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1. Fundamentals in dynamics of the Jeffcott rotor [1]

The linear differential equation of motion of the Jeffcott rotor in the stationary (inertial) co-
ordinates is simply given as

.z þ 2gon ’z þ o2
nz ¼ eo2 expðjotÞ; ð1Þ

where zðtÞ is the complex position vector representing the co-ordinate of the geometrical rotor
center, e is the mass eccentricity, o is the rotational speed, and on and g correspond to the natural
frequency and damping ratio. The characteristic equation is obtained as the second order
polynomial equation

pðlÞ ¼ l2 þ 2gonlþ o2
n ¼ 0 ð2Þ

having the characteristic roots

lF ¼ �gon þ jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
; lB ¼ �gon � jon

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2:

p
ð3Þ

Here, ImðlF Þ > 0; ImðlBÞo0 are referred to as the forward and backward modal frequencies
defined in the stationary co-ordinates, respectively.

The solution of Eq. (1) reduces to

zðtÞ ¼
eo2

ðo2
n � o2Þ þ j2gono

expðjotÞ þ C1 expð�gontÞ expðjon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
Þ

þ C2 expð�gontÞ expð�jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
Þ; ð4Þ

where C1; C2 are the constants to be determined from initial conditions. Note that the decay rate
gon and the apparent damping ratio, which may be defined as gapD ReðlÞ=ImðlÞ

�� �� ¼ g for small g;
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are the same for the forward and backward modes. Thus, to observers sitting in the stationary co-
ordinate frame, the transient response of the Jeffcott rotor subject to unbalance will consist of the
synchronous sustained unbalance response and the decaying (at a rate of gon) transient response
associated with the natural modes of frequency 7on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
and damping ratio g: The equation

of motion (1) defined in the stationary co-ordinates can be expressed in the rotating co-ordinates
as

.Bþ 2ðjoþ gonÞ’Bþ ðo2
n � o2 þ j2gonoÞB ¼ eo2 ð5Þ

since it holds

z ¼ B expðjotÞ; ð6Þ

where BðtÞ is the complex position vector representing the co-ordinate of the geometrical rotor
center defined in the rotating co-ordinates. Note that the co-ordinate transformation (6) yields a
differential equation of motion (5), which is still linear. The characteristic equation becomes then

pðmÞ ¼ m2 þ 2ðjoþ gonÞmþ ðo2
n � o2 þ j2gonoÞ ¼ 0 ð7Þ

resulting in the characteristic roots given by

mF ¼ �gon þ jðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
� oÞ; mB ¼ �gon þ jð�on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
� oÞ: ð8Þ

Here, ImðmF Þ; ImðmBÞ are referred to as the forward and backward modal frequencies defined in
the rotating co-ordinates, respectively. It is straightforward to obtain the relation

lk ¼ mk þ jo; k ¼ F ;B: ð9Þ

The solution of Eq. (5) is obtained to be

B ¼
eo2

ðo2
n � o2Þ þ j2gono

þ C1 expð�gontÞ expfjðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
� oÞg

þ C2 expð�gontÞ expfjð�on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
� oÞg: ð10Þ

Note that whereas the decay rate gon still remains the same for the forward and backward modes,
the apparent damping ratios defined by gapD ReðmÞ=ImðmÞ

�� �� ¼ g for small g will be different unlike
the modes defined in the stationary co-ordinates, i.e.,

gF
ap ¼ g

on

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
� o

���
���

2
64

3
75XgB

ap ¼ g
on

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
þ o

���
���

2
64

3
75: ð11Þ

In other words, the apparent damping ratio of the backward mode is always less, irrespective of
the rotational speed o; than that of the forward mode, if defined in the rotating co-ordinates. To
observers rotating together with the rotating (rotor-body fixed) co-ordinates, the transient
response of the Jeffcott rotor subject to unbalance will consist of the static unbalance response
and the two different decaying transient responses associated with the forward and backward
modes. Although both modes have the same decay rate gon like in the stationary co-ordinates, the
apparent damping ratios are different as mentioned above. The forward and backward damped
natural frequencies, on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
� o; � on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
� o; that strongly depend upon the rotational

speed o and are directly observed in transient responses, may normally be ‘asynchronous’, as
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phrased in Ref. [2]. However, the precise definition of ‘synchronous’ or asynchronous response
should be made based on the response defined in the stationary co-ordinates.

