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Abstract

The natural frequencies and modal loss factors of annular plates with fully and partially constrained
damping treatments are considered. The equations of free vibration of the plate including the transverse
shear effects are derived by a discrete layer annular finite element method. The extensional and shear
moduli of the viscoelastic material layer are described by the complex quantities. Complex eigenvalues are
then found numerically, and from these, both frequencies and loss factors are extracted. The effects of
viscoelastic layer stiffness and thickness, constraining layer stiffness and thickness, and treatment size on
natural frequencies and modal loss factors are presented. Numerical results also show that the longer
constrained damping treatment in radial length does not always provide better damping than the shorter
ones.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the approaches to solve certain resonant noise and vibration problems is the surface
damping treatment. The treatments can easily be applied to existing structures and provide high
damping capability over wide temperature and frequency ranges. The major damping mechanism
in vibrations is due to the extensional or shear deformation of the viscoelastic materials [1]. The
extensional damping treatment, sometimes called the unconstrained damping treatment, is coated
on one or both sides of a structure, so that whenever the structure is subjected to the cyclic
bending, the damping material will be subjected to tension–compression deformations. The shear
type of damping treatment is similar to the extensional type, except that the viscoelastic material is
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constrained by a much stiffer elastic layer, usually metallic. Whenever the treatment is subjected
to cyclic bending, the metal layer will constrain the viscoelastic material and force it to deform in
shear. This type of treatment is also referred to as the constrained damping treatment. For a given
weight, Mead [2] showed that the shear type of damping treatment is more efficient than the
extensional one.
Numerous investigations on the vibration and damping properties of basic structures, such as

beams and rectangular plates, with fully constrained damping layer treatments are available.
Kerwin [3] discussed the problem first. Ross, Ungar and Kerwin (RKU) [4] presented a
fourth order theory to predict damping in plates with constrained layer treatments. DiTaranto
[5] derived the sixth order theory for constrained layer damped beams with arbitrary
boundary conditions, and Mead and Markus [6] refined the theory of DiTaranto. The
governing equations of flexural vibration of a symmetrical sandwich rectangular plate were
presented by Mead [7]. Rao and Nakra [8] proposed a set of 12th order partial differential
governing equations including bending–extension coupling of unsymmetrical sandwich
plates. Non-symmetric layouts were discussed by He and Ma [9] via the modal strain energy
method. The effects of shear deformation and rotational inertia of damped structures have
also been taken into account in many references. Rao [10] studied the vibration of short
sandwich beams. Rikards et al. [11] studied the vibration and damping of laminated composite
beams by using a simple Timoshenko beam finite element. Cupial and Niziol [12] considered a
three-layered rectangular plate with a viscoelastic core layer and laminated face layers by the
first order shear deformation theory. Zapfe and Lesieutre [13] investigated the dynamic analysis
of composite sandwich beams with integral damping layers by a discrete layer beam finite
element.
Circular plates are widely used in mechanical applications, and vibrations of circular plates

have been discussed for many decades. However, the studies of constrained damping layer
treatment to circular plates were few, and all focused on the fully constrained damping treatment.
Mirza and Singh [14] studied the axisymmetric vibration of a circular sandwich plate. Roy and
Ganesan [15] developed a finite element method for vibration and damping analyses of circular
plates with the constrained damping layer treatment. The situations when the viscoelastic material
core layer is thicker than the face layers were considered in both of these papers. Yu and Huang
[16] derived the equations of motion of a three-layer circular plate based on the thin shell theory to
handle the very thin viscoelastic layer problem, but only the iso-symmetric annular plate solutions
were obtained.
In practice, the constraining layer and the host plate are not always of the same material or of

identical thickness, and the additional damping layer and the constraining layer are thinner than
the host plate. Also, partial damping treatment is necessary because of material, thermal,
packaging, weight or cost constraints. The present paper will study the vibration behavior of an
annular plate with fully and partially constrained damping treatment. The discrete layer annular
finite elements including transverse shear effects are adopted, and the extensional and shear
moduli of the viscoelastic material layer are described by the complex quantities. By solving the
complex eigenvalue problem, the natural frequencies and modal loss factors of the composite
plate are obtained. The effects of the design parameters of the treatment, such as damping layer
stiffness and thickness, constraining layer stiffness and thickness, and treatment size are
discussed.
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2. Finite element formulation

