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Abstract

This paper discusses the use of modal filters in structural control. Discrete piezoelectric array sensors are
first discussed and their lack of roll-off due to spatial aliasing is pointed out. In the second part, a new
porous distributed electrode concept is introduced, which allows the effective piezoelectric coefficient to be
tailored in two dimensions.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

There are two broad ways to achieve spatial filtering: (i) arrays of discrete sensors and (ii)
continuous distributed sensors. Discrete sensor arrays may include accelerometers, strain gauges,
piezoelectric patches, etc., while continuous distributed sensors may consist of piezoelectric films
or optical fibres (the latter will not be considered in this study). The output of a piezoelectric
sensor is a weighted average of the surface strains in the region covered by the electrodes on the
film.

Modal filtering was initially proposed as an alternative to state observers to reduce spillover in
modal control [1]. Discrete modal filters can be constructed from the orthogonality conditions of
the mode shapes; they can also be constructed from modal test data [2–4]. Discrete piezoelectric
array sensors have been considered as modal sensors for beams [5] or as volume velocity sensor
for plates [6]. Discrete array sensors, if wired with independent conditioning electronics, are
reconfigurable, but they suffer from spatial aliasing when sensing structural modes with
wavelengths comparable to the spacing between sensors in the array. Although successful
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applications of modal control with discrete modal point sensors and actuators have indeed been
reported (e.g. Refs. [3,4]), spatial aliasing usually brings major limitations for applications in
structural control, as illustrated later in this paper (a good rule of thumb regarding sensor
selection is that the quality of the sensor must in general be guaranteed one decade above the
bandwidth of the control system).

When a distributed sensor is located in the far field, that is, far from the actuator and from
the structural boundaries and singularities, the sensor output can be viewed as the filtered output
of a point sensor at the centre of the distributed sensor [7]; the sensor’s dynamics are obtained
directly from the Fourier transform of the spatial distribution of the sensor. This allows the
design of distributed sensors with specified low-pass filtering properties featuring high order
roll-off without phase lag (with an apparent violation of the Bode’s gain-phase relationships).
However, in structural control, it is often advantageous to locate the actuator and sensor as
close as possible to each other, to produce an interlacing pattern of poles and zeros (such a pattern
is strictly achieved for collocated actuator/sensor pairs, but it can still be achieved in low
frequency if the actuator and sensor are reasonably close, e.g. Ref. [8]). Unfortunately, in this
case, the farfield condition is violated and the interpretation of the spatial sensor becomes more
difficult.

The modal filtering of one-dimensional structures with continuous PVDF films can be traced to
Refs. [9–11]. It is achieved by tailoring the width of the electrode (and possibly reversing the
polarity). Although the spatial filtering of plates and shells with two-dimensional PVDF films has
been suggested [11], it has never been implemented for lack of capability of continuously shaping
the piezoelectric properties of the sensor material. One method of turning round this difficulty by
a proper electrode design is discussed in this paper.

The use of orthogonal unidirectional PVDF films for spatial filtering of two-dimensional
structures has been investigated in Refs. [12–14]; applications of multiple one-dimensional PVDF
films to sound radiation sensing has been proposed in Refs. [15,16]. Multiple piezoelectric film
sensors have been considered by Kim et al. and Miller et al. [17,18].

This review is by no means exhaustive, and we apologize for many omissions, but it gives an
impression of the amount of research effort devoted to this field by the smart structures
community. The objective of this paper is to explain the difficulties related to the spatial aliasing
that were met in attempting to use discrete piezoelectric array sensors in feedback control loops,
and to describe the original electrode design that the authors have developed to solve these
problems. The paper is organized as follows. The first part examines the construction of modal
filters from an array of discrete piezoelectric patches connected to a linear combiner; the linear
combiner coefficients are calculated from a model of the structure, or from experimental FRFs.
The tailoring of the open-loop FRF in a frequency band through proper selection of the linear
combiner coefficients is also addressed. Next, an experiment is conducted; it confirms the good
tailoring at low frequency, but reveals strong departures from the ideal behaviour at higher
frequencies, due to spatial aliasing. The spatial aliasing is further analyzed numerically on the test
configuration with arrays of increasing sizes. The second part of the paper examines the
corresponding distributed sensor as a limit discrete array sensor when the number of sensing
elements increases to infinity. A new electrode concept is then introduced, which allows the
effective piezoelectric coefficients to be tailored in two dimensions; the electrode design is
validated by 3-D finite element calculations and tests.
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2. Modal filtering with an array sensor

2.1. From a known model of the structure

It is first assumed that there is an accurate linear model of a known structure. The modal
expansion of the FRF of the sensor array reads

YkðoÞ ¼
Xm

i¼1

ckibi

miðo2
i � o2 þ 2jxioioÞ

; k ¼ 1;y; n; ð1Þ

where bi is the modal input gain (at the actuator) and cki is the modal output gain of sensor k in
the array.

