with the theoretical response. While experimental and theoretical
coherences tend to agree very well (Fig. 8—(see also Refs. [1,2,16]), the theoretical PSDs (Fig. 7)
clearly overestimate the experimental ones at the important first mode frequencies, by factors
exceeding 20, too great for practical use. This large discrepancy could possibly be attributed to a
number of reasons, including but not limited to the following: (1) the specific dependence of Kj;
on the system (mainly its cross-sectional geometric configuration) in which it was measured, (2)
the wide margin of error associated with by(+80%), and (3) the differences in Re and D/D;,
between the excitation used in the theory (Re = 680048 000; D/D;, = 2.095) and the experimental
four-cylinder system (Re = 270000; D/D;, = 0.197).%> The foregoing calculations attempted to
transfer Ky from a densely populated eight-cylinder bundle (Fig. 2) to the more sparsely
populated four-cylinder one (Fig. 6). The inapplicability of Kj;y to the four-cylinder bundle and
large error in by have contributed to the large differences in the theoretical and experimental

2'In  contrast to Eq.(3), the definition used in the non-dimensional version of the theory is
R,7,_,7/_/D2 =(1/2n) fiﬁ (Sfl;,n/ /D?)exp(iow?) dw [1,10]. The link between this and Eq. (3) is the constant ratio, Q/w,
giving S” = (Q/w)S. In Ref. [16], an additional factor of 2z was employed for the one-sided spectrum, G' = 25, giving
G =(1/2n)G" = (1/n)S" = (2/mw)S.

22 A quick sketch of c*(D/Dy) vs D/ Dy, illustrates how significantly D/Dj, affects the wall-pressure PSD at large D/ Dj,.
Since the empirical expressions of Section 3 were obtained only at a single value of D/Dj(= 2.095) we still do not know
whether changing D/Dj, also significantly affects the remaining parts of the excitation. Specifically, y, U, — K}, and
o, ﬂ d Ki/',g.
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Fig. 7. Comparison of theoretical (Eq. (19a)) and experimental [16] PSDs of mid-cylinder displacements in the four-
cylinder system of Fig. 6 at u = 3.0 in two different directions: (a) radial direction; (b) tangential direction. The
frequency range spans the first and second mode frequency groups. The scales on the left (x10~¢) are for the first mode
frequency group (wii, w1, ...,w1g) while those on the right (also x107°) are for the second mode group
(wzl,wzz, ...,6028). N.B.: G’,h'ﬁ = (Q/277:w)G,7I,,1 = (Q/nw)Sm,h [1,10,16].

response PSDs. Eq. (20a) will offer an improvement in this regard. The other factors can be
alleviated through further empirical research.

7.2. The response using Eq. (20a)

The response of the same four-cylinder system at the same flow velocity (z = 3.0), as in the
preceding section, is calculated using Eq. (20a), for comparison with that using Eq. (19a). The
differential wall-pressure PSD is in principle again given by Eq. (25); however, this time dyoy must
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Fig. 8. Comparison of theoretical (Eq. (19a)) and experimental [16] coherences and phases between an adjacent pair of
radial-direction, mid-cylinder displacements in the four-cylinder system of Fig. 6 at u = 3.0, corresponding to Fig. 7.

be determined for the system. This is done implicitly by utilizing an in situ measurement of Sz5(...)
at u = 3.0.>* The in situ PSD (unpublished data by Gagnon) was measured at mid-longitudinal
location in the “‘tangential” direction on one of the four cylinders in the system. In the frequency
range of interest, it is given approximately by the following:

Sy(f)~7.5 x 10781 kPa’ /Hz,
0<f'<12.5 Hz or 0<fD;/U<0.76 cycles or 0<w<76.27 rad. (28)

Utilizing this in Eq. (20a) the mid-cylinder response PSDs and CSDs were calculated on the
computer as previously. Qualitatively, the comparison between theory and experiment is as good

2 An in situ measurement of Sz5(...) also corrects the +80% uncertainty in b;.
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Table 4
Comparison of the major peaks (magnitudes at modal frequencies) of the experimental PSDs in Fig. 7 with theory at
u=23.0

Direction 45° (radial) Direction 135° (tangential)

First mode frequencies Second mode frequencies First mode frequencies Second mode frequencies
w1 W15 = W16 w21 W25 = W26 w13 = W4 W18 w2 w23

~16 ~24 ~53 ~ 68 ~21 ~28 ~57 ~74

Experiment [16] 1.8 x 10°® 24x10°% 65x10°% 25x 1078 30107 08x10° 625%x10°% 14x10°8

SLFD model 1.7x107¢ 22x10°° 1.4 x 1078 0.75 x 1078 29x10°° 04x10°° 1.15x 1078 0.18 x 1078
(K],), Eq. (222)

Empirical model 3.8 x 107¢ 10.5x10°¢ 275x10°% 1.75x10% 95x10% 50x10°% 26x10"% 06x10°8
(K}, ), Eq. (20a)

Empirical model 35 x 107 67.5x 107 625x10°% 29x 1078 69 x 107° 26 x 107¢ 475 %1078 0.75x 1078
(Kij0), Eq. (192)

Note: 1. The numbering system for w;; is based on there being eight theoretical frequencies in each mode group [16].
Some frequencies are repeated, e.g., s = wie. 2. The units of w; and the PSDs are rad and rad ™!, respectively.

as previously. However, this time, quantitative agreement between the theoretical and experimental
response PSDs, in the important first mode group of frequencies,* is much better than before, as
seen from the results given in Table 4. This improvement has resulted from the use of the in situ
differential wall-pressure PSD (i.e., implicitly, in situ oy and by) instead of Eq. (25) as is, and the
greater versatility of K;H as compared to its counterpart, Kj;y (see the footnote in Section 4.3).
Based on observed margins of error in the experimental measurements of the quantities needed
to calculate the theoretical response, an expected overall discrepancy factor of the order of 2.0
could be estimated.?® Note that the values of the first-mode PSD peaks in Table 4, by the theory of
Eq. (20a), are ‘“‘almost” within this factor of 2.0 from the experimental first-mode peaks

(discrepancy range: 2.11 to 6.25; cf. the range of 19.4-32.5 for the results via Eq. (19a)).

