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Abstract

A method is proposed for the calculation of free oscillations of circular cylindrical shells taking into
account the non-linear interaction of their bending deformations. Cases are studied in which a shell is
characterized by eigenfrequencies, which are in close proximity or multiple frequencies. Based on analysis
of the averaged equations, a number of solutions have been constructed. These solutions are used to
investigate the particular qualities of the energy exchange and interaction of the modes of the shell. Phase
patterns corresponding to interaction of conjugate forms (2-D model) and forms of various wave-forming
parameters (4-D model) are studied. The impact of initial conditions on deformation shapes of free multi-
mode-oscillating shells is considered.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

A large number of works are devoted to the analysis of thin-walled cylindrical shells under the
geometrically non-linear formulation of their bending vibrations. Systematical reviews of these
works are presented in articles by Evensen [1,2], Kubenko and Kovalchuk [3], monographs by
Volmir [4], Kubenko et al. [5], Bogdanovich [6], and in other publications.
Usually, simplified one- and two-mode calculation models were used for the investigation of

shell constructions. Those models allowed the determination of a number of important, and
experimentally confirmed, regularities in the types of non-linear deformation of shells. However,
the above-mentioned models are unacceptable for the description of many of the non-linear
phenomena based upon the interaction of several forms of bending oscillations. Interconnectivity
of these forms creates, under specific ‘resonance’ conditions, pre-conditions for the realization of
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intense energy exchange between various vibration modes, and qualitatively new deformation states
of shells. In the scientific literature, cases are described in which a ‘latent’ internal energy exchange
between the bending forms had lead to breakdown situations in some thin-walled objects. Fatigue
failure of these objects was preceded by a rather complicated stressed deformed state.
In particular, bending waves of variable parameters were observed travelling in a

circumferentially direction, non-stationary cyclic processes of transition from one bending form
to another, superposition of several forms (having different wave-forming parameters), etc.
To substantiate these and similar phenomena, it is necessary to develop a non-linear dynamic

theory of shells as systems of multiple degrees of freedom that could enable a description of the
characteristic features of the energy exchange and interaction between the various forms.
Problems of this type, though they have a scientific and applicative significance, are not
sufficiently covered in the literature. The initial investigations in this field were first carried out
over 30 years ago by Evensen, Dowell, Olson, Fyng, and Ventres [1,7–11] and others, who
considered the induced non-linear oscillations, as well as auto-oscillations (flutter), of circular
cylindrical shells taking into account the interaction of conjugated (and non-conjugated in the
case of flutter) bending forms. Further investigations have been carried out by Matsuzaki and
Kobayashi [12], Ginsberg [13], Chen and Babcock [14], and Kubenko et al. [15,16]. In recently
published studies by Amabili et al. [17–19] and others, various problems of non-linear dynamics
and stability of circular cylindrical shells filled with a liquid (including a mobile one), which can be
simulated by systems of multiple degrees of freedom, were discussed. When approximating the
dynamical deflections of the shells, conjugated and non-conjugated bending forms were taken into
account. This enabled the authors to study the effect of non-linear interaction between the various
forms on induced oscillations of the shells, as well as on their dynamical instability conditioned by
a mobility factor of the liquid.
The purpose of this work is the investigation of the main regularities of non-linear interaction

of both the conjugated and the arbitrary bending forms of free-oscillating circular-cylindrical
shells. Cases are considered in which the eigenfrequencies meet definite (resonance) relationships.
A method for the calculation of parameters of the shells’ multi-mode oscillations (two and four
fundamental modes were taken into account) in resonant conditions is proposed. The first
solutions of the shells’ motions describing the energy-exchange processes among various modes
are constructed and analyzed. Phase patterns following from averaged equations of motion of the
studied shells are considered.

2. Initial dynamical equations

To describe the process of multi-mode dynamical deformation of a shell, middle-bending
equations of the Donnell–Mushtari–Vlasov type [4] of the following form are used:

D

h
r4w ¼

@2w

@x2

@2f
@y2

þ
@2w

@y2

@2f
@x2

� 2
@2w

@x@y

@2f
@x@y

þ
1

R

@2f
@x2

� r
@2w

@t2
; ð1aÞ

1

E
r4f ¼

@2w

@x@y

� �2

�
@2w

@x2

@2w

@y2
�

1

R

@2w

@x2
: ð1bÞ

The definition of the symbols in these equations is given in Appendix D.
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Suppose the free resting-on conditions (SS1/SS1) are realized at the end sections of the shell

w ¼ 0;
@2w

@x2
¼ 0; v ¼ 0; Nx ¼ 0 for x ¼ 0; x ¼ l: ð2Þ

To clarify a substantial part of the question of the non-linear interaction of the oscillating shell
forms, its deflection is approximated by the four-mode expansion

w ¼ f1ðtÞ cos s1y sin lx þ f2ðtÞ sin s1y sin lx þ f3ðtÞ cos s2y sin lx

þ f4ðtÞ sin s2y sin lx þ f5ðtÞW0ðxÞ: ð3Þ

Here fkðtÞ ðk ¼ 124Þ are the unknown time-dependent functions and represent the generalized co-
ordinates of the shell; l ¼ lm ¼ mp=l and si ¼ ni=R ði ¼ 122Þ are the wave-formation
parameters.
As can be seen, this expansion simultaneously includes forms having both the same and the

different wave-forming parameters. The last term of Eq. (3) is introduced to reflect specifically the
large-deflection deformation of the shell. Consider the well-known, and confirmed by numerous
experiments, effect of ‘‘predominantly inwards buckling’’ [4]. Taking into account Eq. (2), an
axially symmetric function W0(x) is set in the form

