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Abstract

Self-sustained oscillations of the flow in a closed side branch system due to a coupling of vortex shedding
with acoustical resonances are considered. The configuration consists of two closed side branches of same
length placed opposite to each other along a main pipe. This is called a cross-junction. Numerical
simulations, based on the Euler equations for two-dimensional inviscid and compressible flows, are
performed. As the radiation into the main pipe is negligible at the resonance frequency, this acoustically
closed system is a good test-case of such Euler numerical calculations. The numerical results are compared
to acoustical measurements and flow visualization obtained in a previous study. Depending on the flow
conditions, the predicted pulsation amplitudes are about 30–40% higher than the measured amplitudes.
This is partially due to the absence of visco-thermal dissipation in the numerical model but also to the effect
of wall vibrations in experiments. A simple analytical model is proposed for the prediction of the pulsation
amplitudes. This model is based on Nelson’s representation of the shear layer as a row of discrete vortices
convected at constant velocity from the upstream edge towards the downstream edge. When the
downstream edge is sharp, this results in a spurious interaction between the singularity of the vortices and
of the edge flow. This artefact is partially compensated by suppressing the singularity of the acoustical flow
at the edge, or when a junction with rounded edges, as found in engineering practice, is considered. In spite
of its crudeness, the analytical model provides a fair prediction (within 30%) which makes it useful for
engineering applications.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Self-sustained oscillations can appear when a flow is grazing along deep cavities. The flow
separation induces the formation of a shear layer separating the main flow from the stagnant fluid
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in the cavity. This shear layer is unstable. The coupling between resonant acoustic standing waves
in the cavity and instabilities of the shear layer results in self-sustained oscillations.

The phenomenon of self-sustained oscillations is due to an acoustic feedback loop in which the
shear layer can be represented as an amplifier (Fig. 1). The acoustic resonant modes of the cavity
determine the oscillation frequency.

Strong resonances can be observed in pipe systems with closed side branches. The case in which
the side branches have the same diameter as the main pipe is considered. A closed side branch of
length L along a main pipe is an almost perfect reflector at critical resonance frequencies fm ¼
mc=ð4LÞ (where m ¼ 2n þ 1 with n ¼ 0; 1; 2;y and c is the speed of sound), but it is not a
resonator on its own [1–3].

A closed resonator can be formed by two such resonant closed side branches placed at a
distance LnEðc=2f Þn from each other along the main pipe (f is the resonance frequency and
n ¼ 0; 1; 2;y) [1,4]. Fig. 2 shows two examples of such resonators.

Consider the case in which the pipes have the same length L ¼ c=4f and are placed opposite to
each other (n ¼ 0; Fig. 2b). This configuration is called a cross-junction and is studied in this
paper.

In case of deep cavities, Elder [5] and Howe [6] proposed a model based on a linear response of
the shear layer. The oscillation amplitude of the shear layer increases exponentially with the
distance from the upstream edge. This model is limited to very low amplitudes (u0=U0p10�3;
where u0 is the amplitude of the acoustical component of the velocity and U0 is the mean flow
velocity). This is called the low-amplitude regime.

For larger amplitudes, the shear layer breaks down into discrete vortices [7].
For moderate amplitudes ð10�2pu0=U0p10�1Þ; while the formation of discrete vortices is

triggered by the acoustic velocity field, the amount of vorticity shed remains, however,
independent of the amplitude of the acoustic field [1]. It is controlled by the mean flow. It is
essentially equal to the amount of vorticity shed in the steady flow case when there are no
oscillations. The empirical model of Nelson et al. [7] for a Helmholtz resonator assumes that the
vorticity is concentrated into line vortices convected at a constant velocity UG ¼ 0:4U0 along a
line joining the upstream to the downstream edge. Earlier applications of the model to a junction
with sharp edges by Bruggeman et al. [1] and Howe [6], overestimate the pulsation amplitudes by a
factor of three or more. This appears to be due to the interaction of a singularity in the vorticity
field, the point vortex, with a singularity in the acoustic field at the sharp downstream edge. In
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Fig. 1. Acoustic feedback loop characterizing the phenomenon of self-sustained oscillations.
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practice, this strong interaction does not occur because the vorticity is not concentrated into a
point [1] and because the vortex path deviates from the straight line assumed in Nelson’s model
[6]. The fact that the vortex does not always hit the downstream edge is very clearly seen in the
flow visualizations and vortex-blob numerical simulations of Kriesels et al. [3] which are used as
test-case of our own numerical and analytical models (Section 5.2). It will be shown that when the
singularity of the acoustical flow at the sharp edge is removed, the prediction of the model is
improved. Furthermore, the effect of the sharpness of the edges is studied by considering results
obtained for a junction with rounded edges [1–3]. As pipe junctions have rounded edges in most
engineering applications, this is quite relevant.

