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Abstract

The effects of large vibration amplitudes on the first two axisymmetric mode shapes of clamped thin
isotropic circular plates are examined. The theoretical model based on Hamilton’s principle and spectral
analysis developed previously by Benamar et al. for clamped–clamped beams and fully clamped rectangular
plates is adapted to the case of circular plates using a basis of Bessel’s functions. The model effectively
reduces the large-amplitude free vibration problem to the solution of a set of non-linear algebraic
equations. Numerical results are given for the first and second axisymmetric non-linear mode shapes for a
wide range of vibration amplitudes. For each value of the vibration amplitude considered, the
corresponding contributions of the basic functions defining the non-linear transverse displacement
function and the associated non-linear frequency are given. The non-linear frequencies associated to the
fundamental non-linear mode shape predicted by the present model were compared with numerical results
from the available published literature and a good agreement was found. The non-linear mode shapes
exhibit higher bending stresses near to the clamped edge at large deflections, compared with those predicted
by linear theory. In order to obtain explicit analytical solutions for the first two non-linear axisymmetric
mode shapes of clamped circular plates, which are expected to be very useful in engineering applications
and in further analytical developments, the improved version of the semi-analytical model developed by
El Kadiri et al. for beams and rectangular plates, has been adapted to the case of clamped circular plates,
leading to explicit expressions for the higher basic function contributions, which are shown to be in a good
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agreement with the iterative solutions, for maximum non-dimensional vibration amplitude values of 0.5
and 0.44 for the first and second axisymmetric non-linear mode shapes, respectively.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Thin-plate-structures are commonly used in many engineering applications, especially in the
aeronautic and aerospace fields. Such structures are often subjected to severe dynamic loading
conditions resulting in large vibration amplitudes. In such situations, it is not sufficient to use the
classical linear theory to analyze their large vibration amplitudes behaviour. The geometric non-
linearity has to be taken into account for proper design. The most widely used non-linear
equations for thin plates are those originally presented by Von K!arm!an in the static case. Their
dynamic analogue were derived by Herrmann in Cartesian co-ordinates [1]. These governing
equations are either expressed in terms of the transverse and in-plane displacements, or
alternatively in terms of the transverse displacement and the Airy stress function when the in-
plane inertia is neglected. Due to the complexity of the governing coupled non-linear partial
differential equations involved in the study of large vibration amplitude problems of thin plate-
structures, no exact solution is yet known. Hence, each problem has received a special treatment
involving some particular approximations. In most of the studies carried out on non-linear
axisymmetric vibrations of circular plates, the common approach has been to use an assumed
space or time function, it being supposed that the space and time functions can be separated. In
the assumed space mode method, a spatial function which satisfies the related boundary
conditions is assumed and Galerkin’s method is used to eliminate the space variable from the
governing equation. The problem is then reduced, in the case of the single-mode approach, to the
well-known Duffing equation in time, which may be solved in terms of elliptic functions or using
other methods, such as the harmonic balance method or the perturbation method. Yamaki used
this technique to obtain an approximate solution based on Von K!arm!an equations with a single-
term expansion [2]. He considered both clamped and simply supported isotropic circular plates,
with stress-free and immovable boundaries. By assuming the same one-term expansion, Kung and
Pao studied circular plates experimentally and analytically and found close agreement [3].
Sathyamoorthy [4] investigated the non-linear flexural vibrations of moderately thick circular
plates with clamped immovable edges and found exact agreement with the results of Ref. [2] in the
particular case of thin plates. Nowinski [5] investigated the large-amplitude transverse vibrations
of elastic circular plates built in at the boundary by using von K!arm!an’s dynamic equations in
combination with an orthogonalization procedure in order to eliminate the space variable. He
derived an approximate solution, in the time variable, in terms of elliptic functions by considering
only a one-term expansion of the transverse displacement. In the assumed time function method, a
simple harmonic function in time is assumed and is then eliminated from the equation of motion
using Kantorovich averaging procedure. The resulting non-linear spatial boundary-value problem
is solved numerically. This technique has been used with Von K!arm!an equations by Huang and
Sandman [6], and Huang and Al-Khattat [7], to investigate non-linear free and forced vibrations
of clamped circular plates, and circular plates with various boundary conditions, respectively.
Some other studies [8,9] were based on a simplified non-linear differential equation, obtained by
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using Berger’s assumption [10], and solved by a modified Galerkin method, and a Ritz–Galerkin
method, respectively. Also, a perturbation method was used to study the non-linear axisymmetric
vibrations of a clamped circular plate in which the coupled non-linear Von K!arm!an equations as
well as the simplified single non-linear plate equation obtained from Berger’s hypothesis were
solved [11]. Another study concerned with the effect of internal resonances on the non-linear
symmetric response of clamped circular plates has been carried out in Ref. [12] by the method of
multiple scales and by using the dynamic analogue of the Von K!arm!an equations. The two latter
methods are based on perturbation procedures, and consequently, are limited to the first effects of
finite displacements. Reddy and Huang [13] studied the large-amplitude free vibrations of thick,
orthotropic annular plates of varying thickness by using the finite element method and a shear
deformable theory. Rao et al. [14] investigated the non-linear free vibrations occurring at large
vibration amplitudes of beams and orthotropic circular plates by employing the finite element
method, in which a linearizing function was introduced. The formulations used in Refs. [13,14]
were based on the assumption of zero in-plane radial displacement. Decha-Umphai and Mei [15],
presented a finite element method to investigate non-linear forced vibrations of circular plates
with various out-of-plane and in-plane boundary conditions. The in-plane deformation and in-
plane inertia have been taken into account in the formulation and a linearizing function was used
in the expression of the strain energy. It is to be noted here that the assumed space single-mode
approach was adopted as a tool for the investigation of the effects of the geometric non-linearity
on the natural frequencies and the forced vibration response [16], but it is inadequate for the
estimation of the non-linear stresses as stated in Refs. [17,18]. As determination of these stresses is
of great interest in engineering applications, multimode approaches are needed to obtain reliable
and accurate results concerning not only the natural frequencies and the non-linear forced
response [19], but also to obtain accurate stress estimates. Some investigations on the effects of
higher modes, i.e., multimode analysis, on the fundamental non-linear frequencies of circular
plates are reported in Refs. [20,21], in which Galerkin’s method was used. On the other hand,
most of the published results concerning the analysis of geometrically non-linear free vibrations of
circular plates are concerned with the fundamental mode only. Experimental studies have shown
that the higher modes contribute significantly to the non-linear response of beams and plates [22–
24]. Therefore, the study of the higher mode contributions is indispensable in order to have a
better understanding of the geometrically non-linear dynamic behaviour of plates. A theoretical
model, based on Hamilton’s principle and spectral analysis has been developed to analyze the
dependence of the mode shapes and their corresponding frequencies on the amplitude of vibration
for thin straight structures [22]. The model was applied successfully to geometrically non-linear
free and forced vibrations of various structures such as simply supported and clamped–clamped
beams, homogeneous and composite rectangular plates, and shells [16–18,25–32]. The main
feature of the approach mentioned above is that it makes the geometrically non-linear effects
appear not only via the amplitude–frequency dependence, which was the main purpose of most of
the previous studies on non-linear vibrations, but also via the dependence of the structure
deflection shapes on the amplitude of vibration. This allows quantitative estimate of non-linear
stresses to be obtained in sensible regions of the structure, which may be of crucial importance in
the fatigue life prediction of structures working in a severe environment. In the present work,
axisymmetric free large vibration amplitudes of clamped immovable thin isotropic circular plates
are investigated by using and adapting the model mentioned above. By assuming harmonic
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motion and expanding the transverse displacement in the form of finite series of basic functions,
namely the linear free vibration modes of the clamped circular plate, obtained in terms of Bessel’s
functions, the discretized expressions for the total strain energy and kinetic energy have been
derived. In these expressions, in addition to the classical mass and rigidity tensors, a fourth order
tensor appears due to the non-linearity. The application of Hamilton’s principle reduced the large-
amplitude free vibration problem to a set of non-linear algebraic equations, which have been
solved numerically in each case, leading to the first and second non-linear axisymmetric mode
shapes of clamped circular plates. The relationships between the non-linear to linear frequency
ratio, between mode shapes and non-dimensional maximum amplitude for the first two mode
shapes of circular plates are discussed showing a hardening type non-linearity and the amplitude
dependence of the mode shapes. Also, the influence of the non-dimensional maximum amplitude
on the associated bending stress distributions is given, showing a higher rate of increase of stresses
with the amplitude of vibration, compared with that predicted by linear theory.
In a recent series of papers [33–35], a practical simple ‘‘multimode theory’’, based on the

