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Abstract

The purpose of this paper is to investigate experimental and numerical dynamic responses of a preloaded
vibro-impacting Hertzian contact under sinusoidal excitation. Dynamic response under random excitation
is analyzed in the second part of this paper. A test rig is built corresponding to a double sphere–plane
contact preloaded by the weight of a moving cylinder. Typical response curves are obtained for several
input levels. Time traces and spectral contents are explored. Both amplitude and phase of harmonics of the
dynamic response are investigated.

Linearized resonance frequency and damping ratio are identified from the almost linear behaviour under
very small input amplitude. Increasing the external input amplitude, the softening behaviour induced by
Hertzian non-linear stiffness is clearly demonstrated. The resonance peak is confined to a narrow frequency
range. Jump discontinuities are identified for both amplitude and phase responses. The forced response
spectrum exhibits several harmonics because of a non-linear Hertzian restoring force. Numerical
simulations show a very good agreement with experimental results.

For higher input amplitudes, the system exhibits vibro-impacts. Loss of contact non-linearity clearly
dominates the dynamic behaviour of the vibro-impacting contact and leads to a wide frequency range
softening resonance. The spectral content of the response is dominated by both the first and the second
harmonics. Evolution of the experimental downward jump frequency vs. input amplitude allows the
identification of the non-linear damping law during intermittent contact. Simulations of the vibro-
impacting Hertzian contact are performed using a shooting method and show a very good agreement with
experimental results.
r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many mechanisms and mechanical devices use Hertzian contacts to transform motions and
forces and to ensure rotation or translation motions. Under operating conditions, these contacts are
often excited by dynamic normal forces superimposed on a mean static load. These excitation forces
can be generated externally to the contact. They can also be generated by internal sources such as
roughness induced vibrations. Undesirable vibration responses can lead to excessive wear, contact
fatigue and noise generation. Furthermore, in many mechanisms and mechanical devices such as
gears and rolling element bearings, clearances introduced through manufacturing tolerances are
necessary to ensure good functioning. Under excessive excitations, contacts can exhibit undesirable
vibro-impact response leading to surface damage and excessive noise. In this context, study of the
dynamic behaviour of fundamental Hertzian contacts including possible loss of contact is an
essential stage in the understanding of the dynamics of more complex mechanical systems.

Considering vibrations of Hertzian contact excited by sinusoidal force, numerous papers
present theoretical studies concerning the primary resonance which occurs without loss of contact
[1–3]. Nayak modelled a preloaded Hertzian contact problem using the harmonic balance method
[1]. The primary resonance exhibits a non-linear softening behaviour induced by the non-linear
contact stiffness. Nevertheless, bending of the resonance peak remains in a narrow frequency
range. Other theoretical works related to the primary resonance of Hertzian contact include that
of Hess and Soom [2]. They analyzed the reduction of the average friction coefficient induced by
the dynamic response, using the multiple scales method. Perret-Liaudet and Sabot analyzed the
primary resonance including vibro-impact responses using a shooting method in combination with a
continuation method [3]. The effect of the contact loss non-linearity is strong as the softening
resonance is established in a much wider frequency range. Finally, theoretical description of the 2-
subharmonic resonance and of the 2-superharmonic resonance is achieved by Perret-Liaudet [4, 5].

Partial experimental results concerning the primary resonance are presented by Carson and
Johnson [6]. They used an original test rig consisting of two rolling contact discs, one of them
being regularly corrugated. Sabot et al. [7] experimentally studied a ball normally preloaded by a
moving rigid mass. They clearly exhibited the softening primary resonance when no loss of
contact occurs and analyzed mechanical sources of damping.

In this paper, experimental dynamic behaviour of a preloaded double sphere–plane Hertzian contact
under sinusoidal excitation is investigated. Dynamic responses are investigated in detail including
vibro-impact responses. Comparison with theoretical results permits to conclude on the main
characteristics of the system associated to both Hertzian non-linearity and contact loss non-linearity.
After description of the dynamic model studied in Section 2, the used test rig and the experimental
procedure are presented in Section 3. Experimental and theoretical results are presented in Section 4.