In this paper, the proposed analytical model is based on the Nelson’s model but in which the
singularity of the acoustical flow at the downstream edge is suppressed (Section 3). This allows
better prediction of the pulsation amplitude. In Section 2, a summary of experimental data
obtained by Peters [2] and Kriesels et al. [3] is provided. Experimental data are then compared to
original numerical simulations based on the Euler equations for two-dimensional compressible
flows (Section 4). As the Euler code used here has been described in some details in other papers
[8–10], the focus will be on the description of the analytical model. From earlier work on wall
cavities [10,11], it appears that the numerical results depend crucially on the acoustical boundary
conditions outside the cavity. The problem is due to the difficulty in converting 3-D acoustical
boundary conditions outside the cavity into a 2-D numerical code. The present case of a cross-
junction has the great advantage to remain a 2-D problem in the entire flow. Furthermore, the
self-sustained oscillations are not sensitive to the acoustical boundary conditions at the inflow and
outflow planes in the main pipe. This provides an excellent test of the aero-acoustical
performances of the Euler code over the bulk of the flow.

The results are also compared to numerical results obtained by using a point-vortex model
assuming a locally two-dimensional incompressible potential flow model. This method is
described in detail by Peters [2], Kriesels et al. [3] and Hofmans [12]. The point vortices are
desingularized using the method proposed by Krasny [13]. This is called a vortex-blob method.
Accurate calculations carried out by Hofmans [12] for a similar case (single side branch system)
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Fig. 2. Two reflectors placed at a distance Ln ¼ nc=2f from each other (closed resonators): (a) case n ¼ 1; (b) case

n ¼ 0: The resonant acoustic mode in pressure perturbation is shown.
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appear to predict the pulsation amplitudes within 10% for u0=U0o0:1: For u0=U0 ¼ Oð1Þ; the
model overestimates the pulsation level by 30%.

Using Howe’s energy corollary (see Eq. (5)), this incompressible flow simulation provides a
prediction of the acoustical power generated by the flow at the junction. By using an energy
balance which includes visco-thermal losses and the effect of shock wave formation, one can
predict the pulsation amplitude [3,12]. For moderate amplitudes, Kriesels et al. [16] propose a
simplified approach based on the assumption that the sound power generated by the flow is
proportional to the pulsation amplitude. This approach will be described more in detail in Section
2.3. Furthermore, the estimation given by Kriesels [3] of the effect of shock wave formation will be
corrected as proposed by Hofmans [12].

2. Previous experimental and numerical studies

2.1. Experimental setup

A summary of the experimental results of Peters [2] and Kriesels et al. [3] is provided here, and
they are compared to our theoretical models. Fig. 3 shows a scheme of the experimental setup. A
complete description of the experimental setup can be found in Refs. [2,3]. The closed side
branches and the main pipe have a square cross-section area of H � H ¼ 60 � 60 mm2: The pipes
have aluminium walls with a thickness of 2 mm:

A drawback of the square pipe cross-section used in this set-up is that it makes the system
rather sensitive to wall vibrations. Kriesels et al. [17] report maximum pulsation amplitudes
ðu0=U0Þmax ¼ 1:2 for the junction with rounded edges, while Peters [2] reports ðu0=U0Þmax ¼ 1:3:
This observed difference is partially due to the consolidation of the pipes by gluing steel plates of
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Fig. 3. Experimental setup (from Ref. [2]).
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3 mm thickness on the outer walls of the closed side branches. Furthermore, experiments carried
out at high pressures (10 bar) with circular steel pipes of 2:5 cm of diameter and a wall thickness
of 5 mm; give a maximum of pulsation amplitude of ðu0=U0Þmax ¼ 1:4 [15]. This confirms that the
pulsation levels in the data presented by Kriesels et al. [3] may have been reduced by at least 15%
due to wall vibrations.