linearization of the non-linear algebraic equations, written on the modal basis, in the
neighbourhood of each resonance, has been developed for beams and fully clamped and simply
supported rectangular plates. Simple explicit formulae, ready and easy to use for analytical or
engineering purposes, have been derived, which allowed, via the so-called first formulation, direct
calculation of the basic function contributions to the first three non-linear mode shapes of
clamped–clamped beams, the first non-linear mode shape of clamped, simply supported beams,
and the first two non-linear mode shapes of fully clamped rectangular plates. The purpose and the
interest of this approach have been extensively discussed in the above references. The same
approach is extended here to clamped circular plates in order to allow direct calculation of the first
two axisymmetric non-linear mode shapes, with their associated non-linear frequencies and
bending stress patterns. The results given in terms of explicit analytical solutions are discussed and
compared to those obtained by the iterative solution of the corresponding set of non-linear
algebraic equations, to determine accurately the limit of validity of the new approach.

2. General formulation

2.1. Problem definition

Consider a circular plate of thin uniform thickness h and radius a that is clamped along its edge.
The co-ordinate system is chosen such that the middle plane of the plate coincides with the ðr; yÞ
plane, the origin of the co-ordinate system being at the centre of the plate with the z-axis
downward, as shown in Fig. 1. The plate is made of an elastic, homogeneous isotropic material. In
the case of axisymmetric vibrations of the circular plate, the displacements are given by [36]

urðr; z; tÞ ¼ Uðr; tÞ � z
@W ðr; tÞ

@r
; uyðr; tÞ ¼ 0; uzðr; tÞ ¼ W ðr; tÞ; ð1Þ

where U andW are the in-plane and out-of-plane displacements of the middle plane point ðr; y; 0Þ;
respectively, and ur; uy and uz are the displacements along r; y and z directions, respectively.
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The non-vanishing components of the strain tensor in the case of large displacements are given
by [6]

er ¼
@U

@r
þ
1

2

@W

@r

� �2
�z

@2W

@r2
; ey ¼

U

r
�

z

r

@W

@r
: ð2Þ

2.2. The bending strain, membrane strain and kinetic energies of a circular plate

The total strain energy, V ; of the circular plate is given as the sum of the strain energy due to
bending (Vb) and the membrane strain energy induced by large deflections (Vm): V ¼ Vm þ Vb: In
the case of axisymmetric vibrations, the bending strain energy is given by [37]

Vb ¼ pD

Z a

0

@2W

@r2
þ
1

r

@W

@r

� �2
�2ð1� nÞ

1

r

@W

@r

@2W

@r2

" #
r dr ð3Þ

in which, D ¼ Eh3=ð12ð1� n2ÞÞ is the bending stiffness of the plate, and E and n are Young’s
modulus and the Poisson ratio of the plate material. In the case of a clamped plate, the bending
strain energy expression (3) can be shown, by using integration by parts and the boundary
conditions, to simplify to

Vb ¼ pD

Z a

0

@2W

@r2

� �2
þ
1

r2
@W

@r

� �2" #
r dr: ð4Þ

The expression for the membrane strain energy induced by large deflections for an axisymmetric
circular plate is given by [37]

Vm ¼
12pD

h2

Z a

0

½e21 � 2ð1� nÞe2�r dr; ð5Þ

where e1 ¼ ½@U=@r þ 1
2
ð@W=@rÞ2� þ U=r; and e2 ¼ ½@U=@r þ 1

2
ð@W=@rÞ2�U=r; are the midplane first

and second strain invariants, respectively. An approximation has been adopted in the present
work consisting of neglecting the contribution of the in-plane displacement U in the membrane
strain energy expression. Such an assumption of neglecting the in-plane displacements in the non-
linear strain energy has been made in Refs. [18,27] when calculating the first two non-linear mode

ARTICLE IN PRESS

Fig. 1. Clamped circular plate notation.

M. Haterbouch, R. Benamar / Journal of Sound and Vibration 265 (2003) 123–154 127



shapes of fully clamped rectangular plates. For the first mode shape, the range of validity of this
assumption has been discussed in the light of the experimental and numerical results obtained for
the non-linear frequency–amplitude dependence and the non-linear bending stress estimates
obtained at large vibration amplitude [18,26]. For the second fully clamped rectangular plates
non-linear mode shape, the assumption of zero in-plane displacements has led to results which
were in good agreement with those given in Ref. [38], based on the hierarchical finite element
method and including the in-plane displacements in the formulation. Therefore, it seemed
reasonable to start, in the application to circular plates of the semi-analytical model presented in
the above references, by adopting the assumption of neglecting in-plane displacement in the
circular plate case, for calculating the non-linear mode shapes, and the associated frequencies, and
the non-linear bending stress patterns for a reasonable range of vibration amplitudes, because it
induces a great simplification in the theory, a significant reduction in the size of the non-linear
algebraic system, and it allows, as will be shown in the present work, an easy direct analytical
estimation of the higher basic function contribution to the non-linear transverse mode shapes.
Further investigations could be carried out, taking into account the in-plane displacement U ; in
order to examine the effects of large vibration amplitudes on the membrane stress patterns for
clamped circular plates. The assumption introduced above leads to

Vm ¼
3pD

h2

Z a

0

@W

@r

� �4
r dr: ð6Þ

The total strain energy, V ; is then given by

V ¼ pD

Z a

0

@2W

@r2

� �2
þ
1

r2
@W

@r

� �2
þ
3

h2
@W

@r

� �4" #
r dr: ð7Þ

In most engineering applications of thin plates, rotatory and in-plane inertia effects can be
neglected [39]. Thus, the kinetic energy T of the circular plate reduces to

T ¼ prh

Z a

0

@W

@t

� �2
r dr; ð8Þ

where r is the plate mass per unit volume.