W0ðxÞ ¼ sin4 lx: ð4Þ

Some authors (for example, Volmir [4] and others) represent the function W0ðxÞ in the form
W0ðxÞ ¼ sin2 lx: Other authors (for example, Evensen [1,2] and others) determine this function
from the periodicity condition of the circumferential displacement v (in this case the function f5ðtÞ
can be expressed in terms of the functions fkðtÞ; k ¼ 124Þ: However, the boundary conditions (2)
are partly satisfied in both these approaches, because the condition @2w=@2x ¼ 0 is not satisfied at
the end sections of the shell. The function W0ðxÞ in form (4) satisfies both conditions (2) and the
physical effect referred above.
Substituting Eq. (3), and accounting for Eq. (4), in Eq. (1b), the functions of stresses f are

defined, supposing that

f ¼ fp þ fh: ð5Þ

Here, fp is a particular solution of this equation, with

fp ¼f1 cos s1y sin lx þ f2 sin s1y sin lx þ f3 cos s2y sin lx

þ f4 sin s2y sin lx þ f5 cos 2lx þ f6 cos 2s1y þ f7 cos 2s2y

þ f8 sin 2s1y þ f9 sin 2s2y þ f10 cos s1y sin 3lx þ f11 cos s2y sin 3lx

þ f12 sin s1y sin 3lx þ f13 sin s2y sin 3lx þ f14 cosðs1 � s2Þy cos 2lx

þ f15 cosðs1 � s2Þy þ f16 cosðs1 þ s2Þy cos 2lx þ f17 cosðs1 þ s2Þy

þ f18 sinðs1 � s2Þy cos 2lx þ f19 sinðs1 � s2Þy þ f20 sinðs1 þ s2Þy cos 2lx

þ f21 sinðs1 þ s2Þy þ f22 cos 4lx þ f23 cos s1y sin 5lx

þ f24 sin s1y sin 5lx þ f25 cos s2y sin 5lx þ f26 sin s2y sin 5lx: ð6Þ
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Here fj (j=1–26) are functions of time whose values are listed in Appendix A. Function fh of
Eq. (5) represents by itself a homogeneous solution that has, taking account of conditions (2) and
the condition of periodicity of the shell [4], the following form:

fh ¼
E

16
½s21ðf

2
1 þ f 2

2 Þ þ s22ðf
2
3 þ f 2

4 Þ� �
3f5

R

� �
x2: ð7Þ

Then, using the Galerkin method, equations for determination of the unknown functions fi(t) are
derived, which are a part of Eq. (3):

.f1 þ o2
1 f1 þ k11ðf 2

1 þ f 2
2 Þf1 þ k12ðf 2

3 þ f 2
4 Þf1 þ k13 f1 f5 þ k14 f1 f 2

5 ¼ 0;

.f2 þ o2
1 f2 þ k11ðf 2

1 þ f 2
2 Þf2 þ k12ðf 2

3 þ f 2
4 Þf2 þ k13 f2 f5 þ k14 f2 f 2

5 ¼ 0;

.f3 þ o2
2 f3 þ k21ðf 2

1 þ f 2
2 Þf3 þ k22ðf 2

3 þ f 2
4 Þf3 þ k23 f3 f5 þ k24 f3 f 2

5 ¼ 0;

.f4 þ o2
2 f4 þ k21ðf 2

1 þ f 2
2 Þf4 þ k22ðf 2

3 þ f 2
4 Þf4 þ k23 f4 f5 þ k24 f4 f 2

5 ¼ 0;

.f5 þ o2
3 f5 þ k31ðf 2

1 þ f 2
2 Þ þ k32ðf 2

3 þ f 2
4 Þ þ k33ðf 2

1 þ f 2
2 Þf5 þ k34ðf 2

3 þ f 2
4 Þf5 ¼ 0: ð8Þ

Values of the frequency parameters oi (i=1, 2, 3) and coefficients kjk at the non-linear terms are
given in Appendix B.
Eqs. (8) serve as a base for calculation of the processes of energy exchange and interaction

between bending forms corresponding to the wave parameters sn and l. The calculation technique
essentially depends on the presence or absence of the internal resonances [15,20] in system (8),
where system (8) is usually first simplified taking account of the conditions of f5ðtÞ{fjðtÞðj ¼
1� 4Þ and o3coi ði ¼ 1� 2Þ [4]. This provides a possibility of determination of the function f5
from the solution of the quasi-static problem. Supposing, in particular, that @2(f5)/@t2¼0, from the
last equation of Eq. (8) it is found that

f5 ¼ �
½k31ðf 2

1 þ f 2
2 Þ þ k32ðf 2

3 þ f 2
4 Þ�

½o2
3 þ k33ðf 2

1 þ f 2
2 Þ þ k34ðf 2

3 þ f 2
4 Þ�

: ð9Þ

Expanding Eq. (9) in a series gives the approximate value of function f5 as

f5 ¼ �
1

o2
3

½k31ðf 2
1 þ f 2

2 Þ þ k32ðf 2
3 þ f 2

4 Þ� þ
1

o4
3

½k31k33ðf 2
1 þ f 2

2 Þ
2

þ k32k34ðf 2
3 þ f 2

4 Þ
2 þ ðk31k34 þ k32k33Þðf 2

1 þ f 2
2 Þðf

2
3 þ f 2

4 Þ� þ?; ð10Þ

which characterizes the axial-symmetric item of the w net deflection (3).
Taking into account the above, the initial system of Eqs. (8) can be represented in the form of

four equations constructed with respect to the ‘‘dominant’’ generalized co-ordinates fk (k=1–4).