The main flow is generated by a wind tunnel and passes through a settling chamber with square
cross-section (with a width of 0:35 m). The air flows into the main pipe through a smooth
contraction, placed one side branch width H upstream of the cross-junction. The magnitude of
the velocity U0 of the main flow is calculated from the pressure difference Dp measured across the
contraction by means of a Betz water manometer (accuracy 71 Pa). The steady flow Bernoulli
equation is used: U0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dp=r

p
(with r being the density of air). The acoustical pressure

amplitude p0exp and the oscillation frequency f are measured at the end of one of the closed side
branches by means of a piezo-electric microphone. The amplitude of the acoustic velocity field at
the junction is then deduced by assuming that only plane waves propagate into the closed side
branches: u0ðyÞ ¼ p0

exp sinðkmyÞ=ðrcÞ (with km ¼ mp=ð2LÞ the wave number where m ¼ 2n þ 1;
n ¼ 0; 1; 2;y). The length L of the closed side branches can be varied and is defined as the
distance between the end of the closed side branch and the middle of the main pipe (Fig. 3). The
effect of the deviation from the plane wave behaviour at the junction has been neglected. This
deviation would involve an ‘end-correction’ of the order of one third of the pipe width H [16].

In the region where the vortices are formed, the side walls of the cross-junction are made up of
glass windows. A Schlieren method is used to visualize the flow. A more detailed description of
this method is given by Peters [2]. The necessary difference in refractive index is obtained by
injecting a mixture of 50% Ar and 50% Ne, which has a density r and speed of sound c very close
to that of air. In this way, the injection of this mixture does not affect the acoustical behaviour of
the cross-junction. A nanolite light source generates a light pulse each time the acoustic pressure
at the end of a closed side branch exceeds a certain value. A delay between the trigger signal and
the nanolite pulse is introduced in order to visualize the flow at a different moment of the
oscillation period T ¼ 1=f : Only the vortex formation in the upper shear layer was visualized. It is
identical to the vortex formation in the lower shear layer, but with a phase shift of half an
oscillation period.

The experiments were carried out by Peters [2] on two different cross-junctions. The first cross-
junction had sharp edges (Fig. 4a) and the second had rounded edges with a radius of curvature
r ¼ 0:2H where H ¼ 60 mm is the width of the side branch (Fig. 4b).

2.2. Acoustic and hydrodynamic modes

The different acoustic modes in a cross-junction with circular pipes have been observed
experimentally by Peters [2] and Kriesels et al. [3]. These results are used to explain the different
oscillation modes of the system. Fig. 5a gives an example of the results obtained for the amplitude
of the acoustical pressure p0ðtÞ measured at the top of one closed side branch of the cross-junction
and the corresponding frequency f in terms of the main flow velocity U0: The graph of frequency
versus the main flow velocity U0 shows the different resonant acoustic modes fm ¼ mc=ð4LÞ in a
cross-junction. They correspond to closed side branches with a length L ¼ ml=4 where m ¼
2n þ 1 ðn ¼ 0; 1; 2;yÞ (Fig. 5b). Only the odd modes are resonant because they have a pressure
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node at the junction. The even modes ðm ¼ 2n; n ¼ 0; 1; 2;yÞ; which have a pressure anti-node at
the junction, radiate strongly into the main pipe.

As can be seen in Fig. 5a, pulsations occur at a certain frequency (acoustic mode) within limited
ranges of flow velocities which correspond to so-called hydrodynamic modes. In Fig. 5a, the first
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Fig. 4. Configurations studied. (a) Cross-junction with sharp edges; (b) cross-junction with rounded edges ðr=H ¼ 0:2Þ:

Fig. 5. Acoustical measurements of a cross-junction with circular pipes obtained by Kriesels [3]: (a) acoustical pressure
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hydrodynamic mode is indicated by the line h ¼ 1; the second by the line h ¼ 2: In the first
hydrodynamic mode ðh ¼ 1Þ; only one vortex per oscillation period T is shed (Fig. 6a) and the
acoustical pressure p0ðtÞ at the end of the closed side branches presents different maxima at critical
Strouhal numbers Sr ¼ fH=U0: In the second hydrodynamic mode ðh ¼ 2Þ; the time needed by a
vortex to travel through the junction is about two oscillation periods. This implies that two
vortices are present at the same time in the opening of the side branch. This is shown by the flow
visualization of Fig. 6b.