2.3. Discretization of the total strain and kinetic energy expressions

If the space and time functions are supposed to be separable and harmonic motion is assumed,
the transverse displacement W can be written as

W ðr; tÞ ¼ wðrÞ sinðotÞ: ð9Þ

The spatial function wðrÞ is expanded in the form of finite series of n basic functions wiðrÞ as

wðrÞ ¼ aiwiðrÞ ð10Þ

in which the usual summation convention for repeated indices is used over the range ½1; n�: The
transverse displacement W ðr; tÞ is then given by

W ðr; tÞ ¼ aiwiðrÞ sinðotÞ: ð11Þ

ARTICLE IN PRESS

M. Haterbouch, R. Benamar / Journal of Sound and Vibration 265 (2003) 123–154128



Discretization of the total strain and kinetic energy expressions is made by substituting the
expression for W ðr; tÞ given in Eq. (11) into Eqs. (7) and (8), and rearranging. This leads to the
following expressions:

V ¼ 1
2

aiajkij sin
2ðotÞ þ 1

2
aiajakalbijkl sin

4ðotÞ; ð12Þ

T ¼ 1
2
o2aiajmij cos

2ðotÞ; ð13Þ

where mij; kij and bijkl are the mass tensor, the rigidity tensor and the non-linearity tensor,
respectively, given by

mij ¼ 2prh

Z a

0

wiwjr dr;

kij ¼ 2pD

Z a

0

d2wi

dr2
d2wj

dr2
þ
1

r2
dwi

dr

dwj

dr

 !
r dr; ð14Þ

bijkl ¼
6pD

h2

Z a

0

dwi

dr

dwj

dr

dwk

dr

dwl

dr
r dr:

It appears from Eqs. (14) that the tensors mij and kij are symmetric, and that the fourth order
tensor bijkl satisfies: bijkl ¼ bklij ; and bijkl ¼ bjikl :

2.4. Formulation of the governing equations

The dynamic behaviour of the structure is governed by Hamilton’s principle, which is
symbolically written as

d
Z 2p=o

0

ðV � TÞ dt ¼ 0: ð15Þ

Replacing T and V by their discretized expressions given above in the energy condition (15),
integrating the time functions, calculating the derivatives with respect to the ai’s, and taking into
account the properties of symmetry of the tensors mentioned above, leads to the following set of
non-linear algebraic equations:

2aikir þ 3aiajakbijkr � 2o2aimir ¼ 0; r ¼ 1;y; n: ð16Þ

Eqs. (16) represent a set of n non-linear algebraic equations relating the n coefficients ai and the
frequency o: So, there are ðn þ 1Þ unknowns and n equations. In order to complete the
formulation, a further equation has to be added to Eqs. (16). As no dissipation is considered here,
such an equation can be obtained by applying the principle of conservation of energy, which can
be written as

Vmax ¼ Tmax; ð17Þ

where Vmax is the maximum value of the total strain energy obtained from Eq. (12) for t ¼ p=ð2oÞ;
at which T ¼ 0; and Tmax is the maximum value of the kinetic energy obtained from Eq. (13), for
t ¼ 0; at which V ¼ 0: Eq. (17) leads to the following expression for o2:

o2 ¼ ðaiajkij þ aiajakalbijklÞ=ðaiajmijÞ ð18Þ
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which has to be substituted in Eqs. (16) to obtain a system of n non-linear algebraic equations
leading to the n contribution coefficients ai; i ¼ 1 to n: Adopting the solution procedure used in
Ref. [17,18], the contribution coefficient ar0 of the basic function corresponding to the desired
mode r0 is first fixed, and the other basic function contribution coefficients are calculated via
numerical solution of the remaining ðn � 1Þ non-linear algebraic equations:

2aikir þ 3aiajakbijkr � 2o2aimir ¼ 0; rar0: ð19Þ

The values obtained for ai; for iar0; are then substituted into Eq. (18) to obtain the
corresponding value of o2r0 :

2.5. Non-dimensional formulation

To simplify the analysis and the numerical treatment of the set of non-linear algebraic
equations, non-dimensional formulation has been considered by putting the spatial displacement
function as

wiðrÞ ¼ hwn

i ðr
nÞ; ð20Þ

where rn ¼ r=a is the non-dimensional radial co-ordinate.
Eqs. (19) can be rewritten in non-dimensional form as

2aik
n

ir þ 3aiajakbn

ijkr � 2o*
2aim

n

ir ¼ 0; rar0; ð21Þ

where on is the non-dimensional non-linear frequency parameter defined by

o*2 ¼
rha4

D
o2 ð22Þ

in which o*2 is given by the following expression:

o*2 ¼ ðaiajk
n

ij þ aiajakalb
n

ijklÞ=ðaiajm
n

ijÞ: ð23Þ

The mn
ij ; kn

ij and bn
ijkl terms are non-dimensional tensors related to the dimensional ones by the

following relationships:

mij ¼ 2pra2h3mn

ij ; kij ¼
2pDh2

a2
kn

ij ; bijkl ¼
2pDh2

a2
bn

ijkl : ð24Þ

These non-dimensional tensors are defined by

mn

ij ¼
Z 1

0

wn

i wn

j rn drn;

kn

ij ¼
Z 1

0

d2wn
i

dr*2

d2wn
j

dr*2
þ
1

r*2
dwn

i

drn

dwn
j

drn

 !
rn drn;

bn

ijkl ¼ 3
Z 1

0

dwn
i

drn

dwn
j

drn
dwn

k

drn
dwn

l

drn
rn drn: ð25Þ

The parameters mn
ij; kn

ij and bn
ijkl given above depend only on the chosen basic functions wn

i and
their first and second derivatives. Also, it should be noticed that the non-linear frequency
parameter on does not depend on the Poisson ratio since none of the parameters mn

ij ; kn
ij and bn

ijkl is
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a function of n; but the non-linear frequency itself depends on n; via the plate bending stiffness
D ¼ Eh3=ð12ð1� n2ÞÞ; as shown in Eq. (22).