2. The studied dynamic model

2.1. Equation of motion

The single degree-of-freedom impact oscillator under study is shown in Fig. 1. A moving rigid
mass m is kept in contact with a flat surface and loaded by a static normal load Fs: Assuming
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Hertzian contact law, the non-linear restoring contact force can be derived from material
properties and contact geometry [8]. When the system is excited by a normal force F ðtÞ
superimposed on the static load, the equation of motion may be written as

m.z þ c’z þ k½HðzÞz�3=2 ¼ Fs þ F ðtÞ; ð1Þ

where z is the normal displacement of the rigid mass m measured such as zo0 corresponds to loss
of contact, c is a damping coefficient, k is a constant given by the Hertzian theory and H is the
Heaviside step function. For convenience, the damping is assumed to be a constant at all times in
Eq. (1) but other laws are introduced later.

When zero-mean excitation force is assumed, the static contact compression zs is given by the
following equation:

zs ¼
Fs

k

� �2=3

: ð2Þ

Introducing the linearized contact natural frequency O and the damping ratio z given by

O2 ¼
3k

2m

� �
z1=2s ; z ¼

c

2mO
ð3; 4Þ

and rescaling Eq. (1) by letting

q ¼
3

2

z � zs

zs

� �
; t ¼ Ot; f ¼

F

Fs

: ð5; 6; 7Þ
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Fig. 1. Studied single degree-of-freedom oscillator.
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The dimensionless equation of motion is obtained as follows:

.q þ 2z ’q þ H 1þ
2

3
q

� �
1þ

2

3
q

� �� �3=2

¼ 1þ f ðtÞ: ð8Þ

In this equation, overdot indicates differentiation with respect to the dimensionless time t: It
should be noted that loss of contact now corresponds to the inequality:

qo� 3
2
: ð9Þ

In this paper, a purely harmonic excitation is considered. Then, the dynamic external normal force
is

f ðtÞ ¼ s sin ð$tÞ; ð10Þ

where s controls the level of the excitation and $ is the dimensionless excitation frequency.

2.2. Contact damping force

To describe the contact damping force fd ; one may assume also several viscous damping laws
which can be expressed, considering the original model case as

fd ¼ 2z 1þ 2
3
q

� �n
H 1þ 2

3
q

� �
’q: ð11Þ

One can introduce a linear damping force (n ¼ 0), or a damping force proportional to the
contact radius ( n ¼ 1

2
), or a damping force proportional to the elastic deformation and to the

contact area (n ¼ 1), or a damping force proportional to the elastic restoring force ( n ¼ 3
2
). For

these laws, it should be noted that damping acts only when contact is made. More complex
damping contact laws have been introduced in previous studies [9–11] but have not been
investigated here.

3. Test rig and experimental procedure

3.1. Test rig

The test rig is displayed in Fig. 2. The experimental system studied corresponds to a double
sphere–plane Hertzian contact. A 100C6 steel ball is compressed between the horizontal plane
surfaces of two 100C6 steel thick discs which are rigidly fixed to a heavy rigid frame of a machine
tool and a cylinder moving like a rigid body.

The ball diameter is 25.4mm and its weight is 70 g. The double sphere–plane Hertzian
contact is loaded by the weight of the moving cylinder. Its mass is m=11.4 kg, corresponding
to a static load Fs=mg=110N. The moving cylinder is held by six titanium thin stems connected
to the rigid frame in order to prevent lateral displacements and rotations. Then, only vertical
motion of the cylinder is authorized. Furthermore, stems also allow regulation of the cylinder
verticality.