3. Interaction of the conjugated forms

Initially, suppose that the shell’s eigenfrequencies o1 and o2 are not in close proximity and not
multiple frequencies. In this case, intensive interaction between the forms of the wave parameters
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s1, l and s2, l is absent [15]. At the same time, intense energy exchange will be realized between the
conjugated forms of cos(s1y) sin(lx) and sin(s1y) sin(lx), as well as cos(s2y) sin(lx) and sin(s2y)
	 sin(lx). Consider characteristic features of such an energy exchange for the forms of wave
parameters s1, l (the energy exchange for the second pair can be treated analogously).
Expansion (10) is substituted into the first two equations of Eq. (8) and the terms up to the fifth

power inclusive with respect to functions f1 and f2 are taken in account. It may be noted that the
non-linear terms of these equations are small in comparison with the rest of the (linear) terms
because all of them are proportional to the small parameter e0 ¼ wmax=R [14], where wmax is a
maximal radial deflection of a shell. Taking this into account, the Bogolyubov–Mitropolsky
method [20] may be used to construct the approximate periodic solution for the present equations.
In accordance with this method it can be assumed that

f1 ¼ a cosðot þ W1Þ;

f2 ¼ b cosðot þ W2Þ; o ¼ o1: ð11Þ

In order to determine the parameters of amplitude (a and b) and phase (W1 and W2), the
following simultaneous equations are obtained:

da

dt
¼

ab2

8o
½g1 þ c1ða2 þ b2Þ� sin 2y;

db

dt
¼ �

a2b

8o
½g1 þ c1ða2 þ b2Þ� sin 2y;

a
dW1
dt

¼
g1a
8o

ð3a2 þ 2b2 þ b2 cos 2yÞ

þ
c1a

8o1
ða2 þ b2Þð2a2 þ b2Þ þ

a4 þ b4

2
þ b2ð2a2 þ b2Þ cos 2y

� �
;

b
dW2
dt

¼
g1b
8o

ð3b2 þ 2a2 þ a2 cos 2yÞ

þ
c1b

8o1
ða2 þ b2Þða2 þ 2b2Þ þ

a4 þ b4

2
þ a2ð2b2 þ a2Þ cos 2y

� �
: ð12Þ

Here, the following notations are used:

g1 ¼ k11 �
k13k31

o2
3

;

c1 ¼
k31

o4
3

ðk13k33 þ k14k31Þ;

y ¼ W1 � W2: ð13Þ
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From investigation of these equations, the first two of them give a solution of the type

a2 þ b2 ¼ %C2
0; ð14Þ

where %C0 is the integration constant. After introduction of a new variable x ¼ a2= %C2
0; system (12)

can be converted, taking account of Eq. (14), to a pair of equations

dx
dt

¼ kxð1� xÞ sin 2y;

dy
dt

¼
k

2
ð2x� 1Þð1� cos 2yÞ:

ð15Þ

Here k ¼ ðg1 þ c1 %C
2
0Þ %C

2
0=8o:

Based on these equations, one more solution can be derived:

xð1� xÞ sin2 y ¼ %C1 ¼ const: ð16Þ

The solutions obtained describe, in essence, the energy-exchange processes occurring between
the conjugated modes. Integral (14) is, in particular, evidence of the competition that takes place
between amplitudes a and b of bending forms cosðs1yÞ sinðlxÞ and sinðs1yÞ sinðlxÞ; respectively.
Integral (16), in its turn, characterizes a ‘‘redistribution’’ of energy between the amplitude x and
phase W parameters of the shell.
From Eqs. (15) stationary solutions of type x ¼ x0 ¼ const; y ¼ y0 ¼ const can be obtained.

These solutions correspond to the two following classes:

y ¼ kp; x ¼ x0 0px0p1ð Þ; ð17Þ

y ¼
ð2k � 1Þp

2
; x ¼ 1=2: ð18Þ

Here, k ¼ 0;71;72;y :
It should be noted that the solutions x=0 and 1 correspond to decoupled oscillations of the

shell occurring according to the forms of cosðs1yÞ sinðlxÞ and sinðs1yÞ sinðlxÞ: All the other
solutions are a superposition of both the forms. To investigate the stability of the equations
obtained, qualitative analysis of the singular points of the equation

dx
dy

¼
2xð1� xÞ sin 2y

ð2x� 1Þð1� cos 2yÞ
;

obtained from the system of Eqs. (15) was performed. Specifically, it was found that the singular
points of a ‘‘saddle’’ type correspond to the stationary solutions (17) in the configuration space ðx; yÞ:
Therefore, these are unstable solutions. The singular points of the ‘‘centre’’ type correspond to
solutions (18). Thus, the stable solutions are represented by formula (18); these correspond to
deformation of the shell in the form of a circular running wave, as follows from Eq. (3). In fact, in this
case, if one does not account for the form of wave parameter s2, the deflection w is of ‘‘wavy’’ form:

w ¼ a0 cosðs1y7ðo1t þ W10ÞÞ sin lx þ f5 sin
4 lx ða0; W10 ¼ constÞ: ð19Þ

Note that, to realize the ‘‘running’’ waves (19) it is necessary to give the specified initial
conditions, namely the initial amplitudes of the forms cosðs1yÞ sinðlxÞ and sinðs1yÞ sinðlxÞ must be
equal, i.e., að0Þ ¼ bð0Þ: Moreover, the phase displacement y of the exciters of both the forms must
be chosen as follows: y ¼ 7p=2: The stationary solutions are absent for other initial conditions
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and generally the deflection w will be represented as a superposition of two waves:

w ¼ ½aðtÞ cosðot þ W1ðtÞÞ cos s1y þ bðtÞ cosðot þ W2ðtÞÞ sin s1y� sin lx þ f5ðtÞ sin
4 lx;

where a, b, W1 and W2 are the time-dependent functions, which can be obtained from Eq. (12), and
the function f5ðtÞ is found from relationship (10).
It is important to emphasize that the single-mode types of deformation (the ‘‘standing-wave’’

deformation) are impossible in principle in the shell considered as a result of an instability of the
solutions x ¼ 0; y ¼ kp and x ¼ 1; y ¼ kp:
Consider a numerical example. Let a shell be characterized by the following parameters:

E ¼ 2	 1011 Pa; r ¼ 7:8	 103 kg=m3;
h

R
¼ 3:125	 10�3;

l=R ¼ 2:45; R ¼ 0:16m; m ¼ 0:3: ð20Þ
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Fig. 1. Amplitude x (a) and phase velocity dy/dt (b) for free vibrations of the shells at: 1—að0Þ ¼ bð0Þ ¼ h=2;
2—að0Þ ¼ h; bð0Þ ¼ h=2; 3—að0Þ ¼ h=2; bð0Þ ¼ h; when yð0Þ ¼ p=4:
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Minimal eigenfrequency of the shell o1 min ¼ 283:8 Hz corresponds to the mode of m ¼ 1;
n1 ¼ 6: The results of numerical integration of system (15) by the Runge–Kutta method,
accounting for Eq. (20) and initial conditions að0Þ ¼ bð0Þ ¼ h=2 (curves 1), að0Þ ¼ h; bð0Þ ¼ h=2
(curves 2), að0Þ ¼ h=2; bð0Þ ¼ h (curves 3), and yð0Þ ¼ p=4 are presented in Fig. 1. As seen from
the graphs, the amplitude parameter x (Fig. 1a) and phase velocity dy=dt (Fig. 1b) represent by
themselves the oscillating in time functions with their periods being essentially dependent on the
levels of imposed initial amplitudes x(0). Note that these periods characterize the time of the
energy transmitting (full or partial) from one form to another. The energy transmitting process is
a ‘‘self-controlled’’ one; in a real shell it will continue up to the moment of exhaustion of the
energy, initially added to the shell at the moment of initiation, and spent to compensate for the
work of internal and external friction forces. This process will be continuous because in the shell
equations (1a,b) no account is taken of damping. Curves 2 and 3 possess the same period of
‘‘oscillations’’ in view of coincidence of their values at a2ð0Þ þ b2ð0Þ ¼ %C2

0:
Fig. 2 illustrates the phase patterns of free oscillations of the shell, where curves 1, 2, and 3 are

drawn with the same initial data as the corresponding curves in Fig. 1.

4. Interaction of the non-conjugated forms

When considering the general case of the interaction of the forms it would be expedient to
represent system (8), using the following substitutions:

f1 ¼ AðtÞ cos aðtÞ; f2 ¼ AðtÞ sin aðtÞ;

f3 ¼ BðtÞ cos bðtÞ; f4 ¼ BðtÞ sin bðtÞ; ð21Þ

ARTICLE IN PRESS

Fig. 2. Phase trajectories of free shell vibrations of xð0Þ ¼ 0:5 (curve 1), xð0Þ ¼ 0:8 (curve 2), xð0Þ ¼ 0:2 (curve 3) at

yð0Þ ¼ p=4:
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in the following form (convenient for the investigation) [5]:

.A þ ðo2
1 � ’a2ÞA þ g1A

3 þ d1AB2 þ c1A
5 þ d1A

3B2 þ e1AB4 ¼ 0; A.aþ 2 ’A’a ¼ 0;

.B þ ðo2
2 � ’b2ÞB þ g2B

3 þ d2BA2 þ c2B
5 þ d2B

3A2 þ e2BA4 ¼ 0; B .bþ 2 ’B ’b ¼ 0: ð22Þ

Values of parameters gi, di, ci, di, ei, (i ¼ 1; 2) are presented in Appendix C. Eqs. (22) were derived
taking into account the terms up to the fifth order inclusive with respect to functions A and B,
which are defined by relationship (10).
If one takes into account variables (21), deflection w (3) takes a form

w ¼ A cosðs1y � aÞ sin lx þ B cosðs2y � bÞ sin lx þ C sin4 lx; ðC ¼ f5Þ; ð23Þ

which gives an obvious physical picture about the character of the multi-mode deformation of a
free-oscillating shell. This deformation can represent by itself, in particular, a superposition of
standing waves (with aðtÞ 
 a0 
 const and bðtÞ 
 b0 
 constÞ or running waves (with
’aðtÞa0; ’bðtÞa0Þ: In order to investigate an interaction of these waves, construct approximate
periodical solutions of system (22). In so doing, a method set out in Refs. [5,16] will be used.
By analyzing Eqs. (22) by the method in Ref. [20], to a first approximation, the following

relations between the resonances were found:

o1Eo2; o1E2o2; o1Eo2=2: ð24Þ

These situations create preconditions for the realization of an intense energy exchange between
forms of the shell. Consider the solutions corresponding to these relations.

4.1. The internal resonance o1Eo2

The study of internal resonance is restricted to non-linear terms of the third order in Eqs. (22).
Periodical solution of the said equations are represented, in accordance with Ref. [5], in the form

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ v1 sin c1

p
; c1 ¼ 2ðot þ W1Þ;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 sin c2

p
; c2 ¼ 2ðot þ W2Þ;

a ¼ j1 þ arctan
ðu1 tanðc1=2Þ þ v1Þ

M1
;

b ¼ j2 þ arctan
ðu2 tanðc2=2Þ þ v2Þ

M2
: ð25Þ

Here, ui, vi, ji, Wi (i ¼ 1; 2) are the unknown functions of time that are to be determined from
the averaged equations [16]:

du1

dt
¼ �d1

v1v2

2o
sin 2y;

du2

dt
¼ d2

v1v2

2o
sin 2y;

ARTICLE IN PRESS

V.D. Kubenko et al. / Journal of Sound and Vibration 265 (2003) 245–268 253



dv1

dt
¼ �d1

u1v2

2o
sin 2y;

dv2

dt
¼ d2

u2v1

2o
sin 2y;

dW1
dt

¼
1

4o
3g1u1 þ 2d1u2 þ d1

v2u1

v1
cos 2y

� �
;

dW2
dt

¼
1

4o
3g2u2 þ 2d2u1 þ 2D1 þ d2

u2v1

v2
cos 2y

� �
;

dj1

dt
¼ �

M1

4o
g1 þ d1v2

cos 2y
v1

�
sin 2y

u1

� �� �
;

dj2

dt
¼ �

M2

4o
g2 þ d2v1

cos 2y
v2

�
sin 2y

u2

� �� �
; ð26Þ

with Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i � v2i

q
ði ¼ 1; 2Þ; y ¼ W2 � W1; D1 ¼ o2

2 � o2
1; o ¼ o1:

From the first two equations of this system one can obtain an integral of the form

u1 þ u2 ¼ C0; ð27Þ

where

C0 ¼
1

2o2
1

½ ’A2ð0Þ þ A2ð0Þðo2 þ ’a2ð0ÞÞ þ ’B2ð0Þ þ B2ð0Þðo2 þ ’b2ð0ÞÞ� ¼ const:

Two more integrals

u21 � v21 ¼ C1; u2
2 � v22 ¼ C2; ð28Þ

where

C1 ¼
’a2ð0ÞA4ð0Þ

o2
; C2 ¼

’b2ð0ÞB4ð0Þ
o2

ð29Þ

are obtained by considering, correspondingly, the first-and-third and the second-and-fourth
equations.
And, finally, from the first, fifth, and sixth equations, a more complicated solution is derived as

Gu1 �
Nu21
2

�
d1
2o

L1L2 cos 2y ¼ C3 ¼ const: ð30Þ

Here, the following notations are used:

G ¼
1

2o
½C0ð3g2 � 2d1Þ þ 2D1�;

N ¼
1

2o
½3ðg1 þ g2Þ � 4d2�;

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC0 � u1Þ

2 � C2

q
;

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 � C1

q
: ð31Þ
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In general, the solutions determined allow a method of distribution of the initially added energy
among the various modes of the shell oscillations to be traced. To determine a period of the
energy transmitting from one mode to another, it is necessary to investigate the system of
equations

du1

dt
¼ �

d1
2o

L1L2 sin 2y;

dy
dt

¼ G � Nu1 �
d1

2oL1L2
½u1L

2
1 � L2

2ðC0 � u1Þ� cos 2y; ð32Þ

derived from Eq. (26) taking into account integrals (27) and (28).
Thus, the input problem concerned with interaction of the non-conjugated wave shapes was

reduced to analysis of two equations (32), which were set up concerning the parameters of
amplitude u1 and phase y. If the values of these parameters are determined, then the other
parameters u2; v1; v2; j1 and j2; involved in the averaged equations (26), will also be known.
The phase velocities ’a and ’b are defined by the formulae ’a ¼ oM1=A2 and ’b ¼ oM2=B2:
To give a numerical illustration of the solution, consider a shell with parameters (20) and

length-to-radius relation of l ¼ 2:442R: In this case, two of its eigenfrequencies, which correspond
to modes m ¼ 1; n1 ¼ 5; and m ¼ 1; n2 ¼ 8; are practically coincident with one another
(o1Eo2E337.5Hz). Figs. 3 and 4 show the results of integration of Eqs. (32) with initial
conditions of two types: ’að0Þ ¼ ’bð0Þ ¼ 0 (Fig. 3) and ’að0Þ ¼ ’bð0Þ ¼ o (Fig. 4). The initial
conditions of the first and second types correspond to those cases, when deflection w from formula
(23) represents a superposition of standing and running waves respectively. Curves 1 are obtained
with Að0Þ ¼ 0:75h, curves 2—with Að0Þ ¼ 1:5h, and curves 3—with Að0Þ ¼ 2h. In the figures, the
notation A1 ¼ u1=h2 is used. Also, y(0)¼p/4, Að0Þ ¼ Bð0Þ; ’Að0Þ ¼ ’Bð0Þ ¼ 0 are accepted here. In
accordance with relationships (25) and (28), the initial value of the function u1 is of the form
u1ð0Þ ¼ ð1=2o2

1Þ½ ’a
2ð0Þ þ a2ð0Þðo2

1 þ ’a2ð0Þ�: To clarify the results obtained, consider relationships
(21), (25) and (28), (29). From these it follows that the energy exchange in the problem considered
is, similar to the case of interaction of the conjugated forms, a time-periodic process or close to it.
The ‘‘oscillations’’ of the amplitude parameter A1(t) characterizing the mode m ¼ 1; n1 ¼ 5 are a
pre-condition for the corresponding ‘‘oscillations’’ of B1ðtÞ ¼ u2=h2 parameter of the second mode
m ¼ 1; n2 ¼ 8 and vice versa. Periodicity of amplitude parameters u1 and u2 causes a
corresponding modification of parameters v1 and v2 which follows from formulae (28).
Furthermore, periods of the ‘‘oscillations’’ depend essentially on the values of initial amplitudes
A(0), B(0) and phase velocities ’að0Þ; ’bð0Þ: These values determine the constants C1 and C2 (see
formulae (29)) entering into Eqs. (28) and (32). If the A(0) amplitude increases, periods of the A(t)
functions will decrease. This is evidence of the ‘‘hardening’’ type of geometrical non-linearity
taken into account in the calculation model (22). It should be noted that such non-linearity is
characteristic of this particular example. Another ‘‘softening’’ type of non-linearity, in which the
shell’s oscillation periods increase with increases in the amplitudes, is possible if one takes
different parameters of the shell and other initial conditions.
It should be noted that the function ’yðtÞ has qualitatively different forms in the above two cases.

For instance, if ’að0Þ ¼ ’bð0Þ ¼ 0; these functions are close to sinusoidal, whereas in the second case
ð’að0Þ ¼ ’bð0Þa0Þ their appearance is close to periodically repeating pulses.
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Figs. 5 and 6 illustrate the impact of variation of the shell’s parameters (in particular, its length l)
on the amplitude A(t) and phase velocity ’yðtÞ: The results of numerical integration of Eqs. (32) are
presented in Fig. 5. They were obtained with initial conditions ’að0Þ ¼ ’bð0Þ ¼ 0; and those presented
in Fig. 6 with ’að0Þ ¼ ’bð0Þ ¼ o: Curves 1, 2, and 3 in both the figures are drawn for l ¼ 2:442R;
l ¼ 2:340R; and l ¼ 2:450R; respectively. The frequency ‘‘detune’’ %D ¼ o2 � o1 in each of these
cases is equal to %D1 ¼ 0; %D2 ¼ �3:1 Hz and %D3 ¼ 1:4 Hz:
Therefore, even a slight ‘‘detune’’ between the frequencies corresponding to different modes

essentially affects the nature of the modes interaction, because the ‘‘detune’’ noticeably influences
the values of A1(t) and ’yðtÞ; which, in turn, affect the parameters j1(t), j2(t) and B(t).
In Figs. 7 and 8, phase trajectories are shown, which have been drawn on the basis of Eqs. (32) under

a trivial initial conditions (in this case C1 ¼ 0; C2 ¼ 0). Curves 1, 2, and 3 shown in Fig. 7 correspond to
the similar curves presented in Fig. 3a, and those shown in Fig. 8 to the curves of Fig. 5a.
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Fig. 3. Changes in time of the (a) amplitude A1 and (b) phase velocity dy/dt at l=R ¼ 2:442 and 1—Að0Þ ¼ 0:75h,

