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Abstract

In this paper, the incremental finite element equations for geometric non-linear analysis of piezoelectric
smart structures are developed using a total Lagrange approach by using virtual velocity incremental
variational principles. A four-node first order shear plate element model with reduced and selective
integration is also developed. Geometrically non-linear transient vibration response and control of plates
with piezoelectric patches subjected to pulse loads are investigated. Active damping is introduced on the
plates by coupling a self-sensing and negative velocity feedback algorithm in a closed control loop. The
numerical results show that piezoelectric actuators can introduce significant damping and suppress
transient vibration effectively. The effects of the number and locations of the piezoelectric actuators on the
control system are also discussed.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In some structures, external static and dynamic excitations can introduce large deformation or
geometrical non-linearity due to small material damping or the lack of other forms of damping,
especially in space. So, there is a need to investigate the induced geometrically non-linear effects
on static and dynamic characteristics of structures in order to accurately design and effectively
control the structural systems. In the development of intelligent structures systems, piezoelectric
materials are widely used as sensors and actuators for the monitoring and control of structures
and mechanical systems [1–3]. However, most of the studies on piezoelectric systems are based on
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linear piezoelectricity and linear elasticity theories while non-linear studies of piezoelectric systems
are few.
Shi and Atluri [4] presented an analytical model for active control of non-linear vibration of

space structures. Pai et al. [5] developed a geometrically non-linear plate theory for the analysis of
composite plates with piezoelectric layers. Yu [6] had reviewed the studies of linear and non-linear
theories of elastic and piezoelectric plates. Tzou et al. [7] proposed a non-linear anisotropy
piezothermoelastic shell lamination theory with application to various piezoelectric materials and
studied the dynamics and control of non-linear circular plates with piezoelectric actuators.
However, it becomes very difficult to solve general non-linear problems with analytical approach,
and numerical calculation methods must usually be used.
Geometrically non-linear transient analysis of isotropic plates has been a subject of interest.

Pica et al. [8] used Mindlin element while Akay [9] used a mixed finite element for the
geometrically non-linear dynamic analysis of plates. Reddy [10] studied the geometrically
non-linear transient analysis of composite plates using a finite element combining the
Timoshenko-type theory and the Von-Karman plate theory. Recently, finite element models
have been developed for active vibration control of linear elastic structures with piezoelectric
sensors and actuators by many researchers, Tzou and Tseng [11], Ha et al. [12], Hwang and Park
[13] and Gaudenzi and Bathe [14] presented a general finite element procedure which can be used
to model the electro-mechanical coupled behavior of piezoelectric continua. These can also be
used in a non-linear finite element analysis. The present investigation is concerned with the
geometrically non-linear transient analysis and control of plates with piezoelectric sensors and
actuators under applied transverse loads. In this paper, incremental finite element equations
considering the geometrical non-linearity of structures with piezoelectric patches are developed
based on virtual velocity incremental variational principles with the assumption of weak
mechanical and electric coupling. A four-node first order shear plate element with reduced and
selective integration is adopted. A self-sensing technique and velocity feedback control law are
used in the active control. The transient response of plates with piezoelectric sensors and actuators
subjected to transverse dynamic loading is investigated. The numerical results show that
piezoelectric actuators can produce significant damping and suppress non-linear transient
vibration effectively. The effects of the numbers and locations of the piezoelectric actuators on the
system are also investigated.

2. Basic theory

2.1. Incremental variational principles

In an analysis dealing with both geometric and material non-linearities, an incremental solution
scheme is the most suitable approach. The loading path is divided into a number of equilibrium
states.