7.3. The response using Eq. (22a)

These last sample calculations of the four-cylinder system response make use of the SLFD
scheme described in Section 5. The SLFD response is given by Eq. (22a), which requires the point

2*The second and higher mode frequencies contribute insignificantly to the total response (see Fig. 7).

25The total error in the response calculation is an accumulation of errors of measurement in the PSD, LASDF,
LOSDF, plus other system errors. Assume a 10% maximum error in the PSD; that in the LASDF is of the order of 30%
(see Fig. 4); that in the LOSDF is taken to be the same as for the empirical differential wall-pressure CSDs (Egs. (10a)—
(10g)), i.e., 20%; assume the remaining unaccounted-for errors amount to no more than 20%; finally, assume the
overall error is not very different from, or at least not smaller than, the average term-by-term error in the multiple
summations in Egs. (19a), (20a) and (22a) (this effectively establishes a lower bound for the expected error). Given these
values and assumptions, the overall error ratio is expected to be no better than 1.10(PSD) x 1.30(LASDF) x
1.20(LOSDF) x 1.20(other system errors) = 2.1.
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pressure PSD, S,,(f). This is taken to be one-half the in situ differential pressure PSD given earlier
by Eq. (28). 2

The mid-cylinder response PSDs and CSDs calculated on this basis, were again qualitatively
very similar to Figs. 7 and 8, the only significant differences occurring in the magnitudes of the
PSDs. Values of these, at the natural frequencies of the system, are given in Table 4, where
comparisons are made to the results of the empirical schemes used earlier, as well as experimental
measurements [16]. In the table it can be seen that the SLFD scheme compares better with
experiment than do any of the empirical schemes at the first mode frequencies. It is plausible that
this has occurred mainly for one or all of the following four reasons: (1) a judicious choice of the
tangential direction in which to obtain an approximation for S,,(f) (see previous footnote); (2) the
fact that the four-cylinder system is sparsely populated (Fig. 6) compared to the fully populated
eight-cylinder bundle (Fig. 2) from which Kj;y and K, 110 were obtained; the sparse four-cylinder
system more closely “‘resembles” pipe- and annular-flow systems, with respect to K7/ > than does
the fully populated system, i.e., they have more “‘similar’” values of D / Dy; thus, K,’/’ 0 would appear
to have been more reasonable for this four-cylinder system than K / g or Kjjo; (3) there is a closer
match of Re between the excitation in the SLFD theory and the experimental four-cylinder system
than in the previous two samples; and finally (4) the inclusion of the inter-cylinder wall-pressure
excitation CSDs in the SLFD model, however small, may have had a small but substantial,
cumulative effect on the result [1]. More research should be done to investigate these matters
further.

Finally, small discrepancies still remaining between theory and experiment can probably be
attributed in part to non-linear effects such as those excluded by the quasi-static assumption for
the excitation forces on the walls of the vibrating cylinders, in part to uncharacterized fluid flow
excitation in the developing part of the flow and in part to other limitations of the model [16].

8. Comparative computations of cylinder response spectra utilizing the full and reduced stochastic
equations

Shown in Table 5 are the times-of-computation ratios for the sample calculations of normalized
response spectra [defined in Egs. (19a) and (22a)] using the full and reduced equations presented in
Section 2. The results show that significant savings can be achieved with the reduced equations
(4)—(7), compared to using the full equation (3); e.g., from the table, the calculation of the
response PSD by the SLFD correlation scheme of Section 5 with three comparison functions

26This is valid since, in the tangential direction of Fig. 6, the diametrically correlated components of the differential
pressure balance each other (by geometric symmetry), leaving only the uncorrelated components to contribute to
cylinder vibration, and the PSDs of the uncorrelated components are equal in magnitude (again by symmetry).
Specifically, if p; and p, are the uncorrelated components of pressure, then

GITP = (Gplpl + szpz) - (GPIPZ + szpl) = 2GP1P17
since Gp,p, = Gp,p, (by symmetry) and G, ,, = G,,,, = 0 (uncorrelated). Note from Fig. 6 that the cross-sectional
geometry, while symmetric in the tangential direction, is not in others. Thus, the above may not be true in other
directions. Note, however, that it is true in all directions in a fully populated rectangular array of cylinders (see
Appendix B). The use of the tangential direction PSD in this example should therefore be viewed as a good
approximation for the “laterally homogeneous™ S,,(f) in Eq. (22a).
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Table 5
“Times-of-computation” ratios— Eq. (3): Eq. y (for K = 4, N = 3)? for normalized response spectra
Eq. y
B (5a) (62)° (@
SLFD correlation scheme (see Section 5.2)
Eq. 3)° (PSD Only) 2.26:1 41.36:1 35.02:1 186.76:1
(PSD+ CSD) 3.89:1 97.23:1 n/a n/a
(CSD Only) 6.78:1 475.59:1 n/a n/a
Empirical correlation scheme (see Section 4.2)
Eq. 3)° (PSD only) 1.87:1 26.23:1 26.23:1 96.17:1
(PSD +CSD) 2.61:1 55.71:1 n/a n/a
(CSD only) 3.39:1 163.83:1 n/a n/a

A CSD calculation consists of the inter-cylinder spectral densities in the Cartesian directions (i.e., S- -,, Sy,,, S-,;, and
S},z,) needed to calculate the inter-cylinder response CSDs of two pairs of cylinders in arbitrary polar directions [e.g.,
pairs (1,2) and (1, 3)].