The compliance of a rough and weakly loaded sphere–plane contact obtained experimentally
may be different from the theoretical compliance supplied by the Hertz equation [12]. Planes were
ground to obtain roughness Rao0:4 mm in order to avoid this problem. Ball roughness is also
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weak (Rao0:03mm), so that, asperities are quite smaller than contact deflection and contact area.
Finally, only dry contact is considered. Surfaces are cleaned before each run to remove grease
from contact.

The experimental system can be modelled by a two degrees-of-freedom non-linear dynamic
system. However, the ball mass is negligible with regard to that of the moving cylinder, and it can
easily shown that, for sufficiently low frequencies, this model is equivalent to the previously
defined single degree-of-freedom system (1) [7]. The constant k of the preceding restoring elastic
force expression is deduced from the double sphere–plane Hertzian contact. Assuming identical
mechanical properties for the ball and the discs leads to

k ¼
E

ffiffiffiffi
R

p
3

ffiffiffi
2

p
ð1� n2Þ

; ð12Þ

where E is Young’s modulus (210GPa), n is the Poisson ratio (0.29) and R is the ball radius
(12.7mm).

Then, the theoretical characteristics of the experimental system are

k ¼ 5:98� 109 Nm�3=2; ð13Þ

zs ¼ 7 mm; ð14Þ

f0 ¼
O
2p

¼ 232Hz: ð15Þ
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Fig. 2. Test rig: (1) Vibration exciter, (2) force transducer, (3) moving cylinder, (4) accelerometer, (5) ball, (6) tri-axis

force transducer, (7) rigid frame.

E. Rigaud, J. Perret-Liaudet / Journal of Sound and Vibration 265 (2003) 289–307 293



The second natural frequency of the double sphere–plane contact has been calculated and
confirmed experimentally. Below this frequency (5500Hz), the single degree-of-freedom system is
justified.

Maximum contact pressure induced by static load has been calculated using Hertz theory
(p0 ¼ 1:2 GPa) to ensure an elastic contact.

3.2. Instrumentation and acquisition

Contact is normally excited by a vibration exciter connected to the moving cylinder and
suspended with four springs. Sinusoidal input is applied to the moving cylinder and superimposed
on the static load Fs: For this end, a signal generator and a power amplifier are used.

A piezoelectric force transducer is mounted between the vibration exciter and the moving
cylinder to measure the excitation force F ðtÞ: The vertical response .zðtÞ of the cylinder is measured
by a piezoelectric accelerometer. Normal force NðtÞ and tangential forces TðtÞ transmitted to the
frame through the contact are measured by a piezoelectric tri-axis force transducer. Classical
charge amplifiers are used for all responses.

Regulation of the cylinder verticality leads to a quasi-perfectly normal load. During
experimental measures, a check is made that tangential forces are negligible and remain always
lower than 1% of the normal force transmitted to the frame. Considering the experimental system
and the transducer stiffness (8000N/mm), the force measurement bandwidth is 0–7 kHz.

The input force and the dynamic responses are displayed on a four-channel storage
oscilloscope. Spectral contents (amplitude and phase) are measured with a real time spectrum
analyzer using a sampling rate of 4096 samples over the frequency bandwidth. Then the frequency
resolution is never less than 0.25Hz for all spectral quantities. Each harmonic of signal is analyzed
using a lock-in amplifier. This one is based on a phase sensitive detection to single out the
components of the signal (frequency, amplitude, and phase).

4. Forced dynamic response to a sinusoidal excitation

All the experimental data obtained show a near perfect similarity between the fluctuating part
of the normal force and the vertical acceleration of the moving cylinder. Measured correlation
coefficients are always up to 99%. Then, for convenience, only results associated to the normal
force are presented.