2.6. Bending stress expressions

In the light of the assumption of zero in-plane displacement, only the bending stresses can be
calculated with a good accuracy. At the instant of maximum amplitude, i.e., t ¼ p=ð2oÞ; the
surface bending strains ebr and eby; obtained for z ¼ h=2; are given by

ebr ¼ �
h

2

d2w

dr2

� �
; eby ¼ �

h

2

1

r

dw

dr

� �
: ð26Þ

By using the classical thin plate assumption of plane stress and Hooke’s law, the surface radial
and circumferential bending stresses are given by

sbr ¼ �
Eh

2ð1� n2Þ
d2w

dr2

� �
þ n

1

r

dw

dr

� �� 	
;

sby ¼ �
Eh

2ð1� n2Þ
1

r

dw

dr

� �
þ n

d2w

dr2

� �� 	
:

ð27Þ

In terms of the non-dimensional parameters defined in the previous section, the non-dimensional
surface bending stresses sn

br and sn
by can be defined by

sn
br ¼ �

1

2ð1� n2Þ
d2wn

dr*2

� �
þ n

1

rn
dwn

drn

� �� 	
;

sn
by ¼ �

1

2ð1� n2Þ
1

rn
dwn

drn

� �
þ n

d2wn

dr*2

� �� 	
:

ð28Þ

The relationship between the dimensional and non-dimensional bending stresses is

sn ¼
sa2

Eh2
ð29Þ

which is valid for both dimensional and non-dimensional pairs of bending stresses defined by
Eqs. (27) and (28).

3. Numerical results and discussion

3.1. Numerical details

The basic functions wn
i to be used in the expansion series of w in Eq. (10) must satisfy the

theoretical clamped boundary conditions, i.e., zero displacement and zero slope along the circular
edge. Since the linear problem of free axisymmetric flexural vibration of a clamped circular plate
has an exact analytical solution, the chosen basic functions wn

i were taken as the linear free
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oscillation mode shapes given by [12]

wn

i ðr* Þ ¼ Ai J0ðbir
nÞ �

J0ðbiÞ
I0ðbiÞ

I0ðbir
nÞ

� 	
; ð30Þ

where bi is the ith real positive root of the transcendental equation

J1ðbÞI0ðbÞ þ J0ðbÞI1ðbÞ ¼ 0 ð31Þ

in which Jn and In are, respectively, the Bessel and the modified Bessel functions of the first kind
and of order n: The parameter bi is related to the ith non-dimensional linear frequency parameter
ðon

cÞi of the plate by

b2i ¼ ðon

cÞi: ð32Þ

Numerical values of ðon
cÞi may be found in Ref. [40] and the first 10 values are given in Table 1.

Ai is chosen such that Z 1

0

w*
2

i rn drn ¼ 1: ð33Þ

So, there are a set of orthonormal functions, and the mass tensor associated with the transverse
displacement is given by

mn

ij ¼
Z 1

0

wn

i wn

j rn drn ¼ dij ; ð34Þ

where dij is the Kronecker symbol delta.
The first six basic functions wn

i ; i ¼ 1;y; 6; are shown in Fig. 2. The parameters kn
ij and bn

ijkl of
Eqs. (25) were computed numerically by using Simpson’s rule with 160 steps in the range ½0; 1�:
The set of non-linear algebraic Eqs. (21) has been solved numerically by using a routine, based

on a hybrid method combining the steepest descent and Newton’s methods, which does not
require a very good initial estimate of the solution [41]. A step procedure, similar to that described
in Refs. [17,18,22] for beams and rectangular plates, was adopted here for ensuring rapid
convergence when varying the amplitude, which allowed solutions to be obtained with a quite
reasonable number of iterations (an average of 25 and 44 iterations for five and eight non-linear
algebraic equations, respectively). For the r0th (r0 ¼ 1 or 2) non-linear mode shape, the first
calculation was made in the neighbourhood of the linear solution by attributing a small numerical
value a to the coefficient ar0 of the basic function wn

r0
: The resulting solution was used as an initial

estimate for the following step corresponding to a þ Da: Thus, by choosing in each case the
convenient value of the step Da; the r0th non-linear mode shape has been calculated at various
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Table 1

Non-dimensional linear frequencies, ðon
cÞi ¼ b2i ; associated with the axisymmetric modes of a clamped isotropic circular

plate for i ¼ 1–10

i 1 2 3 4 5 6 7 8 9 10

ðon
cÞi 10.2158 39.7710 89.1040 158.1830 247.0050 355.568 483.872 631.914 799.702 987.216
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maximum vibration amplitude to plate thickness ratios extending up to a given value. The limit of
error residuals was imposed to be lower than 10�16 in all cases.

3.2. Convergence study of the spectral expansion

The convergence study of the spectral expansion used in the model is discussed here for the first
and the second non-linear axisymmetric mode shapes. Tables 2(a) and (b) show the variation of
the non-linear frequency ratios and the edge surface bending stresses associated to the first and the
second non-linear axisymmetric mode shapes, respectively, with the number of basic functions
used for a value of the non-dimensional amplitude obtained at the plate centre equal to 1.5. From
these tables, it appears that accurate frequency and bending stress estimates may be achieved
using six and nine basic functions in the spectral expansion for the first and second non-linear
axisymmetric mode shapes, respectively.

3.3. General presentation of numerical results

To obtain, via the model presented above, the first and second non-linear axisymmetric mode
shapes of a clamped circular plate, the first six and nine linear clamped circular plate axisymmetric
eigenfunctions were used, respectively. Numerical results thus obtained are summarized in Tables
3(a) and (b). In Table 3(a), computed values of a2;y; a6; obtained for some assigned values of a1
varying from 0.005 up to 0.75, which correspond to a maximum non-dimensional vibration
amplitude varying from 0.0165 to 2.3903, are given. Also, in Table 3(b), computed values of
a1; a3; a4;y; a9; corresponding to a2 varying from 0.005 up to 0.50, which correspond to
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Fig. 2. Axisymmetric natural modes of vibration for a clamped circular plate wn
i for i ¼ 1;y; 6:
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maximum non-dimensional vibration amplitudes varying from 0.0222 to 2.3862, are given. In
each table, ai represents the contribution of the ith basic function, wn

max is the maximum non-
dimensional amplitude, obtained at the plate centre, and on

nc=o
n
c is the ratio of the non-linear non-

dimensional frequency parameter defined in Eq. (23) to the corresponding linear non-dimensional
frequency parameter given in Table 1. It can be seen from these tables that the non-linear non-
dimensional frequencies calculated here from the non-linear analysis for very small values of a1
and a2; coincide exactly with the corresponding linear ones. Also, near to the linear frequency of a
given mode, only the corresponding basic function has a significant contribution. At large
vibration amplitudes, the higher order mode contributions and resonance frequencies increase
with the amplitude of vibration.

