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1. Introduction

After Walter Ritz had presented in 1908 his now famous variational method, interest was
particularly shown by several mathematicians from whom the substantiation of the method has
received lengthy treatment [1–5]. On the other hand, investigators in the field of applied sciences
generated an immense quantity of papers in which approximate solutions of various problems of
mathematical physics where constructed with the aid of the Ritz method. Particularly, this
method has been used extensively over the years to study the problem of flexural vibrations of
rectangular isotropic, orthotropic and anisotropic plates.
It is well known [3], that boundary conditions containing the function w and derivatives

of w of orders not greater than m�1, are called stable or geometric for a differential equation of
order 2m, and those containing derivatives of orders higher than m�1 are called unstable or
natural.
When using the Ritz method we choose a sequence of functions wi which constitute a base

in the space V where only the homogeneous stable or geometric boundary conditions are
included, there is no need to subject the functions wi to the natural boundary conditions,
[2–3].
The fact that the natural boundary conditions of a system need not be satisfied by the chosen

co-ordinate functions is a very important characteristic of the Ritz method, specially when dealing
with problems for which such satisfaction is very difficult to achieve. For instance, this is the case
of a rectangular anisotropic with one or more free edges.
In the present paper, the use of orthogonal polynomials in the Ritz method for the study of

rectangular anisotropic plates is further analyzed.
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2. Beam functions and orthogonal polynomials in the Ritz method

In the analyses of the statical and dynamical behaviour of rectangular plates it has been found
that the deflections can be well approximated by a series of beam functions in the separable form
of the variables [6]

wðx; yÞ ¼
XN
i¼1

XN
j¼1

cijXiðxÞYjðyÞ; ð1Þ

where cij are undetermined coefficients and Xi(x) and Yj(y) are beam mode shapes functions
which satisfy the appropriate boundary conditions on the edges x ¼ 0; a and y ¼ 0; b respectively.
These functions are commonly taken as the characteristic functions for the normal modes of
vibration of beams with end conditions the same as those assumed for the plate at the
corresponding edges.
Let us consider a rectangular anisotropic plate (see Fig. 1) and for instance the edge x ¼ a:With

the adequate selection of the beam functions, each term of series (1) can satisfy the following
boundary conditions:

* Edge rigidly clamped:

wða; yÞ ¼ 0;
@wða; yÞ

@x
¼ 0: ð2Þ

* Edge simply supported:

wða; yÞ ¼ 0;
@2wða; yÞ

@x2
¼ 0: ð3Þ

* Edge free:
@2wða; yÞ

@x2
¼ 0;

@3wða; yÞ
@x3

¼ 0: ð4Þ
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Fig. 1. Anisotropic rectangular plate.
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When the edge is rigidly clamped all the boundary conditions are stable. Consequently, the
terms of Eq. (1) satisfy exactly all the boundary conditions.
When the edge is simply supported the boundary conditions to be satisfied are

wða; yÞ ¼ 0; ð5Þ

D11ða; yÞ
@2wða; yÞ

@x2
þ D12ða; yÞ

@2wða; yÞ
@y2

þ 2D16ða; yÞ
@2wða; yÞ
@x@y

¼ 0: ð6Þ

When the plate is isotropic or specially orthotropic [7], the terms of function (1), which satisfy
(3), can verify condition (5) and also Eq. (6) because this last condition reduces to
D11ða; yÞ @2wða; yÞ=@x2 ¼ 0; since the second and third terms in Eq. (6) are equal to zero because
Xi(a)=0 8i , and D16=0. Unfortunately, when the plate is anisotropic the terms of Eq. (1), cannot
satisfy the unstable condition (6).
Finally, when the edge is free there are two unstable boundary conditions:

D11ða; yÞ
@2wða; yÞ

@x2
þ D12ða; yÞ

@2wða; yÞ
@y2

þ 2D16ða; yÞ
@2wða; yÞ
@x@y

¼ 0; ð7Þ

D11ða; yÞ
@3wða; yÞ

@x3
þ D12ða; yÞ

@3wða; yÞ
@y2@x

þ 4D16ða; yÞ
@3wða; yÞ
@2x@y

� �

þ 2 D26ða; yÞ
@3wða; yÞ

@y3
þ 2D66ða; yÞ

@3wða; yÞ
@x@2y

� �
¼ 0; ð8Þ

The beam functions cannot verify the unstable boundary conditions (7) and (8). This last
condition cannot be verified even if the plate is orthotropic or isotropic.
This situation with the beam functions which do not satisfy the unstable boundary conditions is

not irremediable since when dealing with the Ritz method, it is not necessary to subject the co-
ordinate functions to this type of boundary conditions. Consequently, these conditions can be
ignored in the procedure of construction of the approximating function (1). Unfortunately, the
beam functions satisfy for instance conditions (4), and this represents an unnecessary restraint on
the system which can led to numerical results with greater errors than those obtained by using
similar functions which are not constrained to satisfy conditions (4). This question has been
discussed by Bassily and Dickinson [8] in which the use of degenerated beam functions for the
study of isotropic plates involving free edges is examined. Later, Dickinson and Di Blasio [9] used
the orthogonal polynomials proposed by Bhat [10,11] to generate results for a number of flexural
vibrations and buckling problems for rectangular isotropic and orthotropic plates. They use the
approximating function

wðx; yÞE
XN

i¼0

XM

j¼0

cijfiðxÞjjðyÞ; ð9Þ

where cij are arbitrary coefficients which are to be determined and {fi(x),jj(y)} is a set of
orthogonal polynomials. All the polynomials satisfy only the geometric (or stable) boundary
conditions. They demonstrated that the lack of satisfaction of the natural boundary conditions of
the equivalent beam of the mentioned polynomials relaxes the over-restraint encountered in the
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use of the true beam functions and permits the treatment of plates involving free edges with a
degree of accuracy equivalent to that obtained using degenerated beam functions.

3. Numerical results

The mentioned drawbacks of the beam functions are, of course, greater in the case of
anisotropic plates. Nevertheless, the orthogonal polynomials are very satisfactory for use in the
Ritz method for the study of the statical and dynamical behaviour of anisotropic plates. To
illustrate this let us consider a simply supported rectangular anisotropic plate with the stiffness
properties characterized by the rigidity coefficients:

D22=D11 ¼ 1; ðD12 þ 2D66Þ=D11 ¼ 1:5; D16=D11 ¼ D26=D11 ¼ �0:5:

The ‘‘popular’’ co-ordinate function solution is given by

wðx; yÞE
XN

i¼0

XM

j¼0

cij sin
ipx

a
sin

ipx

b
: ð10Þ

In the case of isotropic and specially orthotropic plates the deflection function (10) exactly
satisfies the governing differential equation and the boundary conditions. For anisotropic plates
this procedure does not lead to the exact solution. In this case the boundary conditions are

wðx; 0Þ ¼ 0; wða; yÞ ¼ 0; wðx; bÞ ¼ 0; wð0; yÞ ¼ 0; ð11Þ

D22ðx; 0Þ
@2wðx; 0Þ

@y2
þ D12ðx; 0Þ

@2wðx; 0Þ
@x2

þ 2D26ðx; 0Þ
@2wðx; 0Þ
@x@y

¼ 0; ð12Þ

D11ða; yÞ
@2wða; yÞ

@x2
þ D12ða; yÞ

@2wða; yÞ
@y2

þ 2D16ða; yÞ
@2wða; yÞ
@x@y

¼ 0; ð13Þ

D22ðx; bÞ
@2wðx; bÞ

@y2
þ D12ðx; bÞ

@2wðx; bÞ
@x2

þ 2D26ðx; bÞ
@2wðx; bÞ
@x@y

¼ 0; ð14Þ

D11ð0; yÞ
@2wð0; yÞ

@x2
þ D12ð0; yÞ

@2wð0; yÞ
@y2

þ 2D16ð0; yÞ
@2wð0; yÞ
@x@y

¼ 0; ð15Þ

Each term in Eq. (10) satisfy the following conditions:

D22ðx; 0Þ
@2wðx; 0Þ

@y2
¼ 0; D11ða; yÞ

@2wða; yÞ
@x2

¼ 0; D22ðx; bÞ
@2wðx; bÞ

@y2
¼ 0;

D11ð0; yÞ
@2wð0; yÞ

@x2
¼ 0;

ð16Þ

which constitute the mentioned over-restrictions.
Fig. 2 shows a graphical comparison of the fundamental frequency coefficient O ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D11

p
ob2 obtained with Eqs. (9) and (10). The rapid convergence can be seen when using

Eq. (9) in comparison to Eq. (10). This is due to the fact that the functions in Eq. (10) are
restricted to satisfy conditions (16) while the orthogonal polynomials are not restricted at all.
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Fig. 3 presents a comparison of the mentioned solutions for the deflection w ¼ jqb4=D11 10
�2:

Both solutions appear to be converging to the exact solution obtained by Ashton [12], but the
convergence obtained with Eq. (10) is much slower. Finally, Fig. 4 shows the moment Mx=bqb2.
The beam function solution appears to be oscillating about a relative constant value. On the other
hand the convergence of the orthogonal polynomials solution is rapid and there is practically no
oscillation.
Other combinations of the classical boundary conditions have been taken into account.

Figs. 5–7 present the solutions for the fundamental frequency coefficient, the maximum deflection
and the center moment. These results illustrate the very rapid convergence achieved by Eq. (9) in
which orthogonal polynomials are used.
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Fig. 2. Fundamental frequency coefficient O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D11

p
ob2 of a square anisotropic plate with edges simply supported

—, I, values obtained with orthogonal polynomials (Eq. (9)); - - -, II, values obtained with the sine series (10). N and M

are the number of terms in both Eqs. (9) and (10).
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Fig. 3. Maximum deflection w ¼ jqb4=D11 10
�2 at the center of a square anisotropic plate with edges simply supported:

—, I, values obtained with orthogonal polynomials (Eq. (9)); - - -, II, values obtained with the sine series (10). N and M

are the number of terms in both Eqs. (9) and (10). E, III, exact solution [12] (Ashton).
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Fig. 4. Center moment Mx=bqb2 of a square anisotropic plate with edges simply supported: —, I, values obtained with

orthogonal polynomials (Eq. (9)); - - -, II, values obtained with the sine series (10). N and M are the number of terms in

both Eqs. (9) and (10).
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Fig. 5. Fundamental frequency coefficient O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D11

p
ob2 of a square anisotropic plate with three edges clamped

and one edge free: —, I, values obtained with orthogonal polynomials (Eq. (9)); - - -, II, values obtained with the

popular beam functions. N and M are the number of terms in both Eq. (9) and beam functions.

0.00

0.05

0.10

0.15

0.20

0.25

ϕ

1 32 6 8
M=N

4 5 7 9

Fig. 6. Center deflection w ¼ jqb4=D11 10
�2 of a square anisotropic plate with three edges clamped (x ¼ 0; y ¼ 0;

y ¼ b) and one edge free (x ¼ a): —, I, values obtained with orthogonal polynomials (Eq. (9)); - - -, II, values obtained

with the popular beam functions. N and M are the number of terms in both Eq. (9) and beam functions.
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4. Conclusions

From the results presented in this paper, it would appear that the Ritz method with orthogonal
polynomials functions is very satisfactory for the study of anisotropic plates. This is particularly
true in the case of bending deflections, free vibration and also in the response which requires
derivatives of the deflections.
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Fig. 7. Center moment Mx=bqb2 of a square anisotropic plate with three edges clamped (x ¼ 0; y ¼ 0; y ¼ b) and one

edge free (x ¼ a) —, I, values obtained with orthogonal polynomials (Eq. (9)); - - -, II, values obtained with the popular

beam functions. N and M are the number of terms in both Eq. (9) and beam functions.
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