Oð0Þ;Oð1Þ;y;OðNÞ;OðNþ1Þ;yOðf Þ;

where, Oð0Þ are Oðf Þ the initial and final states of the deformation, respectively, OðNÞ is an arbitrary
intermediate state. The Green strain tensors at the OðNÞ and OðNþ1Þ states can be expressed in terms
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of the displacement and displacement increments:

eijðtNÞ ¼ 1
2
ðui;j þ uj;i þ uk;iuk;jÞ; ð1Þ

eijðtNþ1Þ ¼ 1
2
½ðui þ DuiÞ;j þ ðuj þ DujÞ;i þðuk þ DukÞ;iðuk þ DukÞ;j�: ð2Þ

The Green strain increment tensors take the form as

Deij ¼ 1
2
ðDui;j þ Duj;i þ uk;iDuk;j þ uk;jDuk;i þ Duk;iDuk;jÞ: ð3Þ

Letting

Deij ¼ 1
2
ðDui;j þ Duj;i þ uk;iDuk;j þ uk;jDuk;iÞd:DZij ¼

1
2
Duk;iDuk;j; ð4Þ

where Deij and DZij are the linear and non linear parts of strain increment Deij

Deij ¼ Deij þ DZij : ð5Þ

The electric field components can be conveniently expressed in term of an electric potential F

Ek ¼ � F;k;

Ek þ DEk ¼ � ðFþ DFÞ;k: ð6Þ

And the increments of the electric field are given by

DEk ¼ �DF;k: ð7Þ

It is possible to expand the virtual displacement principle, the virtual velocity principle and the
virtual velocity increment principle to the piezoelectric continua. The virtual displacement
principle including the piezoelectric effect isZ

V

½Sijdeij � DidEi� dV ¼
Z

V

r0ðfi � .uiÞdui dV þ
Z

As

%Tidui dA þ
Z

Aq

%QdF dA; ð8Þ

where Sij is the Kirchhoff stress, Di the electric displacement, fi body force, %Ti; %Q the external
traction and body charge density.The virtual velocity variational principle corresponding to
Eq. (8) is given byZ

V

½Sijd’eij � Did ’Ei� dV ¼
Z

V

r0ðfi � .uiÞd ’ui dV þ
Z

As

%Tid ’ui dA þ
Z

Aq

%Qd ’F dA: ð9Þ

The virtual velocity increment variational principle can be obtained through material derivative
with respect to time of the Eq. (9) as follows:Z

V

½ ’Sijd’eij þ Sijvk;idvk;j � ’Did ’Ei� dV ¼
Z

V

r0ð ’fi � .viÞdvi dV þ
Z

As

%’Tidvi dA þ
Z

Aq

%’Qd ’F dA: ð10Þ

The increment variational principle can be further obtained using the virtual velocity increment
variational principle directly:Z

V

½DSijdDeij þ SijDuk;idDuk;j � DDidDEi� dV

�
Z

V

r0ðDfi � D .uiÞdDui dV þ
Z

As

D %TidDui dA þ
Z

Aq

D %QdDF dA

" #
¼ DF ; ð11Þ
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where

DF ¼
Z

V

r0ðfi � .uiÞdDui dV þ
Z

As

%TidDui dA þ
Z

Aq

%QdDF dA �
Z

V

½SijdDeij � DidDEi� dV : ð12Þ

When the increments are assumed to be small, it is reasonable to neglect the higher order term of
DSijDZij in Eq. (11). Then, the total Lagrange small increment variational principle for
piezoelectric systems can be expressed in the form.Z

V

½DSijdDeij þ SijDuk;idDuk;j � DDidDEi� dV

�
Z

V

r0ðDfi � D .uiÞdDui dV þ
Z

As

D %TidDui dA þ
Z

Aq

D %QdDF dA

" #
¼ DF ; ð13Þ

DF ¼
Z

V

r0ðfi � .uiÞdDui dV þ
Z

As

%TidDui dA þ
Z

Aq

%QdDF dA �
Z

V

½SijdDeij � DidDEi� dV ; ð14Þ

where DF is the remaining term due to non-equilibrium and will be zero if it is assured that the
OðNÞstate is in equilibrium[16]. However, the OðNÞstate may not be in complete equilibrium in this
kind of incremental theory due to neglect of the higher order terms and computational
inaccuracies. Consequently, it must retain these terms in Eq. (13) for an equilibrium check.