The structure of interest is indicated in Fig. 1, the annular plate of inner radius a and outer
radius b is partially treated with a constrained damping layer. The annular constrained damping
layer covering has an inner radius a0 and outer radius b0 and is composed of two layers: layer 3 is a
pure elastic, isotropic and homogeneous constraining layer and layer 2 is the linear viscoelastic
material layer. Layer 2 is an adhesive capable of dissipating vibratory motions. The host annular
plate is assumed to be undamped, isotropic and homogeneous and is designated as layer 1. The
thicknesses of the three layers are h1; h2; and h3; respectively.
The discrete layer annular finite element [15] is adopted, as shown in Fig. 2(a). The annular

element of inner radius ri and outer radius ro for layer i has 12 degrees of freedom. These are the
displacements in the r direction—UA

i ; UA
iþ1; UB

i and UB
iþ1; the displacements in the y direction—

VA
i ; VA

iþ1; VB
i and VB

iþ1; the transverse displacements—W A and W B; and the rotation angles—YA;
and YB: Under the assumption that the transverse displacements are constant through the
thickness of the plate, i.e., the transverse normal strain is zero, the nodal degrees of freedom for
three-layer discrete layer annular finite elements are shown in Fig. 2(b).
The displacement field of the ith layer, ui ¼ ui vi wi

� �T
; can be expressed in terms of the in-

plane displacements of the adjacent layer interfaces and the transverse displacement,

Ui Vi Uiþ1 Viþ1 W
� �T

; as

uiðr; y; z; tÞ

viðr; y; z; tÞ

wiðr; y; tÞ

8><
>:

9>=
>; ¼ L1;iðzÞ

Uiðr; y; tÞ

Viðr; y; tÞ

Uiþ1ðr; y; tÞ

Viþ1ðr; y; tÞ

W ðr; y; tÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð1Þ
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Fig. 1. Annular plate with partially constrained damping treatment.
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Fig. 2. Discrete layer annular finite element: (a) basic element; and (b) three-layer element.
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where L1;i is the transverse thickness interpolation matrix for layer i and is shown as

L1;i zð Þ ¼

1

2
�

z

hi


 �
0

1

2
þ

z

hi


 �
0 0

0
1

2
�

z

hi


 �
0

1

2
þ

z

hi


 �
0

0 0 0 0 1

2
666664

3
777775: ð2Þ

Using a further interpolation in the r direction and for the circumferential wave number m; the
displacements of the two-layer interfaces can be expressed in terms of the nodal degrees of
freedom:

Ui r; y; tð Þ

Viðr; y; tÞ

Uiþ1ðr; y; tÞ

Viþ1ðr; y; tÞ

W ðr; y; tÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ L2ðr; yÞUe
i ðtÞ; ð3Þ

where L2, the interpolation matrix and U
e
i ; the vector of nodal displacements of the element, are

given by

L2ðr; yÞ ¼

nA
u 0 0 0 0 0 nB

u 0 0 0 0 0

0 nA
v 0 0 0 0 0 nB

v 0 0 0 0

0 0 nA
u 0 0 0 0 0 nB

u 0 0 0

0 0 0 nA
v 0 0 0 0 0 nB

v 0 0

0 0 0 0 nA
w nA

Y 0 0 0 0 nB
w nB

Y

2
6666664

3
7777775
; ð4Þ

Ue
i ¼ fUA

i VA
i UA

iþ1 VA
iþ1 W A YA UB

i VB
i UB

iþ1 VB
iþ1 W B Y

B
gT; ð5Þ

nA
u ¼ ð1� xÞcosmy; nB

u ¼ x cosmy; nA
v ¼ ð1� xÞsinmy; ð6a2cÞ

nB
v ¼ x sinmy; nA

w ¼ ð1� 3x2 þ 2x3Þcosmy; nB
w ¼ ð3x2 � 2x3Þcosmy; ð6d2fÞ

nA
Y ¼ ðx� 2x2 þ x3Þcosmy; nB

Y ¼ ð�x2 þ x3Þcosmy; x ¼
r � ri

ro � ri

: ð6g2iÞ
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The linear strains in the ith layer of the annular plate can be written in terms of the
displacement