N =1 for Egs. (5a) and (7)—see Table 1.

P Egs. (6a) and (7) are single-cylinder equations and cannot determine inter-cylinder response CSDs.

“A PSD calculation consists of the same-cylinder spectral densities in the Cartesian directions (i.e., S--, Sy, and S:))
needed to calculate the response PSD of a cylinder in an arbitrary polar direction.

(N = 3), using Eq. (3), the full equation, took 2.26 times as long as it did using Eq. (4), the
NOINTEC reduced equation, and 41.36 times as long as it did using Eq. (5a), the NOINTEC 1
reduced equation.

9. Conclusions

In the foregoing, stochastic equations of varying degrees of computational complexity and
efficiency for determining the random vibratory response of cylindrical structures have been
given, with application to cylinders subjected to turbulent axial flow. Analytical approximations
for the lateral fluid forcing functions have been presented, based on previous wall-pressure
measurements in a particular bundle of cylinders configured cross-sectionally in a square-array
pattern and a few other results pertaining to other set-ups from the literature [3,6-8,16-22,26].
The model of the excitation derived from these approximations was obtained for
6800< Re<48 000 and D/D;, = 2.095.

The generality of the present or any other similar force-field approximations for arbitrary
bundle configurations and test rigs remains to be more thoroughly investigated. Possible tools for
this kind of investigation include turbulence correlation length scales [6]. Also, it is to be
emphasized that the present data and all its implications strictly apply to excitation frequencies
above fD;,/U of the order of 0.25. This resulted because of the absence of empirical data below
that point [3,6]. For the purpose of making sample calculations, certain logical assumptions (the
zero-frequency/zero-PSD assumption and a linear-descent- to-zero assumption) were necessary in
the region between fD;,/U = 0.0 and 0.25. The zero-frequency/zero-PSD assumption is based on



LLR. Curling, M.P. Paidoussis | Journal of Sound and Vibration 264 (2003) 795-833 821

the fact that it can be accurately inferred that under the condition of balanced static pressure the
excitation PSD (of differential pressure), hence the CSD, is exactly zero at zero frequency, i.e., at
the static condition. The need for the second assumption, the linear approximation between
fDy/U = 0 and 0.25, shows that more research is needed to determine the exact behaviour of the
phenomenon near “‘static”’ conditions—although, this gap being small, the error introduced by a
linear assumption would be minimal.

All in all, the present empirical approximations for characterization of the turbulent force field
on stationary cylinders may be summarized as follows. Indications are that the force field depends
fundamentally upon the following correlation parameters and functions: by, a ‘“‘quietness”
function of proportionality (called a bundle system ‘‘constant’); ¢, a confinement function; S, 7,
lateral and longitudinal correlation decay functions, respectively; d, a pressure-field development
function; «, a wall-pressure PSD shape and azimuthal distribution function; P, a Reynolds-
number-dependent power function; U,., average wall-pressure disturbance convection velocity;
Kjjo, lateral spectral density factors (LASDF), and Ky, , longitudinal spectral density factors
(LOSDF).

These have been discussed in detail here and elsewhere in the literature [3,6,10,16,26]. Excluding
d, they have all been determined only in the fully developed part of the flow of the eight-cylinder
bundle mentioned in this paper [3,6]. More research needs to be conducted in the developing part
of the flow in this, as well as other, bundle configurations. Also, wider ranges of Re and D/D,,
need to be investigated.

The excitation CSD can be approximated by the product of the excitation PSD and lateral and
longitudinal correlation functions or factors as shown in Appendix D. By the reasoning of
Appendix D, this approximation will probably be more accurate for low frequencies and small
separation distances than for higher frequencies and larger separation distances. Fortunately, the
correlations tend to be insignificantly small at the higher frequencies and larger separation
distances, while most of the vibration occurs only at the lower frequencies. The separation of
planes into lateral and longitudinal parts is based on Corcos’ model of the turbulent wall-pressure
field [32], and has been used successfully in previous studies of this kind [1,7,8,16,23,24,27].
Subsequent analysis gives rise to the lateral and longitudinal spectral density factors as has been
discussed. The longitudinal spectral density factors involve double integrals over the lengths of the
cylinders, a summary of which, using complex variables and the Euler Bernoulli beam
eigenfunctions, is given in Appendix C for arbitrary cylinder boundary conditions.