2.2. Constitutive equations

The incremental constitutive equations for piezoelectric continua in a Lagrange frame can be
expressed by

½DS� ¼ ½C�½De�-½l�½DE�;

½DD� ¼ ½k�T½De� þ ½e�½DE�; ð15Þ

where, [C] is the elastic stiffness matrix, [k] is the piezoelectric constant matrix and ½e� is
permittivity matrix.

2.3. Finite element model and increment finite element equations

A first order shear plate theory is adopted in the finite element model presented here. The
transverse shear deformation is taken into account and the shape functions only require C0

continuity in the model. Reduced and selective integration is used to overcome the overstiff
‘‘locking’’ behavior as plate is very thin. The displacements in the model can be expressed as

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zyyðx; y; tÞ;

vðx; y; z; tÞ ¼ v0ðx; y; tÞ � zyxðx; y; tÞ;

wðx; y; z; tÞ ¼ w0ðx; y; tÞ;

ð16Þ

where u0; v0;w0 are the reference surface displacements, and yx; yy are the rotational angles of the
normal in the xz and yz planes, respectively.
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The four-node isoparametric rectangular element with five degrees of freedom (Fig. 1) is used in
the present model. The displacements on the reference surface can be expressed in term of shape
functions as

u0 ¼
X4

i¼1

Niui; v0 ¼
X4

i¼1

Nivi;w0 ¼
X4

i¼1

Niwi; yx ¼
X4

i¼1

Niyxi; yy ¼
X4

i¼1

Niyyi: ð17Þ

Substituting into Eq. (16) yields

u

v

w

2
64

3
75 ¼

X4

i¼1

Ni 0 0 0 zNi

0 Ni 0 �zNi 0

0 0 Ni 0 0

2
64

3
75

ui

vi

wi

yxi

yyi

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ N½ � q½ �; ð18Þ

where

½N� ¼ f½N�1; ½N�2; ½N�3; ½N�4g; ½q� ¼ fq1 ; q2 ; q3 ; q4g
T;

N½ �i¼

Ni 0 0 0 zNi

0 Ni 0 �zNi 0

0 0 Ni 0 0

2
64

3
75; qi ¼ ui;; vi;wi; yxi; yyi

� �
;

Ni ¼
1

4
ð1þ x0Þð1þ z0Þ; x0 ¼ xix; z0 ¼ ziz; i ¼ 1; 2; 3; 4:

The displacement increments in the shape functions become

Du

Dv

Dw

2
64

3
75 ¼ ½N�½Dq�; ð19Þ

where [q] and [Dq] are the generalized and incremental nodal point displacements, [N] the shape
function matrix, x; z are the natural co-ordinates, and xi; zi the local co-ordinates of the nodal
points.
In this paper, weak mechanical and electric coupling only is considered, in which the electric

field is linear. So, it is assumed that the electric potential of every point on the surface of the
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Fig. 1. A four-node isoparametric plate element.
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piezoelectric patch has the same value and the electric potential across the thickness of
piezoelectric layer is linear variation. Then the electric potential increments become

DE ¼ �D/;k ¼ �½A�½D/�;

½A� ¼
@

@ x

@

@ y

@

@ z

� �T

¼ 0 0
1

H

� �T

;
ð20Þ

where H is the thickness of the piezoelectric patch. Substituting Eq. (19) into Eq. (5) yields

½De� ¼ Deij þ Dgij ¼ ½B�L þ ½B�NL

� �
fDqg ¼ ½B�½Dq�; ð21Þ

where [B]L, [B]NL are the linear and non-linear parts of incremental strain–displacement matrix
respectively. Substituting Eqs. (15), (19)–(21) into the total Lagrange small increment variational
principle, the left part of Eq. (13) will beZ

V

DSijdDeij dV ¼
Z

V

dDef gT½DS� dV

¼
Z

V

dDqf gT ½B�L þ ½B�NL

� �T ½C� ½B�L þ ½B�NL

� �
dqf g þ ½k�½A� D/f g

� �
dV

¼ dDqf gT
Z

V

f½B�TL½C�½B�L þ ½B�TL½C�½B�NL þ ½B�TNL½C�½B�L

þ ½B�TNL½C�½B�NLgfDqg dV þ dDqf gT
Z

V

½B�TL½k�½A� þ ½B�TNL½k�½A�
� �

D/f g dV ;