If the n sensors in the array are connected to a linear combiner with gain ak for sensor
k (Fig. 1), the output of the linear combiner is y ¼

Pn
k¼1 akyk and the global frequency res-

ponse is

GðoÞ ¼
Xn

k¼1

akYkðoÞ ¼
Xm

i¼1

f
Pn

k¼1 akckigbi

miðo2
i � o2 þ 2jxioioÞ

: ð2Þ

A modal filter which isolates mode l can be constructed by selecting the weighting coefficients
ak of the linear combiner in such a way that

Xn

k¼1

akckiðoÞ ¼ dli ð3Þ

or

aTC ¼ eT
l ð4Þ

where a ¼ ða1yanÞ
T is the vector of the linear combiner coefficients, C ¼ cki is the matrix of

modal output gain (column i is the sensor array output when the structure vibrates according to
mode i ) and el ¼ ð0 0y1y0ÞT is the vector with all entries equal to 0 except entry l which is
equal to 1. Assuming that matrix C is known accurately, the modal filter coefficients al for mode l

can be found by solving the rectangular system of equations

CTal ¼ el : ð5Þ

ARTICLE IN PRESS

�2

�1

�n

+

++

. .
.

y1

y

yn

y2structure

f

sensor

sensor   ar ray
linear   combiner

Fig. 1. Representation of the modal filter using n discrete sensors.
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The number of columns of CT; n; is equal to the number of sensors in the array and the number of
lines, m; is equal to the number of modes included in the truncated modal expansion (1). The
solution of Eq. (5) is discussed next section.

If the set of weighting coefficients al satisfy Eq. (4), the open-loop FRF of the system, Eq. (2),
becomes

GðoÞ ¼
bl

mlðo2
l � o2 þ 2jxloloÞ

: ð6Þ

Its maximum value is obtained at o ¼ ol; it is equal to [19]

jjGðoÞjj
N

¼
bl

2mlxlo2
l

: ð7Þ

2.2. Modal filter coefficients al

The solution of Eq. (5) requires some care because of the rank deficiency of C connected to the
spatial aliasing. In fact, if the column of C (that is the modal contributions of the array sensor) are
independent, the rank r of C follows the continuous line in Fig. 2: r ¼ m as long as mpn and r ¼ n
thereafter. This is the case, for example, for a simply supported beam with a regular array sensor,
or for a simply supported square plate with a square array sensor. However, it is easy to check
that for a rectangular plate with a uniform array sensor, the columns of C are not independent,
resulting in a rank deficiency as indicated in dotted line in Fig. 2. (The spatial aliasing is illustrated
in Fig. 9 which shows two columns of C; corresponding, respectively, to mode (1,1) (mode # 1)
and mode (1,15) (mode # 69).) Similarly, mode (1,9) (# 24) will be aliased into mode (1,7) (# 14).
Spatial aliasing will be discussed further later in this paper.

The difficulty associated with the rank deficiency of C can be overcome by using a singular
value decomposition of CT [20].

CT ¼ U1RU
H
2 ; ð8Þ

where U1 and U2 are unitary matrices containing the eigenvectors of CTC and CCT; respectively,
and R is the rectangular matrix of dimension ðm; nÞ with the singular values si on the diagonal (the
superscript H is used to indicate the Hermitian). If ui are the column vectors of U1 and vi the
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column vectors of U2; Eq. (8) can be written

CT ¼
Xr

i¼1

siuiv
H
i ð9Þ

and the solution of Eq. (5) reads

al ¼ ðCTÞþel ; ð10Þ

where the pseudo-inverse reads

ðCTÞþ ¼
Xr

i¼1

1

si

viu
H
i : ð11Þ

This equation shows that the lowest singular values tend to dominate the pseudo-inverse, which is
the origin of the problem in solving Eq. (5). In practice, however, the columns of C are not strictly
proportional and its exact rank is not always easy to determine. The problem can be solved by
truncating all the singular values below some tolerance value. In general, the solution is easier to
achieve when the modal truncation is such that mon:

2.3. Tailoring the open-loop FRF with the array sensor

Let al be the set of the linear combiner weighting coefficients leading to modal filters. If the
modes are well separated and if the damping is low, it is possible to find a set of weighting
coefficients of the array sensor such that the open-loop FRF features the following properties:

1. The poles and zeros alternate near the imaginary axis (interlacing).
2. The peaks of the FRF at the resonances have a prescribed amplitudes Ai (Fig. 3).