ei ¼ Dui; ð7Þ

where the strain vector ei ¼ f er;i ey;i gry;i grz;i gyz;i g
T and D is the differential operator

matrix

D ¼

@

@r
0 0

1

r

1

r

@

@y
0

1

r

@

@y
@
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�
1

r
0

@
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0

@

@r

0
@

@z

1

r

@

@y

2
666666666666664

3
777777777777775

: ð8Þ

The stress–strain relations for the ith layer can be expressed as

rr;i

ry;i

sry;i

srz;i

syz;i

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

C11;i C12;i 0 0 0

C21;i C22;i 0 0 0

0 0 C66;i 0 0

0 0 0 C44;i 0

0 0 0 0 C55;i

2
6666664

3
7777775

er;i

ey;i
gry;i

grz;i

gyz;i

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð9aÞ

or

ri ¼ Ciei; ð9bÞ

where Ci is the elasticity matrix. For the isotropic material, the components of the elasticity matrix
are

C11;i ¼ C22;i ¼
Ei

1� n2i
; C12;i ¼ C21;i ¼

niEi

1� n2i
; ð10a;bÞ

C44;i ¼ C55;i ¼ k2
Ei

2ð1þ niÞ
; C66;i ¼

Ei

2ð1þ niÞ
; ð10c;dÞ
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here Ei is Young’s modulus, ni is the Poisson ratio, and k2 is the shear correction factor. The shear
correction factor is taken to be p2=12 for layers 1 and 3, while to be 1 for layer 2. For the isotropic
linear viscoelastic material, assuming that viscoelastic material is almost incompressible, the
material constants are given by

Ei ¼ Evð1þ jZvÞ; ni ¼ 0:5� d; ð11a;bÞ

where Zv is the loss factor of the viscoelastic material, d is assumed to be a small constant real
value (e.g., d ¼ 0:01) which is introduced to avoid material stiffness singularities, and j ¼

ffiffiffiffiffiffiffi
�1

p
:

The kinetic and the strain energies of the element e of the ith layer can be written as

Te
i ¼

1

2

I
Ve

ri ’u
T
i ’ui dV ; ð12Þ

Ue
i ¼

1

2

I
Ve

rTi ei dV ; ð13Þ

where ri is the mass density and
H

Ve
represents a volume integral. Substituting Eqs. (1), (3), (7)

and (9) into Eqs. (12) and (13), the kinetic and the strain energies can be arranged in the following
forms:

Te
i ¼ 1

2
’U

eT

i Me
i
’U

e

i ; ð14Þ

Ue
i ¼ 1

2
UeT

i Ke
iU

e
i ; ð15Þ

where the elemental mass and stiffness matrices ðMe
i and K

e
i Þ of the ith layer are

Me
i ¼

I
Ve

riðL1;iL2Þ
TðL1;iL2Þ dV ; ð16Þ

Ke
i ¼

I
Ve

ðDL1;iL2Þ
TCTi ðDL1;iL2Þ dV : ð17Þ

In order to combine the elemental matrices into the global mass and stiffness matrices, the
transformation of element nodal co-ordinates to global co-ordinates must be obtained first, that
is,

Ue
i ¼ Te

iU; ð18Þ

where U is the global nodal co-ordinate vector and Te
i is the transformation matrix. Hence, the

global mass and stiffness matrices are assembled as

M ¼
X3
i¼1

XNi

e¼1

TeT
i Me

iT
e
i

 !
; ð19Þ

K ¼
X3
i¼1

XNi

e¼1

TeT
i Ke

iT
e
i

 !
; ð20Þ
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where Ni is the element number of the ith layer. And, the global equations of motion of the system
can be formulated as