Sample calculations were conducted for the response of a four-cylinder system using the
equations presented in this paper and the “quasi-static”’ excitation force-per-unit-length CSDs
that were developed. The theoretical results were compared to experimental results for the same
system found in the literature [16]. Those by Eq. (20a) compared much better with experiment
than those by Eq.(19a), showing the advantage of Ki/j,@ (normalized LASDF) over Ky
(unnormalized LASDF) in this case, both of which were determined from measurements of the
wall-pressure field in the eight-cylinder stationary bundle. The dependency of the former, Ki;ﬁ, on
the eight-cylinder wall-pressure PSD shape function, oy, was removed through division or
“normalization” by oy, making it more applicable to the four-cylinder bundle, which was
inherently (by reason of a different geometry) under the influence of a different wall-pressure PSD
shape function. In short, Ki’w was more “‘transferable” in this example from one bundle
configuration to the other, than K 9; hence better results were obtained using Klfj,o. Additionally,
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the in situ wall-pressure PSD used in Eq. (20a) avoided estimation errors in b,. This also helped to
improve the results. An in situ PSD can be used in conjunction with Eq. (9b) in a given rig to
minimize the amount of wall-pressure PSD measurements necessary in the rig.

For comparison purposes, sample calculations involving Klf]fﬁ, i.e., the SLFD scheme given by
Eq. (22a), were also made. Results agreed with experiment even better than those using Klfjﬁ, for
the same four-cylinder system. Four possible explanations for this were given. First, the four-
cylinder system, with its greater regions of ““open space”, more closely ‘“‘resembles’ the pipe- and
annular-flow systems upon which the SLFD correlation scheme is based (i.e., they have “‘similar”
D/Dy), than does the more densely populated 8-cylinder system from which Kj;y and Kz{i,é were
determined. Second, the improved agreement between theory and experiment could be due in part
to the cumulative effects of inter-cylinder wall-pressure excitation CSDs, however small, and their
inclusion in the SLFD model [1]. Third, the choice of the tangential direction wall-pressure PSD,
and not any other direction PSD, to approximate S,,(f) in Eq. (22a) could also have favourably
impacted on the results. Fourth and last, the range of Re over which the SLFD correlation scheme
was obtained contains the Re at which the experimental four-cylinder response was measured and
therefore it is probably more valid for the four-cylinder system than the empirical schemes
involving Kj;9 and Kj;, which were obtained at much lower Re.

More research is needed to resolve and further explain these matters. The effect of cylinder
motion on the excitation force field should also be researched, so that larger-amplitude vibrations
could be studied (i.e., higher flow velocities). Moreover, the analytical characterization of the wall-
pressure excitation will benefit greatly from research into the structure of wall-bounded turbulent
flow [33].

Finally, this paper also shows that significant savings, in terms of computational efficiency,
can be achieved when computing the cylinder response spectra by utilizing simplified or
reduced versions of the full equation for cylinder vibration in a bundle of cylinders. This has
implications for value-engineering design of large systems based on differing cylinder bundle
configurations.
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Appendix A. Derivation of Egs. (3)—(5)
A.l. Egq. (3)

The displacement vector, n(x,?) (Eq.(2)) is expanded in a series of Galerkin comparison
functions,

N
NG =D $,(0,(0), (A.1)
n=1
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where ¢, (x) are the comparison functions satisfying the boundary conditions of the problem and
49 = {Gn>Gnys > qn yT. the nth generalized vector corresponding to the displacement vector,

n=1{n,M, .Mk} -
Eq. (1) is then written as

N
> M), (X)in(1) + C(X)p, () + K(x),(x)a,(1)] = f(x, 1), (A.2)
n=1
where f(x, ) = {£.(x, 0),f,(x,)}".
Multiplying by the weighting function, W, (x), and integrating over x to eliminate the space
variable, this becomes

N L
3 /0 [V COME), (i) + Wiy ()CP, () (1) + Wi (K ()b, (1)q,, (D] dx
n=1

L
:/ Wy(x)f(x,t)dx, n' =1,2,....N, (A.3a)
0
or in matrix form
[M]4 + [Clq + [K]q = {(2), (A.3b)
where
[min]  [my2] ... [men]
L
(M] = [m?'l] [m?'z] [m%’N] ] = / WM, dx, (A3¢)
0
[myn]  [ma2] ... [maw]
[cin]  [er2] ... [erw]
L
= | et e = [ wacs,ax (A3d)
0
[enn]  [en2] ... [earw]
[kin]l [kl ... [kvw]
, , L
K] = [k2.'1] [k?z] [k%N] ’ [kn/n]:/ WK, dx, (A.3¢)
: : : 0
[yl [kn2] ... [kaw]
4= {40 - q,}" (A.30)
and

L
(1) = /0 (WE(x, 1), WHf(x, D), ..., Waf(x, 1)} T dx. (A.3g)
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Taking the finite Fourier transform of Eq. (A.3b) and retaining only the steady state producing
terms yields [see Egs. (A.10a) and (10Db)]

[ Q[M] +iQ[C] + [KTIQ(®, T) = F(@, T), (A.4a)
where
T .
@1 = [ ane i (A4b)
0
T .
F(Q,T)= / f(r)e ' dr. (A.4c)
0
Solving (A.4a),
Q(Q,T)=[HQIF,T), (A.5a)
where the frequency response function matrix is defined as
[H(Q)] = [-Q*[M] +iQ[C] + [K]] . (A.5b)
Considering each element of Q(2, T) more explicitly (using also Egs. (A.4b), (A.4c) and (A.3g)),
2KN
Q. T) = Hy(F Q. T)
q=1
2KN L
=) Hy(Q) /0 W) (%) Fa)(x, 2, T) dx, (A.5c)
q=1

where

T
Fy(x,Q,T) = / Joig(x, 1) e % dy, Jhig(x, 1) being the element of f(x,7), (A.5d)
0

a(q) = largest integer<{(2K + ¢ — 1)/2K}, changing from 1 to N as ¢ goes from 1 to 2KN,
(A.5e)

b(q) = q — 2K[a(q) — 1], cycling repeatedly from 1 to 2K as ¢ goes from 1 to 2KN. (A.5f)