4.1. Dynamics without contact loss

When the external input amplitude is very small (s ¼ 0:03%), contact dynamic behaviour is
almost linear, even if the resonance curve is slightly asymmetrical (see Fig. 3). No jump
phenomenon occurs and harmonic normal force is observed. Linearized contact frequency
measured from these experimental data (f0 ¼ 233:4 Hz) is close to the predicted natural frequency
since the relative error is less than 0.5% (see Eq. (15)). Analysis of the amplitude response curve of
H1 allows one to estimate an equivalent viscous damping ratio close to z ¼ 0:5%: This result is
coherent with preceding studies [7].
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For higher external input amplitudes, experimental normal force NðtÞ presents not only H1

component associated to the input frequency $ but also H2 component associated to the second
harmonic 2$: The other harmonic components remain always negligible. Amplitude and phase of
the two first harmonics (H1 and H2) are displayed in Figs. 4 and 5, for two external input
amplitudes. They are obtained by increasing or decreasing the external input frequency, such that
stationary process can be assumed at each frequency.

For an external input amplitude s ¼ 0:6%; the system exhibits a non-linear softening behaviour
since the amplitude frequency response curve is bent to frequencies lower than the linearized
contact natural frequency. Distortion of the phase response curve is also clearly demonstrated.
The bending of the resonance curve leads to multi-valued amplitude and phase responses for
$o1: Two stable solutions and one unstable solution exist leading to a pair of saddle node
bifurcations and hence, to jump discontinuities. Jump discontinuities occur for both harmonic
components H1 and H2: The downward jump frequency $d corresponds to the phase resonance.
Decreasing the external frequency, the phase angle of H1 component relative to the excitation
varies from 1801 to 01 with a jump discontinuity from 901 to 01. Phase angle of H2 component is
twice the phase angle of H1 component. During data acquisition, tracking of these phase angles
allows the prediction of the downward jump discontinuity before it occurs.

Normal response is very high for relatively small input amplitude, so that external input
amplitude s ¼ 1% leads to dynamic response just below loss of contact. Frequencies of upward
jump and downward jump discontinuities have decreased. They are close to $u=0:984 and
$d=0:957: The downward jump frequency agrees very well with the theoretical value predicted
considering the backbone curve ($d ¼ 0:953) [1]. As we can see in Figs. 3 and 4, H2 component
amplitude becomes non-negligible and reaches 17% of H1 component amplitude in the resonance
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Fig. 3. Normal force vs. external frequency for s ¼ 0:03%:
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peak. This behaviour results from the asymmetrical characteristic of the non-linear restoring
Hertzian force around the static equilibrium.

Minimum and maximum peak amplitudes of the normal force are displayed in Fig. 6. Time
history of the normal force at the resonance peak is displayed in Fig. 7. It shows hardening
behaviour in compression (Nmax ¼ Fs þ 1:3Fs) and softening behaviour in extension
(Nmin ¼ Fs � 0:92Fs). The spectrum of the normal force is displayed in Fig. 8. The H1 component
appears up to 1 although loss of contact does not occur. Consequently, resonance peak cannot be
accurately predicted from analytical methods only taking into account the fundamental harmonic
such as the harmonic balance method and the multiple scales method [1,2]. H2 component is close
to 0.2 and the higher components are negligible.

Finally, the softening behaviour, well known through numerical results [1–3], is clearly
demonstrated experimentally. Non-linear behaviour associated to Hertzian contact is rather weak
since the resonance curve is confined in a narrow frequency range close to the linearized contact
frequency.
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4.2. Dynamics with intermittent contact loss

For this set of experimental results, it is important to say that good repeatability was always
observed.