2.3. Vortex-blob method

In the earlier work of Peters [2], Kriesels et al. [3,14] and Hofmans [12], the amplitude of the
pulsations was predicted by means of an energy balance, which is also used in our analytical
modelling. In the vortex-blob calculations, the acoustical velocity u0 at the junction is imposed as a
boundary condition. At first, the acoustical power /PsourceS generated by the vortical flow is
calculated, for a given Strouhal number, as a function of the amplitude of the acoustical velocity
field (u0=U0 ¼ Oð10�1Þ). This acoustical power is then equalized to the energy losses due to visco-
thermal dissipation in the closed side branches and to radiation of even modes (Section 2.2). The
loss terms will be discussed in details in Section 3.2. The aero-acoustical source power can be
calculated by carrying out, at a fixed Strouhal number, vortex-blob calculations of the flow at
different amplitudes u0=U0: This procedure was used by Peters [2], Kriesels et al. [3] and Hofmans
[12] (Section 1).

The flow calculated on the basis of the measured pulsation amplitudes ðu0=U0Þexp will be
compared with experimental flow visualization [2,3] and with our own Euler computations. These
results will be referred to in Section 4 as Peters’ blob method. The use of such calculations
in an energy balance involves a significant computational power. Therefore for engineering
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applications, a simplified model based on the concept of moderate amplitudes u0=U0 ¼ Oð10�1Þ is
considered [1]. For such moderate amplitudes u0=U0 ¼ Oð10�1Þ; the power generated by the flow is
assumed to be proportional to the pulsation amplitude. As can be seen later from Howe’s energy
corollary (Eq. (5)), this implies that ðx � vÞ is independent of the amplitude. Detailed numerical
calculations on a single closed side branch system showed that the acoustical power /PsourceS is
approximately (within 20%) linearly dependent on u0=U0 for u0=U0o0:3 [14]. The dimensionless
source power /PsourceS=ðr0U2

0 u0H2Þ is calculated by Kriesels for the cross-junction and is
compared for different radii of curvature R of the junction edges [17] to our new analytical results
in Section 3.2.5. These data are used further in Section 5 and are referred to as Kriesels’ vortex-
blob method.

3. Theory

3.1. Vortex-sound theory [18,19]

Following the analogy of Howe [19], the acoustical velocity u0 is defined as the unsteady
irrotational part of the velocity field v:

v ¼ =ðf0 þ facðtÞÞ þ =� W; ð1Þ

u0 ¼ =facðtÞ; ð2Þ

where f ¼ f0 þ facðtÞ is the scalar potential and W is the vector stream function. The ambiguity
of this definition is removed by using the boundary conditions of the problem. In the far field, the
acoustical field corresponds to plane waves and has a zero velocity at the closed ends of the side
branches.

If friction and heat transfer are neglected, a homentropic flow satisfies Crocco’s form of the
Euler equation

@v

@t
þ =B ¼ �x � v; ð3Þ

where B is the total enthalpy defined by B ¼ i þ jvj2=2 (with i ¼ e þ p=r the specific enthalpy) and
the vorticity x is defined by x ¼ =� v:

Neglecting convective effects on the wave propagation (M0 ¼ ju0j=c051) and assuming a
compact source region (small compared to the wavelength), the wave equation is

1

c2
0

@2B

@t2
�r2B ¼ = 
 ðx � vÞ: ð4Þ

Hence, the Coriolis force density f c ¼ �rðx � vÞ is identified as the dominant source of sound
in such flows.

This equation should at least provide an excellent approximation in the closed side branches
where U0 ¼ 0:
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With this level of approximation (low Mach number), the time average of the acoustic power
Psource generated by the flow for periodic oscillations is given by

/PsourceS ¼ �r0

Z
V

ðx � vÞ 
 u0 dV

� �
; ð5Þ

where /S denotes the time averaging over one period of oscillation [19].

3.2. Single-mode model

3.2.1. Simplified acoustical model
The cross-junction configuration forms a closed resonator which behaves as a forced linear

acoustical system. If a single acoustical mode is assumed to be dominant, the acoustical
displacement xðtÞ in the source region (y ¼ 0) is described by

Ma

d2x
dt2

þ R
dx
dt

þ KxðtÞ ¼ FðtÞ; ð6Þ

where Ma represents the effective acoustical mass, R the damping, K the spring constant of the
system and FðtÞ corresponds to the external forces which act on the system. These forces FðtÞ
consist of the sum of an aeroacoustic source term due to vortices and radiation loss terms due to
non-linear wave propagation. The aeroacoustic source term can be either determined by using the
model of Nelson et al. [7] (Section 3.2.3) or the blob method [3,14]. The radiation loss term
corresponds to transfer of energy from the fundamental oscillation mode to higher modes as a
result of losses due to wave steepening (Section 3.2.2).