2—Að0Þ ¼ 1:5h, 3—Að0Þ ¼ 2h in case ’að0Þ ¼ ’bð0Þ ¼ 0; yð0Þ ¼ p=4; Að0Þ ¼ Bð0Þ:
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A form of the phase trajectories for initial conditions of the second case ð’að0Þ ¼ ’bð0Þa0Þ is
more complicated because of presence of pronounced beating in the A1(t) functions (see Figs. 4a
and 6a).

4.2. The internal resonance o1E2o2

Investigation of the form of interaction in this case needs the non-linear terms of the fifth order
to be accounted for in the equations system (22). Solution of this system will coincide in its form
with Eq. (25), but here, instead of the c1;2 phases, it is necessary to adopt

c1 ¼ 2ðot þ W1Þ; c2 ¼ 2
ot

2
þ W2


 �
ðo ¼ o1Þ: ð33Þ

The first-approximation equations for determination of the ui, vi, Wi (i ¼ 1;2) parameters take the
following form:

du1

dt
¼

e1v1v
2
2

4o
cos 2%y;

du2

dt
¼ �

d2v1v
2
2

2o
cos 2%y;
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Fig. 4. Changes in time of the (a) amplitude A1 and (b) phase velocity at l=R ¼ 2:442 and 1—Að0Þ ¼ 0:75h,

2—Að0Þ ¼ 1:5h, 3—Að0Þ ¼ 2h in case ’að0Þ ¼ ’bð0Þ ¼ o; yð0Þ ¼ p=4; Að0Þ ¼ Bð0Þ:
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dv1

dt
¼ e1

u1v
2
2

4o
cos 2%y;

dv2

dt
¼ �

d2u2v1v2

2o
cos 2%y;

dW1
dt

¼
1

2o
3

2
g1u1 þ d1u2 þ c1 2u21 þ

v21
2

� �
þ

3

2
d1u1u2

�
þe1 u2

2 þ
v22
2
�

u1v
2
2

4v1
sin 2%y

� ��
;

dW2
dt

¼
1

o
D2 þ

3

2
g2u2 þ d2u1 þ c2 2u22 þ

v22
2

� �
þ

3

2
d2u1u2þ

�
e2 u2

1 þ
v21
2
�

u2v
2
1

4v2
sin 2%y

� ��
; ð34Þ
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Fig. 5. Changes in time of the (a) amplitude A1 and (b) phase velocity in case Að0Þ ¼ Bð0Þ ¼ h; ’að0Þ ¼ ’bð0Þ ¼ 0;
yð0Þ ¼ p=4 at: 1—l=R ¼ 2:442; 2—l=R ¼ 2:43; 3—l=R ¼ 2:45:
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where

%y ¼ W1 � 2W2; D2 ¼ o2
2 � o2

1=4: ð35Þ

In this case, from Eqs. (34), instead of Eq. (27) the following solution is obtained:

2u1

e1
þ

u2

d2
¼ C0 ¼ const: ð36Þ

Two more solutions will retain form (28). The fourth integral essentially differs from Eq. (30)
and corresponds to the dependence

G1u1 þ
G2

2
u21 þ

G3

3
u3
1 �

e1

8o
L2L

2
1 sin 2%y ¼ C3 ¼ const; ð37Þ
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Fig. 6. Changes in time of the (a) amplitude A1 and (b) phase velocity in case Að0Þ ¼ Bð0Þ ¼ h; ’að0Þ ¼ ’bð0Þ ¼ o;
yð0Þ ¼ p=4 at: 1—l=R ¼ 2:442; 2—l=R ¼ 2:43; 3—l=R ¼ 2:45:
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with

G1 ¼
1

2o
d2
2C2

0

3

2
e2 � 10c2

� �
þ ðd1 � 6g2Þd2C0 �

e1

2
� 2c2


 �
C2 �

c1

2
� 2d4


 �
C1 � 4D2

� �
;

G2 ¼
1

2o
3

2
g1 � 4d2 �

2d2

e1
ðd1 � 6g2Þ �

4C0

e1
d2
2

3

2
e1 � 10c2

� �
þ 3C0d2

d1

2
� 2d2

� �� �
;

G3 ¼
1

2o
4d2

2

e21

3

2
e1 � 10c2

� �
þ
6d2

e1
2d2 �

d1

2

� �
þ

5

2
c1 � 6e2

� �� �
: ð38Þ
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Fig. 7. Phase trajectories for the periodic vibrations of the shells at: 1—Að0Þ ¼ 0:75h, 2—Að0Þ ¼ 1:5h, 3—Að0Þ ¼ 2h in

case ’að0Þ ¼ ’bð0Þ ¼ 0; yð0Þ ¼ p=4; l=R ¼ 2:442:

Fig. 8. Phase trajectories for the periodic vibrations of the shells at: 1—l=R ¼ 2:442; 2—l=R ¼ 2:43; 3—l=R ¼ 2:45 in

case ’að0Þ ¼ ’bð0Þ ¼ 0; yð0Þ ¼ p=4; Að0Þ ¼ Bð0Þ ¼ h:
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The time-dependant functions u1 and %y of Eq. (37) satisfy the following system of equations:

du1

dt
¼

e1L2L
2
1

4o
cos 2%y;

d%y
dt

¼ G1 þ G2u1 þ G3u
2
1 þ G4 sin 2%y: ð39Þ

Here

G4 ¼
1

8oL2
ð4d2L

2
2u2 � e1L

2
1u1Þ; u2 ¼ d2 C0 �

2u1

e1

� �
;

L1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
2 C0 �

2u1

e1

� �2

�C2

s
; L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 � C1

q
: ð40Þ

Some numerical results of analysis of Eqs. (39) are presented in Fig. 9. A shell with parameters
(20) has been considered with its length being equal to l ¼ 2:415R: Under this condition, a sub-
harmonic resonance o1E2o2 taking place, with o1 frequency corresponding to the mode of
m ¼ 1; n ¼ 11; and o2 frequency—to the mode of m ¼ 1; n ¼ 7:
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Fig. 9. Changes in time of the (a) amplitude A1 and (b) phase velocity d%y=dt at Að0Þ ¼ 2h; l=R ¼ 2:415; ’að0Þ ¼ ’bð0Þ ¼
0; %yð0Þ ¼ p=4:
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Fig. 9 illustrates characteristic features of variation in time of the amplitude parameter A1 and
phase velocity ’%y for the case of ’að0Þ ¼ ’bð0Þ ¼ 0 for a free oscillating shell. As can be seen, the
‘‘oscillations’’ of A1(t) and

’%yðtÞ functions correspond to typical beating. The energy transmitting
from one mode (m,n1) to another (m,n2) and vice versa will be, in some moments, realized
completely (i.e., one of the forms will not be excited in these moments, whereas the other form will
be characterized by a maximal deflection from the middle surface).
Fig. 10 shows the impact of the dimensionless parameter l=R to free vibrations of the shell;

moreover curves 1 are for l=R ¼ 2:40;and curves 2 for l=R ¼ 2:43: It is seen clearly that the
periods of beatings of A1(t) and

’%yðtÞ are essentially sensitive to some, even a slight shift of a shell
from its intrinsic resonance.
Figs. 11 and 12 show phase patterns corresponding to the free periodical oscillations of the shell

for the resonance under consideration. Fig. 11 is obtained for initial conditions of the
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Fig. 10. Changes in time of the (a) amplitude A1 and (b) phase velocity d%y=dt at: 1—l=R ¼ 2:40; 2—l=R ¼ 2:43; when
Að0Þ ¼ Bð0Þ ¼ 2h; ’að0Þ ¼ ’bð0Þ ¼ 0; %yð0Þ ¼ p=4:
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Fig. 11. Phase trajectories for the periodic vibrations of the shell having l=R ¼ 2:415; ’að0Þ ¼ ’bð0Þ ¼ 0; %yð0Þ ¼ p=4 when

Að0Þ ¼ 2h:

Fig. 12. Phase trajectories for the periodic vibrations of the shell having l=R ¼ 2:415; ’að0Þ ¼ ’bð0Þ ¼ o; %yð0Þ ¼ p=4 when

(a) Að0Þ ¼ 1:5h and (b) Að0Þ ¼ 2 h:
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type ’að0Þ ¼ ’bð0Þ ¼ 0; A(0)=2h, %yð0Þ ¼ p=4; Figs. 12(a) and (b) are for Að0Þ ¼ 1:5h and Að0Þ ¼ 2h,
respectively (in both cases it was accepted that ’að0Þ ¼ ’bð0Þ ¼ o; %yð0Þ ¼ p=4Þ:

5. Conclusions

A method for the investigation of the free non-linear oscillations of cylindrical shells is
suggested that accounts for interaction of the conjugated forms and forms of general type. The
method is based upon the averaging-method concepts of Bogolyubov and Mitropolsky, which
have been employed for the solution of equations of the special form (Eq. (22) type) describing the
multi-mode oscillations of shells.
As a result of the investigations, it has been established that the effects of the interaction of the

forms are manifest mostly in conditions of internal resonances. Construction of a number of first
solutions became possible in the course of producing these resonances. These integrals have
established definite ‘energy-transmitting’ connections between the various modes (within the
regime of free oscillations of a shell). Employment of the solutions obtained enabled a solution of
the initial system of high-degree dynamical equations to be reduced to the analysis of two
equations constructed relative to the base variables: amplitude parameter u1 of one of the modes
and phase parameter y (or %yÞ:
Processes of the interaction of the modes essentially depend upon stated initial conditions for

the functions ’aðtÞ and ’bðtÞ; occurring in expression (23) for deflection value w. In particular, these
processes are qualitatively different in the cases of ’að0Þ ¼ 0 ð ’bð0Þ ¼ 0Þ and ’að0Þa0 ð ’bð0Þa0Þ: This
is seen if Figs. 3 with 4, 5 with 6, and 11 with 12 are compared. On the other hand, the character of
initial conditions for aðtÞ and bðtÞ determines whether the total deflection is a superposition of the
traditional standing waves, or of the running waves. Variation of the initial values of amplitudes
A(0) and B(0), in its turn, is a pre-condition for the corresponding variation of periods of the
energy transmitting from one form to another.
In conclusion, it should be noted that the method suggested can be extended to the case of

arbitrary number of the interacting modes. The only condition is that the eigenfrequencies of the
modes have to meet the specific resonance relationships.