ð22ÞZ
V

SijDuk;idDuk;j dV ¼ Dqf gT
Z

V

@N

@X

� �T

S½ �
@N

@X

� �
Dqf g dV ; ð23Þ

Z
V

DDidDEi dV ¼
Z

V

½dDE�T½DD� dV

¼ � dD/f gT
Z

V

A½ �T k½ �T B½ �Lþ A½ �T k½ �T B½ �NL

� �
Dqf g � ½A�T½e�½A� D/f gg dV ; ð24Þ

Z
V

r0ðDfi � D .uÞdui dV þ
Z

As

D %TidDui dA þ
Z

Aq

D %QdDF dA�

¼ fdDqgT
Z

V

rof½N�
T½Df�-½N�T½N�½D.q�g dV þ

Z
As
½N�½D %T� dA

� �

þ fdD/gT
Z

AQ

½A�T½D %Q� dA: ð25Þ

The right part of Eq. (13) will be

DF ¼ dDqf gT
Z

V

r0 N½ �T f½ � � N½ �T N½ � .q½ �
� �

dV þ
Z

As

½N�T½ %T� dA

�

�
Z

V

½B�T½S� dV

�
þ dD/f gT

Z
As

½A�T½ %Q� dA þ
Z

V

½A�T½D� dV

� �
: ð26Þ
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Rearranging the above equations, the increment finite element dynamic equations can be
written as

½M�D.qþ ½K�L þ ½K�NL þ ½K�s
� �

Dqþ ½K�fL þ ½K�fNL

n o
D/

n
¼ DF1 þ DF2 þ DP1;

K½ �qLþ K½ �qNL

� �
Dq� K½ �ffD/ ¼ DF3 þ DP2; ð27Þ

where

½M� ¼
Z

V

r0½N�
T½N� dV ; ½K�L ¼

Z
V

½B�TL½C�½B�L dV ;

½K�NL ¼
Z

V

f½B�TL½C�½B�NL þ ½B�TNL½C�½B�L þ ½B�TNL½C�½B�NLg dV ; ð28Þ

½K�s ¼
Z

V

@N

@X

� �T

S½ �
@N

@X

� �
dV ;

½K�fl ¼
Z

V

½B�TL½k�½A� dV ; ½k�ql ¼
Z

V

½A�T½k�T½B�L dV ;

½k�fNl ¼
Z

V

½B�TNL½k�½A� dV ; ½k�qNL ¼
Z

V

½A�T½k�T½B�NL dV ;

½k�ff ¼
Z

V

½A�T½e�½A� dV ; DF1 ¼
Z

As

½N�T½D %T� dA;

DF2 ¼
Z

V

r0½N�
T½Df� dV ; DF3 ¼ �

Z
Aq

½A�T½D %Q� dA;

DP1 ¼
Z

V

r0f½N�
T½f� � ½N�T½N�½.q�g dV þ

Z
As

½N�T½ %T� dA �
Z

V

½B�T½S� dV ;

DP2 ¼ �
Z

As

½A�T½ %Q�dA þ
Z

V

½A�T½D� dV :

In the case of small increment,

½K�NL ¼ ½K�fNL ¼ ½K�qNLE0; ð29Þ

½B� ¼ ½B�L ¼ ½½B�1 ½B�2 ½B�3 ½B�4�; ð30Þ
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where