Determination of the effective acoustical mass Ma: The mass Ma is deduced by calculating the
kinetic energy Ec of the system:

Ec ¼
1

2
Ma

dx
dt

� �2

¼ H2

Z þL

�L

1

2
r0u02 dy; ð7Þ

where u0 is the local acoustical velocity amplitude, H and L are the width and the length of the side
branches, respectively.

By assuming harmonic plane waves in the closed side branches, the acoustical pressure p0; for
the first acoustical mode m ¼ 1; is

p0ðy; tÞ ¼ #p cosðotÞ sin
py

2L

� 	
: ð8Þ

The linearized momentum conservation equation

r0

@u0

@t
¼ �

@p0

@y
; ð9Þ

then yields

u0ðy; tÞ ¼
dx
dt

� �
cos

py

2L

� 	
: ð10Þ
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So that, neglecting the effect of the deviation of the two-dimensional flow at the junction from
the one-dimensional approximation (Eq. (10)),

Ma ¼ r0H2L: ð11Þ

Determination of the spring constant K: The spring constant K is related to the resonance
pulsation o0 ¼ 2pf0 of the system by:

K ¼ o2
0Ma; ð12Þ

where f0Ec0=ð4LÞ: This level of accuracy in the prediction of f0 is reasonable in view of other
approximations in the model.

Determination of the damping coefficient R: The damping coefficient R is related to the quality
factor Qf ¼ o0=Do3dB of the system

R ¼
o0Ma

Qf

: ð13Þ

where Do3dB is the width of the resonance peak at an amplitude which is a factor
ffiffiffi
2

p
lower than

the maximum amplitude.
The main source of acoustic losses in a cross-junction is the wave attenuation in the closed side

branches due to viscous dissipation and thermal conduction in the wall boundary layers. When
acoustical plane waves are travelling through a stagnant uniform fluid in a pipe (of cross-section
area A and perimeter Lp), their amplitude is decreasing with the distance x by an exponential
factor e�ax where a is the damping coefficient. When the visco-thermal boundary layers are thin
compared to the pipe cross-section, Kirchhoff’s result [20] can be used:

a ¼
Lp

2A

ffiffiffiffiffiffi
n
pf

r
1 þ

ðg� 1Þffiffiffiffiffiffi
Pr

p
 !

: ð14Þ

This damping coefficient a is related to the quality factor Qf of the resonator formed by the two
closed side branches. In the cross-junction, when the closed side branches have the same length L;
a plane wave travelling along these closed side branches will cover a distance of 4L in one
oscillation period T : For free oscillations, the attenuation of the plane-wave amplitudes in one
oscillation period is then

pðTÞ
pð0Þ

¼ e�4aL ¼ e�p=Qf ; ð15Þ

by definition of the quality factor Qf which implies that Qf ¼ p=ð4aLÞ and

R ¼ 8f0r0H2L2a: ð16Þ

The visco-thermal acoustic losses are given by

/PvthS ¼ R
dx
dt

� �2
* +

: ð17Þ
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3.2.2. Non-linear radiation losses due to wave steepening

For high-amplitude oscillations, additional losses are found as a result of non-linear wave
steepening. This deformation of the wave implies that higher harmonics are formed due to non-
linearity. As discussed earlier, the even harmonics have a pressure anti-node at the junction with
the main pipe and are therefore very efficiently radiated into the main pipe. Following here the
analysis of Hofmans [12], these radiation losses depend on the ratio s ¼ y=ys where y is the
distance travelled by the wave and ys is the shock wave formation distance. For a sinusoidal signal
pð0; tÞ ¼ #p0 sin ot; s is given by

s ¼
y

ys

¼
gþ 1

2rc2
ky #p0 ð18Þ

with g ¼ 1:4 the ratio of specific heats, and k ¼ o=c the wave number. For so1; the harmonics
are given by the Fubini solution [21]

pnðy; tÞ ¼ #p0
2

ns
JnðnsÞ sin ½noðt � y=cÞ�: ð19Þ

The amplitude of the first four harmonics can be approximated (for small s) by

#p1 ¼ #p0 1 �
s2

8

� �
;

#p2 ¼ #p0

s
2
;