Rewriting Eq. (A.1) in elemental form,
N
(50 =Y d(0)g0). (A.6)
n=1
Taking the finite Fourier transform of this gives

N
N Q. T) =) $,()0(Q.T), (A.72)
n=1
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where
T .
Ni(x,Q,T) = / n;(x, 1) e dy, (A.7b)
0
. T . .
0QT) = / g (e dr. (A.7¢)
0
From the definition of q,(¢) in Eq. (A.1) and q in Eq. (A.3f), we can write
012, T) = Qpiny(Q, T), (A.8a)
where
p(n,j) =2K(n— 1)+ . (A.8b)
Substituting for Q/(Q, T) in Eq. (A.7a), using Egs. (A.8a), (A.8b) and (A.5c), gives
N 2KN L
NG T) =) 6,0 Y Hpnjpo(Q) /0 W) (1) gy (1, Q, T) dx;. (A.9)
n=1 q=1
The response and excitation CSDs are now defined as [9]
1
Sy, (6, X', Q) = Tlirn T Ni(x, Q, T)N(X,Q,T), (A.10a)
1
Sﬁw(p)fb(q)(xla)CZ: Q) = ]_1% TF[:k(p)(xla Q7 T)Fb(q)(x% 99 T) (AIOb)
with the corresponding cross-correlations,
1 * o7
Ry (x, X, T) = > / Sy, (3, X', Q) dQ, (A.10c)
1 * iQf
Rjig (15520 = = [ Sy (1,32, D A2 (A.10d)

Then, by substituting Eq. (A.9) into Eq. (A.10a) and applying Eq. (A.10b), Eq. (3) of the main
text is obtained, having W (x) = ¢(x).

A2. Eq. (4)

Eq. (4) follows from Eq. (3) when
Shofin (X1, X2,82) = 0, b(p)#b(q) or b(q) + K when b(q)< K,
b(p)#b(q) or b(q) — K, when b(q) > K.

This can be demonstrated by considering the components (or elements) of the generalized force-
per-unit-length CSD matrix that are non-zero according to the above condition. The indices (or
subscripts) g and n in Eq. (3) may then be redefined as the new subscripts ¢’ and »’ given in Eq. (4)
in order to accommodate or include those non-zero components and exclude these [Eq. (A.11)]
that are zero. The range of #' must then be 1 to 2N to include all N modes in the two directions z
and y as indicated in Eq. (4).

(A.11)



826 LLR. Curling, M.P. Paidoussis | Journal of Sound and Vibration 264 (2003) 795-833
A.3. Eq. (5)
Eq. (5a) follows from Eq. (4) when N = 1.
Appendix B. Properties of force-per-unit-length and cylinder displacement PSDs and CSDs for an
infinite square array based on geometric symmetry

The following Theorems 1-3, apply to cylinder vectors in general, i.e., to forces as well as
displacements.

Theorem 1. The PSD is the same all around a cylinder in a given lateral plane.

Proof. See Fig. 9. By symmetry
Gy = Grpr  Grp = —Gpyr, =0

and

Grr, = —Gypyp, = 0.

Also by resolving vectors in the direction ¢,

fo = fo cos ¢+ f,s sin ¢.

Therefore,
Grr, = G, cos® ¢ + (Grp, + Gyyp)cos psing + Gy, sin” ¢
= Gﬁ_,ﬁ, = ny'f)% for all (]5

Theorem 2. The inter-cylinder CSDs between the z and y directions shown are zero in a given lateral
plane.

Fig. 9. Diagram used in the proof of Theorem 1 of Appendix B.
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Proof. See Fig. 10. By symmetry,
Gt f,, = G -4 = —Grp, =0, Gry = Grp)=—0rp =0

Theorem 3. CSDs between any two orthogonal directions on a given cylinder are imaginary (real
parts are zero) in a given lateral plane.

Proof. See Fig. 11. By symmetry,
Gab = Gbc = Ued = Gda~

However, Gy, = —Gp, = —Gy; therefore G, = —G%,, and the real part of G, must be zero, i.e.,
G, 1s imaginary, for all rotations 0.

o

8

Fig. 10. Diagram used in the proof of Theorem 2 of Appendix B.

a
OO O
b
M OX )
A=Y A
d \ e
O O« 0O

Fig. 11. Diagram used in the proof of Theorem 3 of Appendix B.
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Appendix C. Evaluation of LOSDF

This appendix summarizes the development in Ref. [10]. LOSDF, the longitudinal spectral
density factors, in the differential (empirical) and point (SLFD) wall pressure correlation schemes
are given by Egs. (19b) and (22c¢), respectively. As stated before, the two equations are very
similar, in fact almost identical, in form. The only difference in form occurs in the choice of flow
velocity to define the reduced frequency (or Strouhal number) in the function y; the first uses bulk
flow velocity U in y, while the second utilizes the convection flow velocity, U,. The importance, or
net effect, of this is that the method of evaluation of both double integrals, i.e., both equations, is
exactly the same. Hence it need only be demonstrated from one of them.