Appendix A

Time functions fj ¼ fiðtÞ; ðj ¼ 1226Þ used in correlation (6) are given by

f1 ¼
El2f1

RDðl; s1Þ
ð1� s21Rf5Þ; f2 ¼

El2f2
RDðl; s1Þ

ð1� s21Rf5Þ;

f3 ¼
El2f3

RDðl; s2Þ
ð1� s21Rf5Þ; f4 ¼

El2f4
RDðl; s2Þ

ð1� s22Rf5Þ;
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f5 ¼
El2

RDð2l; 0Þ
½s21Rðf 2

1 þ f 2
2 Þ þ s22Rðf 2

3 þ f 2
4 Þ � 4f5�;

f6 ¼
El2s21ðf

2
2 � f 2

1 Þ
2Dð0; 2s1Þ

; f7 ¼
El2s22ðf

2
4 � f 2

3 Þ
2Dð0; 2s2Þ

;

f8 ¼ �
El2s21 f1 f2

Dð0; 2s1Þ
; f9 ¼ �

El2s22 f3 f4

Dð0; 2s2Þ
;

f10 ¼
El2s21 f1 f5

Dð3l; s1Þ
; f11 ¼

El2s22 f3 f5

Dð3l; s2Þ
;

f12 ¼
El2s21 f2 f5

Dð3l; s1Þ
; f13 ¼

El2s22 f4 f5

Dð3l; s2Þ
;

f14 ¼
El2ðs1 þ s2Þ

2

4Dð2l; s1 � s2Þ
ðf1 f3 þ f2 f4Þ;

f15 ¼ �
El2ðs1 þ s2Þ

2

4Dð0; s1 � s2Þ
ðf1 f3 þ f2 f4Þ;

f16 ¼
El2ðs1 � s2Þ

2

4Dð2l; s1 þ s2Þ
ðf1 f3 � f2 f4Þ;

f17 ¼ �
El2ðs1 þ s2Þ

2

4Dð0; s1 þ s2Þ
ðf1 f3 � f2 f4Þ;

f18 ¼
El2ðs1 þ s2Þ

2

4Dð2l; s1 � s2Þ
ðf2 f3 � f1 f4Þ;

f19 ¼ �
El2ðs1 � s2Þ

2

4Dð0; s1 � s2Þ
ðf2 f3 � f1 f4Þ;

f20 ¼
El2ðs1 � s2Þ

2

4Dð2l; s1 þ s2Þ
ðf1 f4 þ f2 f3Þ;

f21 ¼
El2ðs1 þ s2Þ

2

4Dð0; s1 þ s2Þ
ðf1 f4 þ f2 f3Þ;

f22 ¼
Ef5

128l2R
; f23 ¼ �

El2s21 f1 f5

Dð5l; s1Þ
;

f24 ¼ �
El2s21 f2 f5

Dð5l; s1Þ
; f25 ¼ �

El2s22 f3 f5

Dð5l; s2Þ
;

f23 ¼ �
El2s22 f4 f5

Dð5l; s2Þ
:
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Appendix B

In Eqs. (8) the frequencies o2
i and constants Kjk are given by

o2
1 ¼

1

r
D

h
Dðl; s1Þ þ

El4

R2Dðl; s1Þ

� �
;

o2
2 ¼

1

r
D

h
Dðl; s2Þ þ

El4

R2Dðl; s2Þ

� �
;

o2
3 ¼

64

35r
8Dl4

h
þ

35

64

E

R2

� �
;

k11 ¼
E

16r
ðl4 þ 3s41Þ; k12 ¼

E

8r
ðs21s

2
2 þ MÞ;

k13 ¼ �
Es21
rR

5

8
þ

2l4

Dðl; s1Þ

� �
;

k14 ¼ �
El4s41
r

1

Dðl; s1Þ
þ

4

Dð3l; s1Þ
þ

1

Dð5l; s1Þ

� �
;

k21 ¼ k12; k22 ¼
E

16r
ðl4 þ 3s42Þ;

k23 ¼ �
Es22
rR

5

8
þ

2l4

Dðl; s2Þ

� �
;

k24 ¼
El4s42
r

1

Dðl; s2Þ
þ

4

Dð3l; s2Þ
þ

1

Dð5l; s2Þ

� �
;

k31 ¼ 16
35

k13; k32 ¼ 16
35

k23; k33 ¼ 32
35

k14; k34 ¼ 32
35

k24;

M ¼
l4

2
ðs1 � s2Þ

4 1

Dð2l; s1 þ s2Þ
þ

1

Dð0; s1 � s2Þ

� ��

þ ðs1 þ s2Þ
4 1

Dð0; s1 þ s2Þ
þ

1

Dð2l; s1 � s2Þ

� ��
:
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Appendix C

The coefficients gi; di; ci; di; ci ði ¼ 1; 2Þ; used in Eq. (22) are given by

g2 ¼ k22 �
k23k32

o2
3

;

d1 ¼ k12 �
k13k32

o2
3

; d2 ¼ k21 �
k23k31

o2
3

;

c2 ¼
k32

o4
3

ðk23k34 þ k24k32Þ;

d1 ¼
1

o4
3

½k13ðk32k33 þ k31k34Þ þ 2k14k31k32�;

d2 ¼
1

o4
3

½k23ðk31k34 þ k32k33Þ þ 2k24k31k32�;

l1 ¼
k32

o4
3

ðk13k34 þ k14k32Þ; l2 ¼
k31

o4
3

ðk23k33 þ k24k31Þ:

Appendix D. Definitions of symbols

w adiarl sagging of a shell
f stress function of the middle surface
r density of shell material
R middle surface radius

l length of a shell
h shell thickness
t time
x, y radial and circumferential co-ordinates
E Young’s modulus of shell
m Poisson coefficient
D(M,N) operator of the form DðM;NÞ ¼ ðM2 þ N2Þ2

l ¼ lm ¼ mp=l; sk ¼ nk=R; ðk ¼ 1; 2Þ wave-formation parameters
m number of longitudinal waves
nk number of complete circumferential waves
oi shell eigenfrequencies

D the flexural rigidity of the shell ¼
Eh3

12ð1� m2Þ

� �

r4 operator of the form r4 ¼ r2r2 ¼
@4

@x4
þ 2

@4

@x2@y2
þ

@4

@y4

fiðtÞ the generalized co-ordinates of the shells
a, b amplitude of bi-mode vibration of the shell
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W1;W2 phase parameters of the vibrations
A, B amplitude of bending waves in shells
a; b phase parameters of bending waves
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