M .Uþ KU ¼ 0: ð21Þ

The boundary conditions are, for a clamped end

U ¼ 0; V ¼ 0; w ¼ 0; Y ¼ 0; ð22a-dÞ

for a simply supported end

W ¼ 0; ð23aÞ

U ¼ 0; V ¼ 0; at an elemental corner on the edge: ð23bÞ

In addition, the nodal displacements in the y direction are all equal to zero (V ¼ 0) for the
axisymmertric vibration modes (m ¼ 0).
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Table 1

Non-dimensional natural frequencies of the annular plate made of single material (a=b ¼ 0:3; b=h ¼ 10;v1 ¼ 0:3)

la

NrðNzÞ
b FFc FS FC SF SS SC CF CS CC

4(1) 4.98 2.81 6.78 2.06 12.46 19.79 4.06 18.10 27.20

8(1) 4.98 2.80 6.75 2.06 12.29 19.03 3.98 16.96 24.68

16(1) 4.98 2.80 6.74 2.06 12.25 18.84 3.95 16.68 24.09

Mode (0,0)d 32(1) 4.98 2.80 6.73 2.06 12.24 18.79 3.95 16.61 23.92

4(3) 5.00 2.81 6.78 2.06 12.42 19.66 4.05 17.98 26.94

8(3) 4.98 2.80 6.74 2.06 12.26 18.91 3.96 16.85 24.45

16(3) 4.98 2.80 6.72 2.06 12.21 18.72 3.95 16.57 23.85

32(3) 4.97 2.80 6.72 2.06 12.20 18.67 3.94 16.50 23.69

Irie [17] 4.98 2.80 6.73 2.06 12.24 18.77 3.95 16.57 23.85

NrðNzÞ FF FS FC SF SS SC CF CS CC

4(1) 10.50 7.49 11.26 2.06 13.78 21.00 3.96 18.80 27.75

8(1) 10.39 7.43 11.08 2.03 13.56 20.15 3.86 17.69 25.26

16(1) 10.33 7.40 11.00 2.02 13.51 19.95 3.83 17.42 24.68

32(1) 10.31 7.38 10.98 2.02 13.50 19.90 3.83 17.35 24.52

Mode 4(3) 10.48 7.47 11.21 2.06 13.74 20.86 3.95 18.68 27.48

(0,1) 8(3) 10.36 7.40 11.02 2.02 13.51 20.02 3.85 17.58 25.01

16(3) 10.29 7.37 10.95 2.02 13.47 19.82 3.83 17.30 24.43

32(3) 10.27 7.36 10.92 2.02 13.45 19.77 3.81 17.24 24.27

Irie [17] 10.30 7.38 10.97 2.02 13.50 19.88 3.82 17.31 24.43

aFrequency parameter:, h=thickness of the plate.
bNr=number of elements in the r direction, Nz=number of elements in the z direction.
cC=clamped, S=simply supported, F=free. The first letter denotes the edge condition at the inner edge.
dMode (n;m): n ¼number of internal nodal circles, m ¼number of nodal diameters.

H.-J. Wang, L.-W. Chen / Journal of Sound and Vibration 264 (2003) 893–910900



Complex eigenvalues *l of the above complex eigenvalue problems can be found numerically,
and both natural frequencies (o) and modal loss factors (Z) are extracted in the following manner
[11]:

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Reð*lÞ

q
; Z ¼

Im *l

Reð*lÞ
: ð24a;bÞ

Note that the complex-valued terms of the stiffness matrix K in Eq. (21) are due to the strain
energy terms of the viscoelastic material layer.
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Fig. 3. Effects of *E2 on (a) the non-dimensional frequencies and (b) the modal loss factors of the plate. Key: ——, full

treatment, *a0 ¼ 0:3; and *b0 ¼ 1:0; and - - - - -, partial treatment, *a0 ¼ 0:475; and *b0 ¼ 0:825 (*x ¼ 0:3; *h2 ¼ *h3 ¼ 0:2;
*b ¼ 200; *r2 ¼ *r3 ¼ 1; *E3 ¼ 1; n1 ¼ n3 ¼ 0:3; Zv ¼ 0:5).
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3. Numerical results and discussion