#p3 ¼ #p0
3s2

8
;

#p4 ¼ #p0

s3

3
: ð20Þ

For small values of s; the main non-linear losses are due to the radiation losses of the second
harmonic (and other even harmonics). The radiated power is

/PradS ¼
#p2
2H2

rc
: ð21Þ

In our case,

ky ¼ p;

#p0 ¼ #p=2:

By assuming that the acoustical displacement is harmonic (xðtÞ ¼ �#x cos ot), then #p ¼ #xorc:
Finally, the radiated power becomes

/PradS ¼
ð#xoÞ4r0ðgþ 1Þ2p2H2

28c
: ð22Þ

These radiation losses can also be expressed in terms of a non-linear force

Frad ¼ �
8Prad

3ð#xoÞ4
dx
dt

� �3

: ð23Þ
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This simplified model fails when a shock wave is formed (L=ys > 1). This appears to be the case
when the configuration with rounded edges is used (Fig. 4b). Peters obtained Schlieren pictures of
this shock. The numerical simulations presented further will allow this effect to be taken into
account and to verify its impact on the pulsation amplitudes.

3.2.3. Nelson’s flow model
Nelson et al. [7] proposed a model in which the vorticity of the shear layer is concentrated into

point vortices convected at a constant velocity ðUGE0:4U0; 0; 0Þ (empirical value from Bruggeman
et al. [1] where U0 is the main flow velocity). In this model, it is assumed that the vortices travel
along a straight line from the upstream to the downstream edge.

In the absence of pulsations, the shear layer is a straight line. The circulation DG of a length Dx
of this shear layer is

DG ¼
I
C

v:dS ¼ U0Dx; ð24Þ

where C is the contour of length Dx enclosing the segment of the shear layer (Fig. 7). This is due to
the fact that other parts in the contour C do not contribute to the circulation because either v ¼ 0
(in the side branch) or v is perpendicular to the contour.

The rate of vorticity shed at the upstream edge is then

dG
dt

¼
DG
Dx

� �
dx

dt
¼ U0Uc; ð25Þ

where the velocity Uc at which vortices are convected is an average between the main flow velocity
U0 and the zero velocity of the stagnant fluid in the closed side branches UcE0:5U0: It is now
assumed that at moderate pulsation amplitudes, the rate of vorticity shed (dG=dt) remains equal
to its steady flow value. When the vorticity is concentrated into a line vortex travelling along the
line yG ¼ 0 (Fig. 7), then for the vorticity field x ¼ =� v ¼ ð0; 0;ozÞ

oz ¼ GðtÞdðx � xGðtÞÞdðyÞ; ð26Þ

where xGðtÞ is the position of a point vortex at time t

xGðtÞ ¼ UGðt � tnÞ ð27Þ
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with tn being the time at which the nth vortex is shed. From empirical observations of Nelson et al.
[7] and Bruggeman et al. [1], it appears that, for moderate amplitudes, a new vortex is shed each
time the pressure in the closed side branch reaches a minimum. This can be taken as the time
origin, so that, if a (cos ot)-time dependence of the pressure is assumed:

tn ¼ ðn � 1ÞT ðn ¼ 1; 2;yÞ: ð28Þ

The circulation Gn of the nth vortex depends on the time T 0 ¼ H=UG needed by the vortex to
travel through the junction and is defined as

GnðtÞ ¼ U0UcgnðtÞ ð29Þ

with

gnðtÞ ¼ t½Hðt � tnÞ �Hðt � T 0 � tnÞ� if T 0pT ;

gnðtÞ ¼ t½Hðt � tnÞ �Hðt � tnþ1Þ�

þ T ½Hðt � tnþ1Þ �Hðt � tn � T 0Þ� if T 0
XT ;

ð30Þ

where HðtÞ is the Heaviside function (HðtÞ ¼ 0 for to0 and HðtÞ ¼ 1 for tX0). The absolute
value of the circulation jGnðtÞj is drawn in Fig. 8.

If T 0pT ; only one vortex is present in the junction. This corresponds to the first hydrodynamic
mode (Fig. 6a).