3.4. Comparison of the amplitude–frequency dependence calculated via the present theory with
previous results

In order to estimate the accuracy of the results obtained by the present theory and the effects of
the approximations adopted, a comparison has been made with previous results. Such comparison
was thought to lead to acceptable conclusions, especially with respect to the zero in-plane radial
displacement assumption, since the non-linear resonant frequency depends on the non-linear
strain energy due to the in-plane loads induced by large transverse displacements, and hence the
importance of the terms neglected in the strain energy expression must be reflected in the non-
linear frequency estimates. Also, further comparison concerning the amplitude dependence of the
mode shapes and the associated bending stresses are made in the remainder of this paper. For
clamped circular plates, most of the available published results are concerned with the first
axisymmetric non-linear mode shape, and only one reference was found which deals with the
second axisymmetric non-linear mode shape, which is mentioned below.
For the first axisymmetric non-linear mode shape numerical results, a detailed comparison was

made between all of the results found in the literature and those obtained here [2,3,5,7–9,11,
13–15,42,43]. Table 4(a) summarizes a set of results published during the period 1961–1986. As
these results were based on various analytical assumptions and numerical solution techniques, a
general comparison was made by calculating the average and the standard deviation of the non-
linear frequency estimates obtained by various methods for each amplitude of vibration, as shown

ARTICLE IN PRESS

Table 2

Convergence study of the spectral expansion for the first (a) and second (b) axisymmetric non-linear mode shapes for

wn
max ¼ 1:5; where n is the number of basic functions used, on

nc=o
n
c is the non-dimensional frequency ratio, and s

n
br is the

non-dimensional radial surface bending stress at the edge of the clamped circular plate ðn ¼ 0:3Þ

n 1 2 3 4 5 6 7 8 9 10

(a)

on
nc=o

n
c 1.491 1.359 1.325 1.327 1.325 1.326 1.325 1.325

jsn
brj 5.091 6.150 6.699 6.941 7.030 7.067 7.080 7.086

(b)

on
nc=o

n
c 1.644 1.401 1.394 1.392 1.378 1.375 1.376 1.373 1.374 1.373

sn
br 14.797 12.265 14.290 20.779 18.843 19.002 19.424 19.822 19.991 20.038
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in Table 4(b). Good agreement can be noticed between the various results, and although the
standard deviation increases with displacement amplitude, it remains within a reasonable range.
For amplitudes up to twice the plate thickness, it does not exceed 2.57%. However, the results of
Ref. [15], obtained by a finite element formulation in which a linearization function was used and
in-plane deformation and in-plane inertia were taken into account, exhibits less hardening
behaviour than the other results. In fact, this formulation has been shown to be erroneous in Ref.
[44]. It can be seen also that the present results are very close to the average and to those of Ref.
[2], in which the stress function approach was used and the solution, obtained using a one-term
Galerkin procedure, was expressed in terms of elliptic functions.
For the second non-linear axisymmetric mode shape, the only reference found deals with the non-

linear axisymmetric vibrations of a clamped circular plate with initial deflection and initial edge
displacement [21]. In this reference, the stress function approach was used and the problem was
considered to be well presented by a three-degree-of-freedom system. The solution of the problem was
based on the Galerkin procedure and the harmonic balance method. The numerical results concerning
the effect of the amplitude of vibration on the non-linear frequencies were given by considering the
root mean square value (r.m.s.) of the dynamic response at the centre of the plate. Hence, in order to
compare the present amplitude–frequency dependence corresponding to the second axisymmetric
non-linear mode shape with that obtained in Ref. [21], the r.m.s. value of the maximum non-
dimensional amplitude ðwn

maxÞr:m:s: has been calculated. Fig. 3 shows a good agreement between results
given in Ref. [21] and the results calculated via the present model, with a maximum discrepancy of 3%
for a maximum value of the non-dimensional amplitude of 1.43 corresponding to an r.m.s. value of 1.
The non-dimensional non-linear frequencies of Ref. [21] were read from graphs and correspond to the
second non-linear mode shape backbone curve of a clamped circular plate with no initial deflection
and no initial edge displacement (see Fig. 5 in this reference).

ARTICLE IN PRESS

Fig. 3. Comparison of the non-dimensional frequency ratio of the second non-linear axisymmetric mode shape of a

clamped circular plate. (	) values taken from Ref. [21]; — present work.
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In the light of the above observations, it can be concluded that the assumption of zero in-plane dis-
placement made in the expression of the membrane strain energy can lead to good estimation of the first
two axisymmetric non-linear mode shapes of clamped circular plates for reasonable values of the vibra-
tion amplitudes. This justifies use of this assumption for such intervals of vibration amplitudes, since it
makes the non-linear problem much easier to represent and to solve, and it leads to numerical and ana-
lytical results which may be considered to be of a sufficient accuracy for several engineering applications.

3.5. Amplitude–frequency dependence

The dependence of the non-linear frequency on the non-dimensional vibration amplitude is plotted
in Fig. 4, for both the first and second non-linear axisymmetric mode shapes of a clamped circular
plate and a hardening type of non-linearity is observed. Also, the curves show that the first non-linear
mode shape exhibits less change in frequency with the vibration amplitude than does the second non-
linear axisymmetric mode shape. Such a non-linear effect has been mentioned in Ref. [27] for the first
two non-linear mode shapes of fully clamped rectangular plates, and was explained by the fact that
the deflection shape associated with the first mode shape produces less induced tensile forces than does
that associated with the second mode shape for the same maximum displacement amplitude.

3.6. Amplitude dependence of the first and second non-linear axisymmetric mode shapes of clamped

circular plates

Most of the available results in the study of non-linear vibrations of clamped circular plates
have been concerned with the determination of the so-called backbone curves, especially for the

ARTICLE IN PRESS

Fig. 4. Effects of large vibration amplitudes on the frequencies of the first (1) and second (2) non-linear axisymmetric

mode shapes of a clamped circular plate.
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fundamental non-linear mode shape. The advantage of the model used here is that it also gives
the deformation of the mode shapes due to the geometrical non-linearity. This effect was
illustrated in Ref. [6], in which Von K!arm!an equations and the Kantorovich method were used, by
comparing the normalized linear fundamental mode shape to the non-linear one, for a non-
dimensional amplitude of 2, and a significant difference was found. The normalized non-linear
mode shape obtained in this reference and that obtained here are given in Fig. 5. It can be seen
that both results are in a good agreement near to the clamped edge. However, some discrepancy
is seen in the central part of the plate. The normalized first and second axisymmetric non-
linear mode shapes are plotted in Figs. 6(a) and (b), respectively, for various values of the
maximum non-dimensional amplitudes wn

max: All curves show the amplitude dependence of the
first and second axisymmetric non-linear mode shapes and an increase of curvatures near to the
clamped edge, which may lead one to expect that the bending stress near the edge of the plate will
increase nonlinearly with the increase of the vibration amplitude. This is examined in the next
subsection.