Accordingly, Eq. (19b) can be rewritten as follows:

1 1
Ko (") =2 [ ats [t puciueexn (-5 180 ) enp (1225 ),

U aU
,n=12,...,N, (C.D

where & = x/L, £ =¢&, — &, b=0.7, and y has been substituted by Eq. (10c) in the direction
¢, = 0°. The comparison (or weighting) functions, ¢,(¢) and ¢,(£), in the solution of the problem,
have been chosen as the orthonormal Euler—Bernoulli beam eigenfunctions that satisfy the
boundary conditions of the problem (e.g., for pinned—pinned cylinders, choose
¢,(&) = \/2sin /7). Then, noting that d*¢,(&)/de* = 1%¢,(&), where J, (£ = 1,2, ..., N) are the
beam eigenvalues (for pinned—pinned conditions, A, = /n), Eq. (C.1) can be integrated by parts
repeatedly, for the case of fL/U > 0.0, to yield [10]

K (fDy/ U, ...)|[* = — A(—=2*,¢,n) — I(z*,1,0.0) x B(—z*,/,n) + A(z,/,n)

+e“I(—z,n,1.0) X B(z,/,n), {(,n=12,...,N, (C.2a)
where
z:f—L<b+i2—”>, i=+v-1, (C.2b)
U a
o 1 (2% b/n Ctn f?n
A(Z: /7 n) - W{7 Z_2+Z_3+Z_4}’ (C.2c)
9O 1dg0) | 1d7¢,0)  1d°9,9)
I(z,n, &) = P 4z +; 42 o 42 (C.2d)
and
1 1 .
B(z,/,n) = - )f}/z“) - Ai/z“) {’I(z,£,1.0) — I(z,/,0.0)}. (C.2e)



LLR. Curling, M.P. Paidoussis | Journal of Sound and Vibration 264 (2003) 795-833 829

In Eq. (C.2¢), ay, through fy, are the weighted residuals given by the following:

wn= [ OGO e by Pl

et = / 6, ‘f’(‘f)dé fon = / e 34’ (é)dé (C.2f)
For the case where fL/U = 0, Eq. (C.1) simplifies to

K103/ U,/ = | L / e B E B, (C2g)

(For the orthonormal pinned—pinned boundary conditions, this equals zero when either Z or n is
even, and 8/(/nn?) when both ¢ and n are odd.)

Appendix D. Exact relations which aid the characterization of wall-pressure and force-per-unit-
length CSDs

D.1. Wall-pressure CSDs

It can be shown that, in terms of an intermediary pressure, p,, the CSD between pressures, p;
and p3;, can be written as

Sy S
Sp1p3 — P1D2 P2P3’ (Dl)

Sﬁzﬁz

where p, is the component of p, that is correlated with both p; and ps (see Fig. 12).?” The
methodology for proving Eq. (D.1) can be found in Ref. [26]. The proof is produced here and goes
as follows. Assume that the pressures p;, p, and p3 each consist of two components only, which
are: (a) completely intercorrelated components, p, p, and ps, respectively, and (b) completely
uncorrelated or noise components, n;, n, and ns, respectively.”® Letting capital letters represent

71t can be shown [26] that Sj,5, = Spp[72 .77, /y12,]p3]1/2 where 75, = 1S, 1 /(Spipi Spypy)» the coherence between p;
and p;; i,j = 1,2,3. It would appear that knowing this is of no practical value, other than possibly to validate Eq. (D.1)
experimentally, since the measurement of yﬁlm requires the knowledge of S, ,, a priori, which is the quantity initially
sought.

2By analogy with p, defined in Eq. (D.1), p; is that component of p; that correlates with both p, and ps, and
similarly, ps3, the component of p; that correlates with both p; and p,. It is unlikely that in the turbulent pressure field of
a cylinder bundle, significant partially correlated components of p, would exist, i.e., it is unlikely that when p; correlates
with p3, some part of p, will also correlate significantly with p; but not with p, or with p; but not with p; (see Fig. 12).
This is because the high-frequency components of correlated pressure (the small eddy formations) correlate over shorter
distances than the low-frequency components (the larger eddy formations) and their correlation, over the same distance,
is also smaller in magnitude than those of the larger, low-frequency eddies (this can be deduced from the fact that the
correlation decay functions, f# and y decrease relatively rapidly with frequency and separation distance, i.e., with
fLnin(0:,05)/ U and f %/ U.—see Eqgs. (21b) and (21c) and see also Refs. [3,8,18,19,26,29]). Thus, the partially correlated
components of p, consist mainly of the small, high-frequency eddy formations and can be neglected in comparison to
the larger, low-frequency ones [26].
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S
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Fig. 12. Diagram used to obtain the CSD of the pressures at two arbitrary points on two adjacent cylinders.

finite Fourier transforms of the lower case letters, the right-hand side of (D.1) can be written as

SpsSpps _ i (1/TYEY + NP + No) limr, o (Y DES + NDPs + No) - o)
Sﬁzﬁz limy, (1 /T)(P§P2)

where T is the finite time span of the signals, p;, etc., under the Fourier transforms. Noting
that the product of the limits is the limit of the product when the product exists, and that all
products involving noise components, Ni, N, and N3, vanish as 7T tends to infinity, the
above simplifies to

SP1P2SP2P3 1 | PO .
Somy T 7 (PTP3) = Sy, (D.3)

which is Eq. (D.1).
Now, by multiplying and dividing Eq. (D.1) throughout by [S,,,, Sp3p3]l/ 2, it can be rewritten as
Spips = [SP1P1SP3P3]1/2 Y12 ¥pops» (D.4a)

where

Sp1p2
P e (D.4b)
’ [SPIPI Sﬁzﬁz]l/z

SPzP%
bpy = 175" (D.4c)
e [Sﬁzﬁz SP3P3 ] 12

Egs. (D.4a)—~(D.4c) are all exact relations which can be used to guide the characterization of wall
pressure CSDs in a bundle of cylinders. Thus, comparing Eq. (D.4a) to Eq. (9a) in the main text,
noting Egs. (D.4b) and (D.4c) above, and assuming S,,,, can be used to approximate S;,;,, the
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following associations can be made:

Szp(x0, 0o, 1)

y < d(---x1,01)o(--0p---),
0%o

Spips = Spp (- )5 Spip =

S55(x0, 09,
Sy %x A(-x3,05 Yo+ 03-+), Wy, — Booe, 0, 05--),
Whops = V(- X2 — x31, 03 ) exp[—127f (x3 — x2)/ Ue(63)]. (D.5)

D.2. Force-per-unit-length CSDs

By analogy with the preceding, the CSD between two oblique forces per unit length, fi(x, ) and
f3(X', 1), can be written in terms of CSDs involving an intermediary force per unit length, f>(x, ), as

Stip (6, X 1) = [Shif (6 X, ) S (X, X, O] Vn(axf) x ¥ (x, XL ), (D.6a)
where
) _ Spn(x, x, 1)
B Ty o L (D:60)
R (D.60)

[S5.4, (% .S (0, 5, NNV

and fz(x, t) is that portion of f5(x, 7) that is correlated with both fi(x, 7) and f3(x', ¢) (see Fig. 13). As
before, the above are exact relations. From Eq. (18), we obtain

2s_ 0
Srr(x,x,f) = D~ Spp(x0, 00./)

T K, =123, (D.7)

fz (X,t)

(xt) ~a

fa(x,t)

_

S

Fig. 13. Diagram used to obtain the CSD of the forces at two arbitrary points on two adjacent cylinders.
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Noting this, along with Egs. (D.6b), (D.6¢c), and comparing Eq. (D.6a) to Eq. (18), the following
associations can be made (assuming Sy, (x, x,f) approximates S 7 (x, x,1)):

Spifs (6, X, ) = Sy (x, X, ), (D.8a)
Kijo(--+)
V.2 (x,x,f)—> L s D.8b
flfz(x x.f) [Kii,ﬁ("')ij,@("')]l/z ( )
V(XL ) 2 (Ix = X)) exp[—i2nf (X = x) /(aU)]- (D.8¢)

In retrospect then, a manipulation (i.e., normalization) of the form of relation (D.8b) would have
simplified our expression for the inter-cylinder lateral spectral density factors given by Eq. (23a) in
the main text, by factoring out all PSD influences from Kj;y; but this is now moot.

References

[1] M.P. Paidoussis, L1.R. Curling, An analytical model for vibration of clusters of flexible cylinders in turbulent axial
flow, Journal of Sound and Vibration 98 (1985) 493-517.

[2] LL.R. Curling, J.O. Gagnon, in: M.P. Paidoussis, M.K. Au Yang (Eds.), A theoretical model for vibration analysis
of cylinders in axial flow, Proceedings of ASME Symposium on Flow-Induced Vibrations, Vol. 4: Vibration
Induced by Axial and Annular Flows, 1984.

[3] LLR. Curling, M.P. Paidoussis, Measurements and characterization of wall pressure fluctuations on cylinders in a
bundle in turbulent axial flow. Part 1: spectral characteristics, Journal of Sound and Vibration 157 (1992) 405-433.

[4] M.P. Paidoussis, Dynamics of cylindrical structures subjected to axial flow, Journal of Sound and Vibration 29
(1973) 365-385.

[5] M.P. Paidoussis, The dynamical behaviour of cylindrical structures in axial flow, Nuclear Science and Engineering
1 (1974) 83-106.

[6] LL.R. Curling, M.P. Paidoussis, Measurements and characterization of wall pressure fluctuations on cylinders in a
bundle in turbulent axial flow. Part 2: temporal characteristics, Journal of Sound and Vibration 157 (1992) 435-
449.

[7] J.R. Reavis, WVI-Westinghouse vibration correlation for maximum fuel-element displacement in parallel
turbulent flow, Transactions of the American Nuclear Society 10 (1967) 369-370.

[8] D.J. Gorman, An analytical and experimental investigation of vibration of cylindrical reactor fuel elements in two-
phase parallel flow, Nuclear Science and Engineering 44 (1971) 277-290.

[91 W.T. Thomson, Theory of Vibration with Applications, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[10] LLR. Curling, Theory of Vibration of Clusters of Cylinders in Axial Flow, M.Eng. Thesis, Department of
Mechanical Engineering, McGill University, Montreal, Quebec, Canada, 1982.

[11] M.P. Paidoussis, S. Suss, Stability of a cluster of flexible cylinders in bounded axial flow, Journal of Applied
Mechanics 44 (1977) 401-408.

[12] M.P. Paidoussis, The dynamics of clusters of flexible cylinders in axial flow: Theory and experiments, Journal of
Sound and Vibration 65 (1979) 391-417.

[13] M.P. Paidoussis, J.O. Gagnon, Experiments on vibration of clusters of cylinders in axial flow: modal and spectral
characteristics, Journal of Sound and Vibration 96 (1984) 341-352.

[14] J.O. GAGNON, Fluid Coupling and Response Characteristics of Cylinder Clusters in Axial Flow, Ph.D. Thesis,
Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada, 1989.

[15] M.P. Paidoussis, LI.R. Curling, J.O. Gagnon, Experiments on fluidelastic instability of cylinder clusters in axial
flow, American Society of Mechanical Engineers Journal of Fluids Engineering 104 (1982) 342-349.