To verify the algorithm and calculations made in this paper, comparisons between the present
results and results of existing simplify model [17] are made. The non-dimensional natural
frequencies of single material thick annular plates are presented in Table 1. The material
properties of plates are assumed to be linear elastic and isotropic, however, the one-layer and the
three-layer elements in the thickness direction are both used in computation of natural
frequencies. Good convergences and good agreements can be observed for both one-layer and
three-layer element models. The number of elements in the r direction is taken to be 16 in the
present studies and the viscoelastic material is introduced into layer 2.
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For the sake of further analysis, the following non-dimensional parameters are introduced first:

*x ¼
a

b
; *a0 ¼

a0

b
; *b0 ¼

b0

b
; *b ¼

b

h1
; *h2 ¼

h2

h1
; *h3 ¼

h3

h1
; *r2 ¼

r2
r1
; ð25a2gÞ

*r3 ¼
r3
r1
; *E2 ¼

ReðE2Þ
E1

; *E3 ¼
E3

E1
; *o ¼

2b2o
h1

ffiffiffiffiffiffi
r1
E1

r
: ð25h2kÞ

The non-dimensional frequencies and modal loss factors of plates with constrained damping
treatments are given in Figs. 3(a) and (b). The effects of the modulus of viscoelastic layer *E2 are
studied. The boundary conditions of the annular plate are taken to be clamped at inner radius and
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Fig. 5. Effects of *h2 on (a) the non-dimensional frequencies and (b) the modal loss factors of the plate. Key: ——, full
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*r2 ¼ *r3 ¼ 1; *E2 ¼ 10�5; *E3 ¼ 1; n1 ¼ n3 ¼ 0:3; Zv ¼ 0:5).
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free at outer radius. In order to cover a wide range of *E2; a logarithmic scale has been used. Both
the cases of fully and partially constrained damping treatment are solved for different modes (n;
m). It can be observed that the modulus *E2 has significant influences on both non-dimensional
frequencies and modal loss factors. It is shown that the plates with full treatment have lower
natural frequencies than those with partial treatment at the lower values of *E2; but the reverse
effects can be seen at the higher values of *E2: It is implied that the contribution of *E2 to the
stiffness of the plates with full treatment is more obvious than those with partial treatment as *E2
increases. As for the modal loss factors, it can be seen that the modal loss factors increase with
increasing of *E2 at the lower value of *E2; but as *E2 increases above a certain value, the
phenomenon is reversed. These are similar to those reported in a rectangular composite plate with
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Fig. 6. The effects of *h3 on (a) the non-dimensional frequencies and (b) the modal loss factors of the plate. Key: ——,
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a viscoelastic mid-layer [12]. It is also shown roughly that the plates with full treatment have better
damping properties than the plates with partial treatment in this case.
The effects of the modulus of the constraining layer *E3 on the non-dimensional frequencies and

modal loss factors are sketched in Figs. 4(a) and (b). It is shown that the modulus *E3 also has
significant effects on the non-dimensional frequencies and modal loss factors. As expected, the
non-dimensional frequencies increase when the modulus *E3 becomes larger. It is also
shown that the effects of the modulus *E3 on modal loss factors are similar to the effects of the
modulus *E2:
The effects of the thickness of the viscoelastic material layer and the constraining layer on the

non-dimensional frequencies and modal loss factors are now considered. The effects of *h2 on non-
dimensional frequencies and modal loss factors are shown in Figs. 5(a) and (b). Because the
additional constraining and damping layers are always thinner than the host plate in practice, the
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non-dimensional thickness parameter *h2 is plotted in the range less than one. The comparisons of
the plates with fully and partially constrained damping treatments are made again. It can be seen
that the frequencies decrease as *h2 increases. The reason is that the contribution of the increase of
thickness of the viscoelastic layer to the stiffness matrix of the composite plates is more
insignificant than those to the mass matrix of the plates. It can be observed that the modal loss
factors always increase as *h2 increases for the full treatment plates, but it is not the case for the
partial ones. The phenomenon is related to the stiffness of the three layers and will be mentioned
later. The effects of *h3 on non-dimensional frequencies and modal loss factors are plotted in Figs.
6(a) and (b). It can be found that the frequencies increase as *h3 increases. It is because the stiffness
of the plates increases with increasing of the thickness of the constraining layer. It also can be seen
that the modal loss factors climb to a maximum value at an optimum value in the case of fully
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covered plate, but the maximum modal loss factor for the partially covered plate is not shown
when *h3 less than one.
The effects of treatment size of the plates with different boundary conditions are presented in