ARTICLE IN PRESS

-180°

0

P
ha

se
(d

eg
)

|G |

dB

�i

Ai

�

Fig. 3. Construction of a FRF with resonance peaks of prescribed amplitudes Ai and alternating poles and zeros.
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The weighting coefficients can be obtained as follows: if the damping is low and the modes are
well separated, the magnitude at a resonance peak is dominated by the contribution of the
corresponding mode. Eq. (7) gives the maximum amplitude achieved with the linear combiner
coefficients al : It follows that if the coefficients are taken as wlal with

wl ¼
2mlxlo2

l

bl

Al ð12Þ

the maximum amplitude of the response will be exactly Al ðAl > 0Þ: Since, for low damping and
well separated modes, the amplitude at resonance is dominated by the contribution of the
resonant mode, it follows that the set of weighting coefficients:

a ¼
XM

l¼1

wlal ð13Þ

will lead to an open-loop FRF with a set of fixed amplitudes Al at the resonances of the M
selected modes [19]. Besides, if Eqs. (12) and (13) are substituted into Eq. (2), the FRF reads

GðoÞ ¼
XM

i¼1

2xio2
i Ai

ðo2
i � o2 þ 2jxioioÞ

: ð14Þ

Since all the residues are positive, alternating poles and zeros are guaranteed [21].

2.4. From experimental data

The following problem is now addressed. The individual FRF YkðoÞ of the n sensors in the
array have been measured and the natural frequency oi and the modal damping xi of one mode
have been determined (with a modal analysis software). What are the weighting coefficients ak of
the linear combiner leading to a modal filter within some bandwidth ½oa;ob
 and with unit
amplitude at resonance (Fig. 4)

GiðoÞ ¼
2xio2

i

ðo2
i � o2 þ 2jxioioÞ

: ð15Þ

ARTICLE IN PRESS

�a �i �b

0 dB

Fig. 4. Perfect modal filter within the bandwidth ½oa;ob
 and with unit amplitude at oi:

A. Preumont et al. / Journal of Sound and Vibration 265 (2003) 61–7966



The output FRF of the linear combiner reads

GðoÞ ¼
Xn

k¼1

akYkðoÞ ð16Þ

and the weighting coefficients ak satisfy

Xn

k¼1

akYkðoÞ ¼ GiðoÞ: ð17Þ

If this equation is written at a set of p discrete frequencies ni (p > n) regularly distributed over the
frequency band ½oa;ob
 the function equality (17) can be transformed into a redundant system of
linear equations:

Y1ðn1Þ y Ynðn1Þ

Y1ðn2Þ y Ynðn2Þ

^

Y1ðnpÞ ? YnðnpÞ

0
BBB@

1
CCCA

a1

a2

^

an

0
BBB@

1
CCCA ¼

Giðn1Þ

Giðn2Þ

^

GiðnpÞ

0
BBB@

1
CCCA ð18Þ

or, in matrix form,

Ya ¼ Gi; ð19Þ

where the rectangular matrix Y; of dimension ðp; nÞ; and the vector Gi are complex quantities and
the vector a of the linear combiner coefficients is real.

The solution of this redundant system of linear equations was addressed in Ref. [6]; the pseudo-
inverse in the mean-square sense, Yþ ¼ ðYTYÞ�1YT produces highly irregular coefficients. As in
the previous section, the difficulty can be solved using a singular value decomposition of Y and
truncating the contribution of the least significant singular values.

Numerical simulations have shown that in a system without noise, the rank of the system is
equal to the number of modes which respond significantly in the frequency band of interest
(assuming this number is smaller that the number n of sensors in the array). When dealing with
actual experimental data, the gap in magnitude between significant and insignificant singular
values disappears and some trial and error is needed to select the appropriate number of singular
values in the truncated expansion.

3. Experiment

Fig. 5 shows a view of the experimental set-up that consists of a 4 mm thick glass plate
ð0:54 m � 1:24 mÞ mounted in a standard window frame that is fixed on a concrete box. The
sensor array consists of ð4 � 8Þ piezoceramic (PZT) patches ð13:75 mm � 25 mmÞ glued on the
plate according to a regular mesh. The set-up and the linear combiner hardware are described in
Ref. [6] where they were used in a volume velocity sensor. The resonance frequencies and
structural damping of the plate are given Table 1.