B½ �i

¼

1þ
@u

@x

� �
@Ni

@x

@v

@x

@Ni

@x

@w

@x

@Ni

@x
�z

@v

@x

@Ni

@x
z 1þ

@u

@x

� �
@Ni

@x

@u

@y

@Ni

@y
1þ

@v

@y

� �
@Ni

@y

@w

@y

@Ni

@y
�z 1þ

@v

@y

� �
@Ni

@y
z
@u

@y

@Ni

@y

1þ
@u

@x

� �
@Ni

@y
þ
@u

@y

@Ni

@x
1þ

@v

@y

� �
@Ni

@x
þ

@v

@x

@Ni

@y

@w

@y

@Ni

@x
þ

@w

@x

@Ni

@y
�z 1þ

@v

@y

� �
@Ni

@x
þ

@v

@x

@Ni

@y

� �
z 1þ

@u

@x

� �
@Ni

@y
þ
@u

@y

@Ni

@x

� �
@u

@z

@Ni

@y

@v

@z

@Ni

@y

@Ni

@y
� 1þ

@v

@y

� �
Ni � z

@u

@y

@Ni

@y

@u

@y
Ni þ z

@u

@z

@Ni

@y

@u

@z

@Ni

@x

@v

@z

@Ni

@x

@Ni

@x
�z

@v

@z

@Ni

@x
�

@v

@x
Ni 1þ

@u

@x

� �
Ni þ z

@u

@z

@Ni

@x

2
666666666666666664

3
777777777777777775

:

The following derivation is based on the small increment condition.

2.4. Active control algorithm

Yellin and Shen [17] introduced the self-sensing technique into active control. In the self-sensing
algorithm, the piezoelectric patch is used simultaneously as both a sensor and an actuator. Therefore,
the sensor and actuator are truly collocated. Apart from the better stability, the self-sensing algorithm
has many other desirable features, such as simplicity, practicality and reducing weight penalty.
The self-sensing technique is employed in this paper. The sensed voltage can be obtained from

the second equation of Eq. (27)

½D/� ¼ a½K��1
ff½K�qL½Dq�; ð31Þ

where a is a self-sensing constant obtained from the self-sensing bridge circuit [16].
The velocity feedback control law is adopted in this paper and the feedback actuating electric

field takes the forms

½D/� ¼ �Gc½D ’/� ¼ �G½K��1
ff½K�qL½D’q�;

G ¼ Gca; ð32Þ

where, Gc is the gain of feedback control and G is active control gain. Substituting Eqs. (29) and
(32) into Eq. (27), the system equation of motion takes the final form

½M�D.qþ ½C�D’qþ ½K�Dq ¼ F; ð33Þ

where

½C� ¼ G½K�fL½K�
�1
ff½K�qL; ½K� ¼ ½K�L þ ½K�s; F ¼ DF1 þ DF2þDP1:

2.5. Solution algorithms

The Newmark method is used to solve Eq. (33), and the solution at the end of a time step Dt are
expressed as follows:

’qtþDt¼ ¼ ’qt þ ½ð1� bÞ.qt þ b.qtþDt�Dt;

qtþDt¼ ¼ qt þ ’qtDt þ ½ð1
2
� aÞ.qt þ a.qtþDt�Dt2 ð34Þ
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and rearranging Eq. (34) obtains

.qtþDt ¼
1

aDt2
ðqtþDt � qtÞ �

1

aDt
’qt �

1

2a
� 1

� �
.qt;

D.q ¼ .qtþDt � .qt ¼
1

aDt2
Dq�

1

aDt
’qt �

1

2a
.qt

D’q ¼ ’qtþDt � ’qt ¼ ½ð1� bÞ.qt þ b.qtþDt�Dt ¼ ½.qt þ bð.qtþDt � .qtÞ�Dt

¼
b
aDt

Dq�
b
a
’qt þ 1�

b
2a

� �
.qtDt: ð35Þ

Substituting Eq. (35) into Eq. (33) yields

c0 ¼
1

aDt2
; c1 ¼

b
aDt

; c2 ¼
1

aDt
; c3 ¼

1

2a
� 1; c4 ¼

b
a
; c5 ¼

b
2a

� 1

� �
Dt;

c6 ¼ð1� bÞDt; c7 ¼ bDt;

½c0Mþ c1Cþ K�Dq ¼ FþM½c2 ’qt þ ðc3 þ 1Þ.qt� þ C½c4 ’qt þ c5 .qt�: ð36Þ

Once the solution Dq is known, the velocity and accelerations can be obtained from