Figs. 7 and 8. The case of the outer radius of the constrained damping treatment *b0 being fixed
while the inner radius *a0 is varied is illustrated in Fig. 7. The modal loss factors decrease as the
inner radius *a0 increases, that is, the modal loss factors decrease as the treatment size decreases.
The case of the inner radius *a0 being fixed while the outer radius *b0 is varied is shown in Fig. 8. It
can be seen that the modal loss factors of the plate with clamped–free boundaries are smaller than
those of the plate with simply supported boundaries when the values of *b0 are large. It is seen that
the modal loss factors do not always increase when the treatment coverage increases. This is
related to the stiffness of the layers and is illustrated in Fig. 9 which shows the effects of *b0 on the
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non-dimensional frequencies and modal loss factors of the mode (0,0). The non-dimensional inner
radius of the treatment *a0 is taken to be 0:3875; and the outer radius of the treatment *b0 is chosen
to be 0:5625; 0.7375, and 0.9125, respectively. It can be seen that the modal loss factors increase as
the treatment size increases at the smaller value of *E2; but the reverse effect can be seen at some
larger value of *E2:
Finally, the effects of the ratio of the outer radius to thickness of the host plate *b are considered

in Fig. 10. It is shown that the transition regions of the frequencies are shifted to right as the plates
become thicker, and the modal loss factor curves are shifted in the same way. It implies that a
larger value of stiffness of the viscoelastic layer *E2 has to be chosen to achieve a higher damping
for a thicker host plate. The results are also similar to those of a three-layered rectangular plate
with a viscoelastic mid-layer presented by Cupial and Niziol [12].
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4. Conclusions

The paper presents the vibration and damping characteristics of the annular plate with constrained
damping treatment. By using the discrete layer annular finite element and the complex description of
the viscoelastic material, the natural frequencies and modal loss factors of the partially or fully
damping treatment are obtained easily. Numerical results show that the thickness and stiffness of the
constrained damping layer and the size of the treatment have significant effects on the natural
frequencies and modal loss factors of the plate. It is also found that the damping properties of the
plate with the full treatment are not always larger than those with the partial treatment. The relative
stiffness and thickness of the constraining layer, the damping layer, and the host plate must be taken
into account when the damped annular plate is designed to achieve a high damping characteristic.

Appendix A. Nomenclature

a inner radius of the host plate
a0 inner radius of the treatment
*a0 a0=b; non-dimensional inner radius of the treatment
b outer radius of the host plate
b0 outer radius of the treatment
*b b=h1; outer radius-to-thickness ratio of the host plate
*b0 b0=b; non-dimensional outer radius of the treatment
Ei Young’s modulus of the ith layer
Ev stiffness of the viscoelastic material
*E2 ReðE2Þ=E1; non-dimensional stiffness of layer 2
*E3 E3=E1 , non-dimensional stiffness of layer 3

h thickness of the host plate
hi thickness of the ith layer
*h2 h2=h1; non-dimensional thickness of layer 2
*h3 h3=h1; non-dimensional thickness of layer 3
i index for layer, i ¼ 1; 2; 3
m circumferential wave number
n number of internal nodal circles
Nr number of elements in the r direction
Nz number of elements in the z direction
Z modal loss factor of the composite plate
Zv loss factor of the viscoelastic material
l frequency parameter
ni the Poisson ratio of the ith layer
*x a=b; non-dimensional inner radius of the host plate
ri mass density of the ith layer
*r2 r2=r1; non-dimensional mass density of layer 2
*r3 r3=r1; non-dimensional mass density of layer 3
o natural frequency
*o ð2b2o=h1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r1=E1

p
; non-dimensional frequency
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