2. False claims made in Ref. [2]

Diken [2] used the non-linear dynamic equations of the Jeffcott rotor derived in Ref. [3], which
can be converted back to the classical time-invariant linear differential equation (1) by using the
co-ordinate transformation of zðtÞ ¼ rðtÞejyðtÞ: Note that the unusual non-linear co-ordinate
transformation, from the stationary Cartesian co-ordinates to the polar co-ordinates defined with
respect to the rotating body-fixed frame, leads to parametrically excited non-linear differential
equations in which the solution technique becomes, if not impossible, unnecessarily complicated.
Then he used an inappropriate perturbation technique to derive approximate linearized equations
from the non-linear equations, in order to understand the transient behavior of the Jeffcott rotor.
He claimed that the two observed (in the rotating co-ordinates) asynchronous frequency
components, ðoþ onÞ and ðo� onÞ; from the transient response are due to the non-linearity of
the system itself and the supersynchronous component becomes unstable when o=onX2: And the
damping ratios associated with the two asynchronous frequency components are different, again
due to the system non-linearity.

It turns out that the first order perturbation is not accurate enough to properly predict the
dynamic behavior of the rotor system (the first order approximation results do not match well
with the numerical integrations), on the contrary to the author’s claim, as clearly seen in Figs. 2–5
of Ref. [2]. In particular, the first order approximated characteristic Eq. (10) in Ref. [2] is far off
from the correct Eq. (7).1 For example, the real parts of the characteristic roots shown in Table 1
of Ref. [2] are far apart from the correct value �0:01ð¼ �gonÞ: Thus, any critical observations
made based on the inaccurate characteristic equation are erroneous, including discussions with
the instability. The system of interest is inherently stable, regardless of the co-ordinate
transformation. For comparison with Table 1 of Ref. [2], a part of the correct results are
summarized in Table 1. It clearly manifests that the asynchronous responses shown in Figs. 2–5 of
Ref. [2] are not due to non-linearity of the system, but to the natural modes and the system is
inherently stable and linear. The original damping ratios associated with the forward and
backward modes defined in the stationary co-ordinates are the same, but they become different
when they are defined in the rotating co-ordinates as shown in Eq. (11). It is due to the co-ordinate
transformation, shifting the natural frequencies by on; or the imaginary part of the characteristic
roots, as in Eq. (9). However, the real part of the characteristic roots remains unchanged and thus
the relative stability is independent of the co-ordinate transformation.

3. Recommendations

The approach and the analysis results taken in Ref. [2] are neither appropriate nor correct. The
sub-harmonic components in the transient response of the Jeffcott rotor system are due to the
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natural modes of the system. If the presence of sub-harmonics, other than the natural vibrations,
in the rotor response is an inherent nature, its existence should be proven rigorously, irrespective
of the choice of co-ordinate system.

Choice of co-ordinate system is very important in rotordynamic analysis. However, co-ordinate
transformation does not alter the physics of the rotor system of interest. And we should also be
aware of the pitfalls in the process of co-ordinate transform, from the stationary to the rotating
co-ordinates and vice versa. All observations in Ref. [2] are based on the rotating co-ordinates,
while, in practice, the response measurements and the interpretations are taken with respect to the
stationary co-ordinates. Serious problems may arise when one tries to convert the information
taken with respect to the rotating co-ordinates to that with respect to the stationary co-ordinates
[1,4]. Co-ordinate transformation is merely a mathematical convenience, never creating any
unseen physical phenomena.

It is not an efficient, if not incorrect, approach to convert the originally time-invariant linear
system, where a complete analytical solution is readily available, to a complicated parametrically
excited non-linear system, which is then linearized to obtain an approximate solution.
Approximation techniques such as the perturbation method may lead to false results, particularly
when the order of approximation is not high enough.
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Table 1

Roots of the characteristic Eq. (8): g ¼ 0:01; o ¼ 1

p ¼ on=o mF ¼ �gon þ jðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
� oÞ gF

ap; g
B
ap Remark

mB ¼ �gon þ jð�on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
� oÞ

1.4 mF ¼ �0:01 þ 0:4j gF
ap ¼ 0:0250 Figs. 2 and 3 of Ref. [2]

mB ¼ �0:01 � 2:4j gB
ap ¼ 0:0042

0.8 mF ¼ �0:01 � 0:2j gF
ap ¼ 0:0500 Figs. 4 and 5 and Table 1 of Ref. [2]

mB ¼ �0:01 � 1:8j gB
ap ¼ 0:0056
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