.qtþDt ¼ c0Dq� c2 ’qt � c3 .qt; ’qtþDt ¼ ’qt þ c6 .qt þ c7 .qtþDt: ð37Þ

3. Numerical examples and discussion

First, in order to prove the validity of the formulations and related finite element codes
presented in this paper, a simply supported plate under a uniform pulse loading is analyzed and
the results obtained are compared with those in the literature. A thin square plate with the
following parameters is considered (see Fig. 2 and Ref. [9]).

a ¼ 2:438 m; h ¼ 6:35 mm; n ¼ 0:25; E ¼ 68:9 Gpa; r ¼ 2:5� 103 Kg=m3;

qðx; y; tÞ ¼ 47:84 N=m2; 0pto N:

The same plate was analyzed by Akay [9] who developed a mixed finite element and employed
6� 6 mesh and a time increment of Dt=0.005 s. In the present calculation, an (8� 8) mesh and a
time increment of Dt=0.005 s, and the constant average acceleration method with a ¼ 0:25; b ¼ 0:5
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in the Newmark method are adopted. The center deflection of the plate obtained within 0.5 s. is
presented in Fig. 3. The center deflections of the present calculation, as well as Akay’s are plotted
in Fig. 4, and one can see that there is a good agreement in the results.
In order to verify the formulations as piezoelectric effects is taken into account, a cantilevered

piezoelectric bimorph beam [15] with two identical PVDF films is considered, and the material
properties are shown in Table 1.
When 1V external voltage is applied to the PVDF films with opposite polarities, the induced

strain generates moment that bends the beam, and the deflection of the beam can be calculated by

uðxÞ ¼ 1:5
d31V

E

x

h

� �2

:

The present finite element results and analytical deflection are shown in Fig. 5 and there is a
good agreement between the results.
The output voltage due to the direct piezoelectric effect is also investigated. When the tip

deflection of the pure bending bimorph beam equals hd, the analytical sensed voltage can be
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Fig. 4. Solution comparison: ——, present solution; yy, solution in Ref. [9].
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obtained from

fs ¼
2d31Eh2hd

e33l2
;

where E is Young’s modulus, and l the length of piezoelectric bimorph beam. The output voltages
of the sensors calculated by the present work are compared with those from above equation in
Fig. 5(b) as hd is 1 cm. The present results show good agreement with the analytical solution.
Thus, both the present formulations and code are verified numerically.
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Table 1

The material properties of the PVDF and the elastic beam

E (N/m2) n r (kg/m3) h (mm) l (mm) d31 (C/N) e33 (F/m)

PVDF 2.0E9 0.29 1800 1.0 100 2.2E�11 1.062E�10
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Fig. 5. Direct and inverse piezoelectric effects of Bimorph beam: ——, FEM solution; yy, analytic solution.
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In the finite element analysis, there are usually two kinds of approaches to treat element mass,
i.e., consistent mass matrix and lumped mass matrix. The consistent mass matrix is defined by
Eq. (28), while the lumped mass matrix is a diagonal matrix based on the assumption that the
element mass is lumped on the element nodes. So, the lumped mass matrix is a simplified
calculation. The comparison between lumped and consistent matrices is presented in Fig. 6. The
results show that the difference between the two kinds of mass matrices is not very large. The
consistent mass matrix is used in following calculations.

3.1. The linear and non-linear dynamic responses

The natural frequencies of the plate under the linear small deflection condition can be obtained
with equation

oij ¼
p2ði2þ þ j2Þ

a2

ffiffiffiffiffiffi
D0

rh

s
:

For the system here, the first modal frequency is o11 ¼ 33 rad=s; and the cycle T=0.19 s.
The second modal frequency is o12 ¼ 82:5 rad=s; and the cycle T=0.076 s.
The linear and non-linear transient dynamic responses of the plate under a suddenly applied

uniform pulse load are shown in Fig. 7(a). It is observed that the linear and non-linear transient
dynamic responses are quite different. In the case of linearity, the plate will vibrate in its first modal
frequency, while in the non-linear case the response frequency will change with the values of the load.
The plots of center deflection versus time in the non-linear and linear cases under various loads are
shown in Figs. 8(a) and (b). One can notice that the response period of the center deflection decreases
with increasing values of the load in the non-linear case, while keeping constant in the linear case.
The results of the present non-linear analysis agree closely with the results of Akay. The linear and
non-linear transient responses will approach gradually with the decrease of the load as shown in
Fig. 7 (b), in which the load is one tenth of the original load (q ¼ qðx; y; t=10).
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Fig. 6. Comparisons between lumped and consistent matrices: ——, consistent mass matrix; yy, lumped mass
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3.2. The influence of the piezoelectric patches

Piezoelectric film PVDF and piezoceramics PZT-5 are used and the material properties are
shown in Tables 1 and 2.
Proper selection of the number and location of the piezoelectric sensors/actuators is critical to

control structural vibration efficiently. Several piezoelectric patches and locations, as shown in
Fig. 9, are selected to control the plate deformation in this paper. Fig. 10 shows that the influence
of the mass and stiffness of the piezoelectric patches on the dynamic response is obvious as only
one patch is pasted on the plate, as shown in Fig. 9(a), and piezoelectric PVDF, ceramics PZT-5
are used, respectively. The influence will be more evident if more piezoelectric patches are pasted.

3.3. Active vibration suppression for the transient response

The active control effects on transient vibration are shown in Fig. 11 as one piezoelectric
patches is used, as shown in Fig. 9(a), and control gains are 0, 0.01, 0.05, 0.1, respectively. The
effect of active control with one actuator is obvious.
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Fig. 7. Linear and non-linear responses with a pulse load: ——, linearity; yy, non-linearity.
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Fig. 12 illustrates the actuation ability of active control on the transient response with four
piezoelectric actuators, as shown in Fig. 9(b), and control gains are 0.01,0.05,0.1, respectively. It is
clearly shown that the numbers of actuators and control gains have a significant effect on the
control of the transient vibration. The vibration introduced by a pulse load has nearly died out
within 1 s as shown in Fig. 12(c).
It can be seen from Fig. 13 that the locations of the piezoelectric actuators have a significant

effect on the control of the deflection, where four actuators are patched on plate as shown in
Fig. 9(c) and 9(d), and the control gain is 0.1. It is also clearly shown that there is a better
actuation ability as the actuators are closer to the center of the plate.
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Fig. 8. (a) Non-linear responses versus different loads:yy q, —— 5q, yy 10q. (b) Linear responses versus different

loads: —— q, yy 2.5q, — — — — 5q.

Table 2

The material properties of the PZT-5

E (N/m2) n r (kg/m3) h (mm) l (mm) d31 (C/N) e33 (F/m)

PZT-5 49E9 0.3 7800 1.0 �12.1E�11 1.3E�8
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4. Conclusions

Based on a total Lagrange approach and first order shear plate theory, an incremental non-
linear finite element model for the active vibration control of a plate with piezoelectric patches is
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Fig. 10. The number and locations of piezoelectric patches.
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Fig. 11. Actuation ability of active control with one actuator: (a) control gain G ¼ 0; (b) G ¼ 0:01; (c) G ¼ 0:05; (d)
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Fig. 12. Actuation ability of active control with four actuators: (a) control gain G ¼ 0:01; (b) G ¼ 0:05; (c) G ¼ 0:1:
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developed by using virtual velocity incremental variation principles. A self-sensing and negative
velocity feedback algorithm is introduced in a closed control loop. The results show that the finite
element model of a four-node rectangular element with five degrees of freedom is efficient and
accurate. It can be effective for thin and thick plate since reduced and selective integration is used.
At the same time, the transverse shear deformation is taken into account and C0 continuity is only
required in the model. The numerical results show that piezoelectric actuators can produce
significant damping and suppress transient vibration effectively, and the numbers and locations of
the piezoelectric actuators have critical influence on both the shape control and the vibration
suppression of the structures.
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