If T 0
XT ; the first vortex has not yet reached the downstream edge while a second vortex is shed

at the upstream edge of the junction. We have the second hydrodynamic mode (Fig. 6b).
The acoustic source power Psource produced by the vortices can be written in terms of the

circulation GnðtÞ: From Eq. (5):

/PsourceS ¼ �r0

Z
V

ðx � vÞ 
 u0 dV

� �
¼ /� r0GnðtÞUGHu0yðxGðtÞ; yGðtÞ; tÞS; ð31Þ

where /S denotes the time averaging over one period of oscillation T and u0y corresponds to the
component in the y direction of the local acoustical velocity u0 (as a result of the scalar product).
Strictly speaking, an isolated vortex cannot have a time-dependent circulation without the
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presence of an external force. As our model assumes a time-dependent circulation GðtÞ; it does
introduce a spurious force. However, by using Howe’s analogy [19], the spurious force term is
suppressed by simply ignoring it.

In the cross-junction, Psource is comparable to a source power associated with a source term
Dpsource:

/PsourceS ¼ H2/Dpsource 
 u0
yðxGðtÞ; yGðtÞ; tÞS: ð32Þ

In order to take into account the vortex shedding at both junction sides, Eq. (31) becomes

/PsourceS ¼ 2/� r0GnðtÞUGHu0
yðxGðtÞ; yGðtÞ; tÞS: ð33Þ

The acoustical source power Psource is related to the external forces FsourceðtÞ which act on the
system:

/PsourceS ¼ ðFsourceÞyðtÞ
dx
dt

� �� �
; ð34Þ

where ðFsourceÞyðtÞ is the component in the y direction of the external forces FsourceðtÞ: It is related
to a geometrical factor knðtÞ which takes into account the influence of the geometry:

ðFsourceÞyðtÞ ¼ �r0GnUGHknðtÞ; ð35Þ

with knðtÞ ¼ u0
yðxGðtÞ; yGðtÞ; tÞ=dx

dt
: knðtÞ is the ratio of the local vertical component of acoustical

velocity to the average of this velocity along the vortex path.

3.2.4. Effect of edge geometry

Junction with rounded edges: As explained in the introduction, in most engineering applications,
the junction has rounded edges. In that case, it is assumed that the acoustical flow has a one-
dimensional behaviour (Fig. 9) and that the acoustical velocity in the junction has a uniform
amplitude [22]. The geometrical parameter kn is then a constant. The value

knðtÞE
1

ð1 þ 2r=HÞ
ð36Þ

is used where r is the radius of curvature of the rounded edges and H is the width of the closed side
branches. Eq. (36) is valid for r=H ¼ Oð1Þ:
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Junction with sharp edges: In the case of a cross-junction with sharp edges ðr ¼ 0Þ; the
assumption of a uniform acoustic velocity is no longer valid because the acoustical velocity field is
singular at the edges. At low frequencies, the acoustical flow at the junction is compact and can be
considered as locally incompressible. As a locally incompressible acoustical flow at the junction is
assumed, the geometric parameter knðtÞ can be calculated by means of a two-dimensional
potential flow theory. This involves a conformal mapping of the geometry of the junction into a
half plane.

In the Nelson et al. model [7], the vortex path is imposed and is a line joining the upstream to
the downstream edge. It is expected that the interaction between the vortex and the downstream
edge gives an exaggerated prediction of the response [1]. In order to avoid this interaction, the
conformal mapping is applied to a modified geometry in which the downstream edge is replaced
by a vertical wall (Fig. 10) is applied. In this way, the downstream singularity of the acoustical
field is suppressed because its effect on the local flow at the vortex is ignored. An alternative to this
arbitrary procedure would have been to assume a vortex path which passes at some distance from
the edge as observed in the experiments (Section 5.2). Details of calculations of knðtÞ are given in
the appendix.

Calculated source power: Fig. 11 shows the dimensionless acoustical source power
/PsourceS=ðr0U2

0 H2 #xo0Þ calculated by means of our simple model as a function of the Strouhal
number Sr ¼ fH=U0: The results are compared to the theoretical data obtained by Kriesels et al.
[14] by means of the vortex-blob method for moderate amplitudes.

The acoustic power /PsourceS predicted by our simple model is a factor of three larger than the
value predicted by means of the vortex-blob method by Kriesels et al. [14]. It can also be seen in
Fig. 11 that the Strouhal number at which the source power is maximum matches for both
models. The quality of the two models will be assessed further in Section 5 by comparison with
experimental data and numerical results from the Euler computations.