3.7. Analysis of the radial bending stress distribution associated with the first and second non-linear

axisymmetric mode shapes

The non-linear behaviour of non-dimensional surface radial bending stress distribution
associated with the first and second axisymmetric non-linear mode shapes is depicted in Figs. 7
and 8. As mentioned previously, Figs. 7(a) and (b) show that the results obtained here for the
radial bending stress associated with the first and second non-linear mode shapes at the clamped
edge of the plate exhibit a higher increase with the vibration amplitude, compared with that

ARTICLE IN PRESS

Fig. 5. Comparison of normalized fundamental non-linear mode shape of a clamped circular plate at a maximum non-

dimensional vibration amplitude wn
max ¼ 2:0: (1) present solution; (2) solution from Ref. [6].
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predicted by linear theory. The rate of increase in the radial bending stress is about twice the
rate of increase expected in linear theory for the first mode, and about 1.8 for the second mode,
when the maximum non-dimensional amplitude increases from 1.0 to 2.0. For the funda-
mental non-linear mode shape, the results concerning the bending stress at the clamped edge
(Fig. 7(a)) are in good agreement with those given in Ref. [7], obtained by the same method
as in Ref. [6] for the Poisson ratio n ¼ 0:3; with a discrepancy not exceeding 5.8% for a maximum

ARTICLE IN PRESS

Fig. 6. Normalized radial sections of the first (a) and second (b) non-linear axisymmetric mode shapes of a clamped

circular plate at various non-dimensional amplitudes wn
max:

Fig. 7. Effect of large vibration amplitudes on the non-dimensional radial bending stress associated with the first (a)

and second (b) non-linear axisymmetric mode shapes at the edge of the circular plate. Comparison with previous non-

linear studies.
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non-dimensional vibration amplitude of wn
max ¼ 2: The non-dimensional radial bending stress

distributions associated with the first and second axisymmetric non-linear mode shapes are plotted
in Figs. 8(a) and (b), respectively, for various values of the vibration amplitude. All curves show
the amplitude dependence of the stress distribution, and exhibit a higher increase of the bending
stress near to the clamped edge compared with that expected in linear theory. This behaviour is
similar to that mentioned in Refs. [17,18,27] for the first three non-linear mode shapes of a
clamped–clamped beam, and the first two non-linear mode shapes of fully clamped rectangular
plates. In Fig. 9, the radial bending stress distribution associated with the first non-linear mode
shape, obtained here for the Poisson ratio n ¼ 1

3
and a non-dimensional maximum vibration

amplitude wn
max ¼ 1:0; is compared with the solution obtained in Ref. [6], in which the in-plane

displacement is included in the model via the Airy stress function. It can be seen that the two
curves are very close to each other. This is another check of the validity of the approximation of
zero in-plane radial displacement made in the expression of the membrane strain energy used in
the present model for vibration amplitudes of the order of at least once the plate thickness.

4. Explicit analytical solution and discussion

4.1. Approximate theory

The purpose of this section is to replace the iterative method of solution of the set of non-linear
algebraic equations (21), necessary to obtain the clamped circular plate non-linear axisymmetric

ARTICLE IN PRESS

Fig. 8. Non-dimensional radial bending stress distribution associated with the clamped circular plate first (a) and

second (b) non-linear axisymmetric mode shapes for various non-dimensional amplitudes wn
max:
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mode shapes and non-linear resonance frequencies at large vibration amplitudes, by an explicit
approximate solution, which may be appropriate for engineering purposes, or for further
analytical investigations. This explicit solution is obtained by applying and adapting the so-called
first formulation developed for many beam and plate cases in Refs. [33–35]. A comparison is then
made between the two solutions, i.e., iterative and analytical, in order to determine exactly the
range of validity of the new approach. The main idea behind this approach is illustrated in Tables
3(a) and (b), in which data obtained via the numerical solution of the non-linear algebraic system
(21) are presented for the first two non-linear axisymmetric mode shapes of the clamped circular
plate. It can be seen from these tables that the contribution coefficient ar0 (r0 ¼ 1 or 2) of the basic
function corresponding to the r0th mode shape remains predominant for the whole range of
vibration amplitudes considered. So, the others basic function contribution coefficients (ai; iar0)
may be regarded as small compared to ar0 ; and denoted in what follows as ei: For the first non-
linear mode shape, the new approach is based on an approximation which consists of neglecting in
the expression for aiajakbn

ijkr; appearing in Eq. (21), both first and second order terms with respect
to ei; i.e., terms of the type a21ekbn

11kr or of the type a1ejekbn
1jkr; so that the only remaining term is

a31b
n
111r: This approximation is acceptable because the computed values of the non-linearity

parameters bn
ijkl defined in Eq. (25) are of the same magnitude. Thus, Eq. (21) becomes

ðkn

ir � o*2mn

irÞei þ 3
2

a31b
n

111r ¼ 0; r ¼ 2;y; 6 ð35Þ

in which the repeated index i is summed over the range [1,6]. Since the use of linear clamped
circular plate mode shapes as basic functions leads to diagonal mass and rigidity matrices, the
above system permits one to obtain explicitly the unknown basic function contributions e2;y; e6
corresponding to a given value of the assigned first basic function contribution a1 as follows:

er ¼ �
3a31b

n
111r

2ðkn
rr � o*2mn

rrÞ
; r ¼ 2;y; 6: ð36Þ

ARTICLE IN PRESS

Fig. 9. Comparison of the non-dimensional radial bending stress distribution associated with the clamped circular plate

first non-linear mode shape, for a non-dimensional vibration amplitude wn
max ¼ 1:0: (1) present solution; (2) solution

from Ref. [6].
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The er’s, ra1; depend on the known parameters mn
rr; kn

rr; bn
111r; the assigned value a1; and the non-

linear frequency parameter on: To express simply on with an acceptable accuracy, is made of the
single-function formula, obtained from Eq. (23) in which all of the ai’s, except a1; are taken equal
to zero:

o*2 ¼
kn
11

mn
11

þ
bn
1111

mn
11

a21: ð37Þ

In Fig. 10, the non-linear frequency estimates, calculated using the single-function formula (37)
and the complete formula (23), are plotted against the maximum non-dimensional amplitude
wn

max: It can be seen from this figure that the single-mode approach gives a good estimate of the
non-linear frequency parameter o*2 for maximum plate displacement amplitudes up to once the
plate thickness, with a percentage error below 1.2% compared with the exact one given by
Eq. (23). Eq. (36) then becomes

er ¼
3a31b

n
111r

2ððkn
11 þ a21b

n
1111Þm

n
rr=mn

11 � kn
rrÞ
; r ¼ 2;y; 6: ð38Þ

In the case considered here, the mass matrix is identical to the identity matrix, and Eq. (36) may
be simplified to

er ¼
3a31b

n
111r

2ðkn
11 þ a21b

n
1111 � kn

rrÞ
; r ¼ 2;y; 6: ð39Þ

Expression (39) is an explicit simple formula, allowing direct calculation of the higher mode
contributions to the first non-linear clamped circular plate mode shape, as functions of the
assigned first mode contribution a1 and the known parameters kn

rr and bn
111r (given in Table 5),

ARTICLE IN PRESS

Fig. 10. Comparison of frequencies for the first non-linear clamped circular plate mode shape obtained by (1) non-

linear algebraic equations; (2) explicit analytical solution.
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which defines the first non-linear amplitude-dependent clamped circular plate mode shape
wn

nl 1ðr
n; a1Þ; for a given assigned value a1; as a series involving the clamped circular plate modal

parameters, depending on the first six axisymmetric clamped circular plate functions wn
1; wn