[16] J.O. Gagnon, M.P. Paidoussis, Fluid coupling characteristics and vibration of cylinder clusters in axial flow. Parts
1 and 2, Journal of Fluids and Structures 8 (1994) 257-291.



LLR. Curling, M.P. Paidoussis | Journal of Sound and Vibration 264 (2003) 795-833 833

[17] E. Ohlmer, Experimental investigation of an analytical model for parallel flow induced vibrations of rod structures,
in: Symposium on Vibration Problems in Industry, Keswick, UK, Session 5, 1973.

[18] H.P. Bakewell Jr., G.F. Carey, J.J. Libuha, H.H. Schloemer, W.A. Von Winkle, Wall pressure correlations in
turbulent pipe flow, U.S. Navy Underwater Sound Laboratory Report No. 559, 1962.

[19] H.P. Bakewell Jr., Narrow-band investigations of the longitudinal space-time correlation function in turbulent
airflow, Journal of the Acoustical Society of America 36 (1964) 146-148.

[20] J.M. Clinch, Measurements of the wall pressure field at the surface of a smooth-walled pipe containing turbulent
water flow, Journal of Sound and Vibration 9 (1969) 398-419.

[21] W.H. Lin, M.W. Wambsganss, J.A. Jendrzejczyk, Wall pressure fluctuations within a seven-rod array, GEAP
Report 24375, General Electric Co., Nuclear Engineering Division, San José, California, 1981.

[22] T.M. Mulcahy, M.W. Wambsganss, W.H. Lin, T.T. Yeh, W.P. Lawrence, Measurements of wall pressure
fluctuations on a cylinder in annular water flow with upstream disturbances, Part 1: no flow spoilers, GEAP-24310
General Electric Co., Nuclear Engineering Division, San José, CA, 1981.

[23] W.H. Lin, M.W. Wambsganss, Analytical modeling of the buffeting of a rod in axial flow, GEAP Report 24383,
General Electric Co., Nuclear Engineering Division, San Jos¢, CA, 1981.

[24] W.H. Lin, Buffeting of a slender circular beam in axial turbulent flows, American Institute Aeronautics and
Astronautics 22 (1984) 690-695.

[25] E. Ohlmer, S. Russo, R. Schwemmle, Investigation of an analytical model for parallel flow induced rod vibrations,
Nuclear Engineering and Design 22 (1972) 272-289.

[26] LL.R. Curling, Measurements of Wall Pressure Fluctuations on Cylinders in a Bundle in Turbulent Axial Flow,
Ph.D. Thesis, Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada, 1990.

[27] S.S. Chen, M.W. Wambsganss, Parallel-flow-induced vibration of fuel rods, Nuclear Engineering and Design 18
(1972) 253-278.

[28] D.J. Gorman, The role of turbulence in the vibration of reactor fuel elements in liquid flow, Atomic Energy of
Canada Ltd, Report 3371, 1969.

[29] W.W. Willmarth, R.E. Winkel, L.K. Sharma, T.J. Bogar, Axially symmetric turbulent boundary layers on
cylinders: mean velocity profiles and wall pressure fluctuations, Journal of Fluid Mechanics 76 (1976) 35-64.

[30] W.W. Willmarth, C.E. Wooldridge, Measurements of the fluctuating pressure at the wall beneath a thick turbulent
boundary layer, Journal of Fluid Mechanics 14 (1962) 187-210.

[31] M.K. Bull, Wall-pressure fluctuations, associated with subsonic turbulent boundary layer flow, Journal of Fluid
Mechanics 28 (1967) 719-754.

[32] G.M. Corcos, Resolution of pressure in turbulence, Journal of the Acoustical Society of America 35 (1963)
192-199.

[33] H.G. Nepomuceno, R.M. Lueptow, Pressure and shear stress measurements at the wall in a turbulent boundary
layer on a cylinder, Physics of Fluids 9 (1997) 2732-2739.



	Analyses for random flow-induced vibration of cylindrical structures subjected to turbulent axial flow
	Introduction
	The stochastic equations
	The full equation
	Case 1 (no excitation coupling)
	Case 2 (no excitation coupling-mode 1)
	Case 3 (no excitation and no response coupling)
	Case 4 (no excitation and no response coupling-mode 1)
	Temporal response and principal directions of vibration

	Characterization of differential wall-pressure CSDs
	Empirical force-per-unit-length CSDs
	The differential pressure lateral spectral density factors (LASDF)
	The longitudinal spectral density factors (LOSDF) and final formulation of the response
	An alternative formulation of the response

	The SLFD wall-pressure and force-per-unit length CSDs
	Point pressure correlations and CSDs
	Point pressure LASDF and LOSDF, and the SLFD formulation of the response

	The single-cylinder stochastic response equation
	Sample calculations of the cylinder response spectra
	The response using Eq.•––(19a)
	The response using Eq.•––(20a)
	The response using Eq.•––(22a)

	Comparative computations of cylinder response spectra utilizing the full and reduced stochastic equations
	Conclusions
	Acknowledgements
	Derivation of Eqs.•––(3)-(5)
	Eq.•––(3)
	Eq.•––(4)
	Eq.•––(5)

	Properties of force-per-unit-length and cylinder displacement PSDs and CSDs for an infinite square array based on geometric sym
	Evaluation of LOSDF
	Exact relations which aid the characterization of wall-pressure and force-per-unit-length CSDs
	Wall-pressure CSDs
	Force-per-unit-length CSDs

	References