Experimental results show that a small input amplitude is likely to induce intermittent loss of
contact. When s > 1:2%; loss of contact occurs as the normal force reaches 100% of the static
load, that is to say the vertical acceleration of the moving cylinder reaches the gravity
acceleration. Vibro-impact response leads to contact fatigue and undesirable noise (until 80 dB
1m far from the test rig). Figs. 9 and 10 display the frequency response curves for increasing input
amplitudes up to 1.2% of the static load. Loss of contact non-linearity clearly dominates the
dynamic behaviour. It strongly bends the frequency response curve to low frequency (softening
behaviour). For instance, in the case of an input amplitude close to 7% of the static load, upward
jump frequency is equal to $u ¼ 0:909 and peak resonance occurs at $d ¼ 0:560 (nearly half the
linearized contact frequency), so that, dynamic vibro-impact response can be established over a
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wide frequency range. Furthermore, the spectral content of the response is now much richer. The
H2 component amplitude reaches up to 80% of H1 component amplitude in the peak resonance.
One can also observe irregularities on the frequency response curve just before the downward
jump occurs. These ones certainly result from the excitation of the second mode, inducing a ball
motion between the upper and the lower planes.

Fig. 11 displays the experimental downward jump frequency $d vs. the input amplitude s: One
can observe three behaviours. Just below the linearized contact frequency (0:957o$do1) no loss
of contact occurs and the downward jump frequency decreases slowly. When vibro-impacts occur,
the downward jump frequency suddenly decreases over a relatively large frequency range and then
slowly decreases (0:675o$do0:957). Then, the downward jump frequency suddenly decreases
again ($do0:675).
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Fig. 12 displays the normal force time histories for various input amplitudes. The input
frequency is close to the downward jump frequency. Responses are asymmetrical and momentary
loss of contact can be clearly observed. Then, for s ¼ 1:4% (and $ ¼ 0:9), loss of contact occurs
during 40% of the overall time, for s ¼ 3% ($ ¼ 0:76), loss of contact occurs during 60% of the
overall time, and for s ¼ 7% ($ ¼ 0:55), loss of contact occurs during 75% of the overall time.
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Fig. 8. Amplitude spectrum of the normal force for s=1% and $=0.957.
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For the last case, cylinder fly period reaches 5.8ms. Furthermore, instantaneous transmitted
normal force reaches 600% of the static load. However, plastic deformation has not been
observed on the surfaces.

Finally, one can observe that the last time history of the normal force exhibits the influence of
the second mode characterized by the ball motion between the upper and the lower planes.
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4.3. Theoretical results

A classical numerical time integration explicit scheme (central difference) has been used for
achieving dynamic time histories of the theoretical responses. A specific computing method
devoted to non-linear problems is used to obtain the primary resonance, that is to say a shooting
method combined with a continuation technique (see for example [13,14]).

In the case of an external input amplitude just below loss of contact, theoretical prediction of
the primary resonance is displayed in Fig. 13 and compared to experimental results. As one can
see, the theoretical results are in very good agreement with the experimental ones for both
amplitude and phase response curves. The narrow frequency band of the softening resonance is
confirmed. The damping ratio introduced in the numerical model (0.45%) is close to the one
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experimentally measured at very low excitation (see Section 4.1). By introducing different
damping laws (see Eq. (11)), it has been numerically observed that they do not affect the primary
resonance curves. This result is coherent with preceding study [7].

Fig. 14 displays the primary resonance exhibiting the strong non-linear behaviour induced by
loss of contact. The wide frequency range softening resonance observed is in good agreement with
experimental results. However, the introduced damping ratio is higher than the one
experimentally measured at very low excitation. Contrary to the preceding case, the damping
contact law strongly influences the downward jump frequency prediction.

The downward jump frequencies $d vs. input amplitude s (see Eq. (11)) are displayed in Fig. 15
for different damping laws. Results are compared with the experimental ones displayed in Fig. 11.
Contrary to the third experimental behaviour observed for $do0:675; the two first experimental
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behaviours can be explained by theoretical results. As expected, the downward jump frequency
associated with damping proportional to the elastic restoring force is higher than the one
associated with linear damping during contact. A linear damping law during contact is not
suitable in contrast with a non-linear model. Even if the predicted and the experimental
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behaviours are similar, predicted softening resonance peaks are wider than the experimental ones,
for all the damping laws introduced during contact. Several explanations may be as follows:

* Other sources of damping may exist becoming more and more significant with the amplitude
response.