2;y;wn
6:

wn

nl 1ðr
n; a1Þ ¼ a1w

n

1ðr
nÞ þ

3a31b
n
1112

2ðkn
11 þ a21b

n
1111 � kn

22Þ
wn

2ðr
nÞ

þ ?þ
3a31b

n
1116

2ðkn
11 þ a21b

n
1111 � kn

66Þ
wn

6ðr
nÞ ð40Þ

in which the predominant term, proportional to the first linear mode shape, is a1w
n
1ðr

nÞ; and the
other terms, proportional to the higher linear mode shapes wn

2ðr
nÞ;y;wn

6ðr
nÞ; are the corrections due

to the non-linearity.
Similarly, the second non-linear amplitude-dependent clamped circular plate axisymmetric

mode shape wn
nl 2ðr

n; a2Þ; for an assigned value a2 of the second function contribution, is given as a
series involving the clamped circular plate modal parameters depending on the first nine
axisymmetric clamped circular plate functions by

wn

nl 2ðr
n; a2Þ ¼

3a32b
n
2221

2ðkn
22 þ a22b

n
2222 � kn

11Þ
wn

1ðr
nÞ þ a2w

n

2ðr
nÞ

þ
3a32b

n
2223

2ðkn
22 þ a22b

n
2222 � kn

33Þ
wn

3ðr
nÞ

þ ?þ
3a32b

n
2229

2ðkn
22 þ a22b

n
2222 � kn

99Þ
wn

9ðr
nÞ: ð41Þ

4.2. Presentation and discussion of the numerical results obtained by the explicit solution

corresponding to the first two axisymmetric non-linear mode shapes of the clamped circular plate

Replacing in Eq. (40), the clamped circular plate modal parameters by their numerical values
corresponding to the first non-linear mode shape of the clamped circular plate given in Table 5,

ARTICLE IN PRESS

Table 5

Numerical values of the clamped circular plate modal parameters used in Eqs. (40) and (41) for the first and second

non-linear axisymmetric mode shapes, respectively

i kii b111i b222i

1 104.36203354 413.43678551 3528.40519155

2 1581.72063613 314.99966725 15654.37275753

3 7939.49692150 �552.56304252 12009.50441352

4 25021.47533853 51.00034570 �1446.93403556
5 61010.75063949 �15.34284414 �9720.90257942
6 126427.64357913 5.97779208 �10173.83002533
7 234131.84218791 — 1603.51509425

8 399314.10116068 — �695.04380343
9 639530.94960823 — 360.96734928
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leads to the following explicit expression:

wn

nl 1ðr
n; a1Þ ¼ a1w

n

1ðr
nÞ þ

945:0a31
ð208:72þ 826:87a21 � 3163:44Þ

wn

2ðr
nÞ

�
1659:69a31

ð208:72þ 826:87a21 � 15878:99Þ
wn

3ðr
nÞ

þ
153a31

ð208:72þ 826:87a21 � 50042:95Þ
wn

4ðr
nÞ

�
46:03a31

ð208:72þ 826:87a21 � 122021:50Þ
wn

5ðr
nÞ

þ
17:93a31

ð208:72þ 826:87a21 � 252855:29Þ
wn

6ðr
nÞ: ð42Þ

In Table 6(a), numerical results for modal contributions to the first non-linear mode shape of a
clamped circular plate, calculated here via the explicit expression (42), are summarized. The
results given correspond to the values of e2;y; e6 obtained for some assigned values of a1 varying
from 0.005 to 0.20, which correspond to maximum non-dimensional vibration amplitudes at the
plate centre varying from 0.0165 to 0.6545. For each solution, the corresponding values of on

nc=o
n
c

and wn
max are also given. Comparison between Tables 6(a) and 3(a) shows that the higher mode

contributions to the first non-linear clamped circular plate mode shape obtained from the explicit
expressions (42) are very close to those calculated via iterative solution of the set of non-linear
algebraic equations (21), corresponding to the first mode shape, i.e., r0 ¼ 1; for finite amplitudes
of vibration up to 0.5 times the plate thickness, which corresponds to a1E0:15: For higher values
of the vibration amplitude, slight differences start to appear and increase with the amplitude of
vibration. This may be seen in Figs. 11–15, in which the higher mode contributions obtained by
the explicit approximate solution are plotted against the maximum non-dimensional vibration
amplitude and compared with the iterative solution. To have an accurate conclusion concerning
the limit of validity of the explicit approximate solution in engineering applications, a criterion
was adopted, based on the effect of the differences appearing in the estimated basic function
contributions to physical quantities, such as the non-linear frequency and the maximum bending
stress obtained at the clamped edge of the circular plate. It was found, as may be seen in Figs. 10
and 16, that for vibration amplitudes up to the plate thickness, the error induced by the
approximate explicit solution does not exceed 1.2% for the non-linear frequency, and 4.5% for
the maximum associated non-linear bending stress at the clamped edge.
Replacing now in Eq. (41), the clamped circular plate modal parameters by their numerical

values (given in Table 5) corresponding to the second non-linear axisymmetric mode shape of the
clamped circular plate, leads to the following explicit expression:

wn

nl 2ðr
n; a2Þ ¼

10585:22a32
ð3163:44þ 31308:75a22 � 208:72Þ

wn

1ðr
nÞ þ a2w

n

2ðr
nÞ

þ
36028:51a32

ð3163:44þ 31308:75a22 � 15878:99Þ
wn

3ðr
nÞ
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�
4340:80a32

ð3163:44þ 31308:75a22 � 50042:95Þ
wn

4ðr
nÞ

�
29162:71a32

ð3163:44þ 31308:75a22 � 122021:50Þ
wn

5ðr
nÞ

�
30521:49a32

ð3163:44þ 31308:75a22 � 252855:29Þ
wn

6ðr
nÞ

þ
4810:55 a32

ð3163:44þ 31308:75 a22 � 468263:68Þ
wn

7ðr
nÞ

�
2085:13a32

ð3163:44þ 31308:75a22 � 798628:20Þ
wn

8ðr
nÞ

þ
1082:90a32

ð3163:44þ 31308:75a22 � 1279061:90Þ
wn

9ðr
nÞ: ð43Þ

In Table 6(b), numerical results for modal contributions to the second axisymmetric non-linear
mode shape of a clamped circular plate, calculated here via the explicit expression (43), are
summarized. The results given correspond to the values of e1; e3; e4;y; e9 obtained for some
assigned values of a2 varying from 0.005 to 0.15, which correspond to maximum non-dimensional
vibration amplitudes at the plate centre varying from 0.0222 to 0.6525. For each solution, the
corresponding values of on

nc=o
n
c and wn

max are also given. Comparison between Tables 6(b) and
3(b) shows that the higher mode contributions to the second axisymmetric non-linear clamped
circular plate mode shape obtained from the explicit expressions (43) are very close to those
calculated via solution of the set of non-linear algebraic equations (21), corresponding to the
second axisymmetric non-linear mode shape, i.e., r0 ¼ 2; for finite amplitudes of vibration up to
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Fig. 11. Comparison between the values of the modal contribution e2 of the first non-linear mode shape of a clamped
circular plate. Key as for Fig. 10.
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0.44 times the plate thickness, which corresponds to a2E0:10: For higher values of the vibration
amplitude, slight differences start to appear and increase with the amplitude of vibration.