Fig. 6 shows the weighting coefficients ai leading to modal filters for the first four modes of the
plate, obtained using Eqs. (15) and (19). One can tailor a FRF similar to Fig. 3 with alternating
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poles and zeros and unit amplitudes at the resonances. Fig. 7 shows the FRF measured between
the actuator and the sensor output with weighting coefficient given by Eq. (13). An excellent
agreement is observed at low frequency, but the measured FRF departs substantially from the
expected one at higher frequency.

4. Spatial aliasing

As illustrated in the previous section, reconfigurable sensor arrays work very well as modal
filters in a limited frequency band. However, they are subject to spatial aliasing which degrades
their behaviour beyond this frequency band by reducing the sensor roll-off. This is again
illustrated with the analytical example of Fig. 8. The linear combiner coefficients of the ð4 � 8Þ
PZT array sensor are selected to isolate the first mode. Fig. 8 shows the FRF between four point
force actuators acting in phase (same current applied to all) and located as indicated in Fig. 8a,
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Table 1

Natural frequencies and structural damping of the plate

Mode Frequency (Hz) Damping (%)

ð1; 1Þ 42.5 2.31

ð1; 2Þ 55.9 1.08

ð1; 3Þ 87.1 1.24

ð1; 4Þ 118.7 2.42

piezo
sensors

position of the
force actuator

Fig. 5. Experimental set-up: glass plate covered with an array of ð4 � 8Þ piezoelectric patches.
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and the linear combiner output. When the sensor is used in an active vibration control system, this
reduces the roll-off of the open-loop transfer function, which imposes strong limitations on the
bandwidth of the control system (a good sensor should have a bandwidth at least one decade
larger than that of the control system).
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The spatial aliasing is the counterpart of the better known time aliasing: when the wave number
ðkÞ of one mode exceeds the number ðnÞ of sensors regularly spaced in that direction, the sensor
output appears as generated by a mode with a lower wave number ð2n � kÞ: It is illustrated in
Fig. 9 for the plate considered previously. The left part of Fig. 9 shows the mode shapes (1,1) and
(1,15); the diagrams on the right show the electric charges Qi generated by these modes on the
PZT patches (numerical simulation). The electric charges generated by mode (1,15) at 1494 Hz
have the same shape as those generated by mode (1,1). As a result, the orthogonality relationship
(4) between the linear combiner coefficients ai and the sensor modal gains cannot be enforced and
the modal sensor designed for mode (1,1) responds to mode (1,15) as well. The limit frequency of
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the modal filter is given by the natural frequency of the mode with wavenumber equal to the size
of the sensor array.

Fig. 10 shows a numerical simulation of the influence of the sensor array on the open-loop FRF
of a modal filter for mode (1,1). Because of the high modal density, wide-band modal filtering may
require a sensor array of large size which may not be practical because of the independent
conditioning electronics, but this is unescapable with discrete array sensors.

5. Distributed sensor

As has been seen in the previous section, the need for distributed sensors arises from the
necessity to reduce the spatial aliasing. Although the theory of modal distributed piezoelectric
sensors has been known for some time [10,11], they have never been implemented in practice to
two-dimensional structure, because the theory is based on tailoring the piezoelectric coefficients,
which cannot be done in practice at this time. In this Section, a practical way of designing a
distributed modal filter is proposed.
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The theory of modal filtering with distributed sensors can be addressed in two different ways: (i)
based on the orthogonality relationships for distributed structures or (ii) as a limit case of a
discrete array filter when the number of elements in the array increases to infinity. The first
approach was addressed by Lee and Moon [11]; the second one which is more intuitive in view of
the previous discussion on spatial aliasing will be considered here.
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As illustrated in Fig. 10, the bandwidth of an array sensor can be increased by increasing the
number of sensing elements in the array. In the example of Fig. 10b, the sensor bandwidth is close
to 5000 Hz with a sensor array containing 16 � 32 elements. However, the number of independent
conditioning electronic units becomes rapidly prohibitive.

If the weighting coefficients ai are known before hand and if we give up the programmability of
the linear combiner, the coefficients ai can be embedded in the individual sensing elements. This is
illustrated in Fig. 11; the area of the individual piezoelectric patches (more precisely the electrode
area) is taken to be proportional to the corresponding coefficient ai in the linear combiner. The
various electrodes of the sensor array are connected together and the total electric charge
generated on the array is proportional to the output of the linear combiner. This configuration
can be easily manufactured with a segmented electrode etched on a continuous PVDF layer using
classical lithography techniques; it requires only a single amplifier, but the weighting coefficients
cannot be changed on-line as in the linear combiner. The modal filtering property of this concept
is illustrated in Fig. 11; spatial aliasing still occurs beyond 2000 Hz and it can be pushed even
further by increasing the number of segments in the electrode.