* Other kinds of damping law during contact may be adapted to treat the theoretical model.
* Some interactions between the first and the second modes may affect the dynamic behaviour of

the system resulting in occurrence of other bifurcations.

Anyway, it appears necessary to carry on efforts of research in order to obtain precise
knowledge of damping mechanisms during impacts. Actually, in the authors’ opinion, damping in
vibro-impact conditions is not adequately modelled at the present time.

Finally, time traces of the steady state normal force response are given in Figs. 16 and 17
illustrating respectively a case without loss of contact and a case with. Theoretical results are in a
good agreement with experimental ones (see Figs. 7 and 12) despite adjustment of damping ratio
in vibro-impact conditions. In particular, when impacts occur, flight time ratio is correctly
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predicted, compared to in contact time and maximum amplitude. Nevertheless, increasing the
damping ratio is necessary to adjust levels, even if a damping proportional to elastic restoring
force is introduced.

5. Conclusions

An original test rig has been built and improved in order to analyze vibrations of a double
sphere–plane preloaded Hertzian dry contact excited by a purely harmonic input normal force.
Theoretical and experimental results concern the primary resonance. Experimental linearized
contact frequency and theoretical value are very close (233Hz). Damping ratio measured with
small input amplitude is very low (0.5%).

For input amplitude lower than 1% of the static load, no loss of contact occurs. Experimental
dynamics clearly demonstrates the softening behaviour of Hertzian contacts well known through
numerical results.

The resonance curve is bent to frequencies lower than the linearized contact natural frequency,
leading to saddle-node bifurcations and jump discontinuities. It has been observed that the
dynamic response is dominated by both the H1 component associated with the input fundamental
frequency $ and the H2 component associated to the second harmonic 2$: Jump discontinuities
happening for both components H1 and H2 and the associated phases are clearly shown. We can
conclude that the Hertzian non-linearity remains rather weak since the resonance peak is confined
to a narrow frequency range close to the linearized contact frequency. This result is confirmed by
theoretical analysis.

As the damping is low, a small input amplitude is likely to induce vibro-impacts (around 1.2%
of the mean static load). Loss of contact non-linearity clearly dominates the dynamic behaviour as
it strongly bends the frequency response curve to low frequencies (softening behaviour). Actually,
a resonance peak is established over a wide frequency range. Amplitude of the H2 component
becomes higher and higher and cylinder fly duration becomes longer and longer as input
amplitude increases.

Specific computing methods devoted to non-linear problems, i.e., shooting and continuation
methods, have been used to treat the loss of contact non-linearity and to investigate theoretical
dynamic response of the Hertzian contact. Theoretical results qualitatively agree very well with
experimental ones. Quantitatively, slight discrepancies appear. Particularly, it is necessary to
increase the theoretical damping ratio with the amplitude response even if a viscous damping
proportional to the restoring elastic force is introduced. This result reveals a lack of
comprehension of damping physical sources. So, in our opinion, some efforts of research are
necessary to obtain precise knowledge of damping mechanisms in vibro-impact conditions.

Appendix A. Nomenclature

m rigid mass
c damping coefficient
k Hertzian constant
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Fs static load
FðtÞ excitation normal force
zðtÞ normal displacement
zs static contact compression
Ra surface roughness
R ball radius
E Young’s modulus
n the Poisson ratio
O linearized natural circular frequency
f0 linearized natural frequency
p0 static contact pressure
z damping ratio
t dimensionless time
q dimensionless normal displacement
f ðtÞ dimensionless excitation normal force
fdðtÞ dimensionless contact damping force
$ dimensionless excitation frequency
s level of sinusoidal force
NðtÞ transmitted normal force
TðtÞ transmitted tangential force
Nmax maximum transmitted normal force
Nmin minimum transmitted normal force
H1 first hamonic of the transmitted normal force
H2 second harmonic of the transmitted normal force
$u upward jump frequency
$d downward jump frequency
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