5. Conclusions

The non-linear axisymmetric free vibration of a clamped thin isotropic circular plate has been
examined by a theoretical model developed in Ref. [22] for non-linear free vibrations of thin

ARTICLE IN PRESS

Fig. 12. Comparison between the values of the modal contribution e3 of the first non-linear mode shape of a clamped
circular plate. Key as for Fig. 10.

Fig. 13. Comparison between the values of the modal contribution e4 of the first non-linear mode shape of a clamped
circular plate. Key as for Fig. 10.
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elastic structures occurring at large displacement amplitudes, in order to determine the effects of
large vibration amplitudes on the first and second axisymmetric mode shapes and their
corresponding natural frequencies and bending stress distributions. Similar to the case of beams
and rectangular plates [17,18,27], the theory reduces the non-linear free vibration problem to
solution of a set of non-linear algebraic equations depending on the classical rigidity and mass
tensors, and a non-linear term in which a fourth order tensor appears due to the geometrical non-
linearity. The amplitude dependent first and second axisymmetric non-linear mode shapes were,

ARTICLE IN PRESS

Fig. 14. Comparison between the values of the modal contribution e5 of the first non-linear mode shape of a clamped
circular plate. Key as for Fig. 10.

Fig. 15. Comparison between the values of the modal contribution e6 of the first non-linear mode shape of a clamped
circular plate. Key as for Fig. 10.
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respectively, expressed as a series of six and nine clamped circular plate functions (linear mode
shapes of free vibration expressed in terms of Bessel’s functions).
Considering the results obtained, numerical data corresponding to various vibration amplitudes

for the first and second axisymmetric non-linear mode shapes are given. The backbone curves
obtained show a hardening type non-linearity (i.e., the frequency increases with increasing
vibration amplitude). However, the first non-linear mode shape exhibits less change in frequency
than does the second axisymmetric non-linear mode shape. Results obtained here for the
amplitude–frequency dependence for the first non-linear mode shape are in good agreement with
previous available results, in spite of the assumption of zero in-plane displacement adopted here.
It was also shown that the geometrical non-linearity induces a deformation of the first two
axisymmetric mode shapes and consequently, the rate of increase in the induced bending stresses
at the clamped edge for the first and second mode shapes are 100% and 80%; respectively, higher
than that predicted in the linear theory when the maximum non-dimensional vibration amplitude
increases from 1 to 2. Also, the results obtained here for the radial bending stress associated with
the first non-linear mode at the edge of the plate are in good agreement with those obtained in
Ref. [7], in which the dynamic analogues of Von K!arm!an equations were used and solutions were
obtained, based on the Kantorovich averaging method. However, the in-plane displacement must
be taken into account in further investigations for a complete study of the geometrically non-
linear free vibrations of clamped circular plates in order to permit accurate determination of both
the bending and the membrane stress distributions. This work is actually in progress and will be
presented in Part II of this series of papers.
In order to obtain explicit analytical solutions for the first two non-linear axisymmetric mode

shapes of clamped circular plates, which are expected to be very useful in engineering applications
and in further analytical developments, the improved version of the semi-analytical model
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Fig. 16. Comparison between values of the radial bending stress at rn ¼ 1 for the first non-linear clamped circular plate
mode shape. Key as for Fig. 10.
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developed in Refs. [33–35] for beams and rectangular plates, has been adapted here to the case of
clamped circular plates, leading to explicit expressions for the higher basic function contributions,
which are shown to be in a good agreement with the iterative solutions, for maximum non-
dimensional vibration amplitudes of 0.5 and 0.44 for the first and second axisymmetric non-linear
mode shapes, respectively.
It appears from the present work that the non-linear model developed in Ref. [22], and its

improved version presented in Refs. [33–35], allow the fundamental and higher order non-linear
axisymmetric clamped circular plate mode shapes to be estimated quite easily. It has been shown
also both qualitatively and quantitatively how it can be inaccurate to assume linear mode shapes
when expressing the non-linear response of plate structures. Further investigations are needed to
examine the non-linear forced response of clamped circular plates, and the effect of the in-plane
displacement at very high vibration amplitudes.

Appendix A. Nomenclature

r; y; z cylindrical co-ordinates
U ; W in-plane and out-of-plane displacements of the middle plane point ðr; y; 0Þ;

respectively
ur; uy; uz displacements along r; y and z directions, respectively
er; ey radial and circumferential strains
Vb; Vm; V bending, membrane and total strain energy, respectively
E Young’s modulus
n the Poisson ratio of the plate material
r mass per unit volume of the plate material
a; h radius and thickness of the circular plate, respectively
D bending stiffness of the plate, ¼ Eh3=12ð1� n2Þ
e1; e2 midplane first and second strain invariants, respectively
T kinetic energy of the plate
wðrÞ transverse spatial function, W ðr; tÞ ¼ wðrÞ sinðotÞ
ai contribution coefficient of the ith basic function: wðrÞ ¼ aiwiðrÞ
kij ; mij ; bijkl general terms of the rigidity tensor, the mass tensor and the non-linearity tensor,

respectively
o frequency parameter
ebr; eby radial and circumferential surface bending strains
sbr; sby radial and circumferential surface bending stresses
bi the ith eigenvalue parameter for a clamped axisymmetric circular plate
ðon

cÞi the ith non-dimensional linear natural frequency of axisymmetric vibrations of
clamped circular plates: ðon

cÞi ¼ b2i
wn

i ðr
nÞ the ith linear axisymmetric mode shape of a clamped circular plate

wn
max maximum non-dimensional vibration amplitude

ðwn
maxÞr:m:s: r.m.s. value of the maximum non-dimensional vibration amplitude

ei contribution coefficient of the ith basic function, ei ¼ ai; for iar0; where r0 is the
order of the non-linear mode shape considered
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wn
nliðr

n; aiÞ the ith clamped circular plate non-linear mode shape for a given assigned value ai

of the ith function contribution star exponent indicates non-dimensional
parameters
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