6. A new electrode concept

The distributed sensor can be viewed as the limit discrete array sensor where the number of
sensing elements increases and the electrode density is such that the local production of electric
charges matches the desired local effective weighting coefficient. A practical way to achieve this is
to use a ‘‘porous’’ electrode as shown in Fig. 12; the maximum sensitivity is obtained where the
electrode is continuous (in the centre in Fig. 12a) and the local sensitivity is decreased
continuously by introducing some porosity in the continuous electrode by means of a honeycomb
design (Fig. 12b). The local electrode density is selected in such a way that the local production of
electric charges matches the desired local weighting coefficient aðx; yÞ:

Consider a piezoelectric film polarized in the direction normal to its plane and covered with
electrodes O as in Fig. 13. According to the two-dimensional theory of piezoelectric films, if a
sample is subject to a plane strain field aligned on the orthotropy axes of the material, and if the
electrodes are connected to a charge amplifier which cancels the electric field across the
piezoelectric film, the electric charge produced on the electrodes is

Q ¼
Z
O
ðe31S1 þ e32S2Þ dO; ð20Þ

where S1 and S2 are the strain components along the orthotropy axes in the mid-plane of the film,
and e31 and e32 are the piezoelectric constants of the material. The integral extends over the area of
the electrode, or more precisely, the area O over which the two electrodes overlap, where the
electrical field is zero. According to Eq. (20) changing the local electrode density ðdOÞ is equivalent
to changing the piezoelectric coefficients e31 and e32 in the same ratio. Since O refers to the area
where the two electrodes overlap, the motif may be etched on the electrodes on both sides of the
piezo film (Fig. 12c) or only on one side, with a continuous electrode on the other side (Fig. 12d),
which seems technologically simpler, because the two electrodes do not have to be aligned
precisely on top of each other.
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Eq. (20) assumes that the size of the electrode is much larger than its thickness. However, when
the motif of the electrode becomes small, tridimensional (edge) effects start to appear and the
relationship between the porosity and the equivalent piezoelectric property is no longer linear.

The exact relationship between the porosity and the equivalent piezoelectric coefficients can be
explored with a tridimensional finite element analysis software [22]. Fig. 14 shows the isopotential
surfaces for the two electrode configurations when a small sample ð1 mm � 1 mm � 100 mmÞ is
subjected to a strain along the x-axis and a potential difference V ¼ 0 is enforced between the
electrodes; the material assumed in this study is isotropic PVDF (copolymer) polarized in the
direction perpendicular to the electrodes. The edge effects appear clearly in the figures. For this
sample, Fig. 15 shows the relationship between the effective piezoelectric coefficient and the
fraction of electrode area; the two electrode configurations are considered for two sample
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thicknesses ð10 mm � 100 mmÞ; it is seen that for a very thin sensor, the two electrode
configurations produce the same results and the relationship is almost linear.

7. Validation test

To the author’s knowledge, this concept of ‘‘porous’’ electrode is new [23]. This section reports
on the preliminary test program aiming at validating the new concept.

Fig. 16 shows the experimental set-up. Two cantilever beams made of glass of 240 mm �
27 mm � 1:83 mm are equipped on one side with a PZT actuator and on the opposite side with an
isotropic PVDF (copolymer) sensor with a shaped electrode. In one case, the electrode profile
matches the modal filter of the beam theory [10]; in the other case, the same axial variation of the
piezoelectric properties is achieved with the porous design described in the previous section.
However, to guarantee the continuity of the honeycomb electrode during the manufacturing
process, the width of the electrode is constrained to be larger than 0:5 mm; this explains why the
electrode design is tapered near the free end of the sample.

Fig. 17 compares the FRF between the PZT actuator and the PVDF sensor for the two
electrode designs. The two curves are remarkably close, although significantly different from the
ideal modal filter; this difference is partly due to the fact that the PVDF material is isotropic
ðe31 ¼ e32Þ: These experimental results also agree well with finite element calculations (Mindlin
shell [22]) for the continuous electrode sensor (Fig. 18).

Further tests are under way to validate the new electrode design on rectangular plates.
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Fig. 17. Comparison between the measured FRF of the continuous and honeycomb sensors with the FRF of the

analytical beam model.
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8. Conclusions

This paper examines the construction of modal filters with discrete array sensors and with continuous
distributed PVDF films. The lack of roll-off of discrete array sensors due to spatial aliasing has been
discussed. A new porous distributed electrode concept has been introduced which allows the effective
piezoelectric coefficients to be tailored in two dimensions and eliminates the spatial aliasing. Preliminary
validation tests of the porous electrode design have been presented on a cantilever beam.
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