3.2.5. Prediction of the pulsation amplitude at the junction
Method of averaging ðoao0Þ: The single-mode model proposed can predict the dimensionless

pulsation amplitude w ¼ #xo=U0 and also the dimensionless frequency e ¼ o=o0 in terms of the
Strouhal number Sr ¼ oH=ð2pU0Þ based on the width H of the closed side branches. The model is
based on the equation of motion (Eq. (6)) for the mean acoustical displacement x in the
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cross-junction:

d2x
dt2

þ
o
Qf

dx
dt

þ o2x ¼
Fsource

Ma

þ
Frad

Ma

; ð37Þ

where Fsource and Frad represent the forces related to the source power Psource and the radiated
power Prad (Eqs. (35) and(23)).

Assuming that the acoustic displacement is harmonic ðxðtÞ ¼ �#x cos otÞ; a non-linear equation
is obtained which relates the dimensionless frequency o=o0 and the dimensionless pulsation
amplitude #xo=U0: The method of averaging is used. This consists of multiplying Eq. (37) by either
cos ot or sin ot and integrating the two resulting equations over an oscillation period [23]. A
system of two non-linear equations is obtained for two unknowns w ¼ #xo=U0 and e ¼ o=o0: This
set of equations is solved using Newton’s method, initialized by means of the results of the energy
balance.

Energy balance ðo ¼ o0Þ: The energy balance method is a simplified approach in which the
deviation of the frequency f from the resonance frequency f0 is assumed to be very small. Using
the assumption f ¼ f0; the energy balance of the system is obtained. From Eqs. (17), (33) and (22),
the energy balance of the system can be written by the balance of the sources and the losses:

/PsourceS ¼ /PvthSþ/PradS; ð38Þ
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�
2

T
r0UGH

Z T

0

GnðtÞknðtÞ
dx
dt

� �
dt

¼
R

T

Z T

0

dx
dt

� �2

dt þ
ð#xo0Þ

4r0ðgþ 1Þ2p2H2

28c
; ð39Þ

where knðtÞ has been introduced in the previous paragraph and where it has been assumed that
o ¼ o0: From Eq. (39), the pulsation amplitude #xo0=U0 can be deduced. The energy balance
appears to provide quite reasonable results in our case. The predicted amplitudes of both methods
are almost identical because, in the particular case considered, the variation in frequency is small
(Fig. 12).

4. Numerical computations

4.1. Approach

Numerical simulations have been performed for the cross-junctions (Fig. 4) using the Euler
equations for two-dimensional inviscid and compressible flow [9]. The spatial discretization
method is based on a second order cell-centred finite-volume method. For the time integration, a
second order, low-storage, four-stage Runge–Kutta method was used with one evaluation of the
artificial dissipation during the first stage. Results and tests of this code are presented in earlier
papers [8,10].

4.2. Numerical parameters

4.2.1. Initial condition
Numerical simulations were initialized by specifying a pressure profile in the closed side

branches. This pressure profile corresponds to a harmonic standing wave at the moment ðt ¼ 0Þ
that the acoustical pressure at the closed side branch terminations is maximum and equal to the
measured amplitude p0exp of the pressure fluctuations: p0ðy; t ¼ 0Þ ¼ p0

exp sinð2pf0y=cÞ (where f0 is
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Fig. 12. Dimensionless amplitude jdx=dtj=U0 (a) and dimensionless frequency o=o0 (b) predicted by the single-mode

model, as a function of the Strouhal number Sr ¼ fH=U0 (based on the pipe width H). The results are shown for a

cross-junction with rounded edges ðr=H ¼ 0:2Þ with closed side branches of length L ¼ 0:61 m:
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the measured oscillation frequency). The initial velocity amplitude in the closed side branches was
set to zero (ðux; uyÞ ¼ ð0; 0Þ), while the initially uniform velocity in the main pipe was set to the
value of the experimental mean flow velocity (ðux; uyÞ ¼ ðU0; 0Þ).

4.2.2. Boundary conditions
Boundary conditions are defined by specifying the state of halo cells surrounding the numerical

domain. As proposed by Thompson [24,25], and Poinsot and Lele [26], this is done by using a
local discretization of the compatibility relations.

The walls of the main pipe and the closed side branches were defined by imposing solid wall
conditions (zero normal velocity component) along the corresponding boundaries of the
numerical domain. An anechoic boundary condition was imposed on the outflow boundary (no
acoustic wave reflection). A ‘soft’ constant-velocity condition was applied at the inflow boundary
by specifying the strength of incoming acoustic waves to be proportional to the difference between
the instantaneous velocity and the desired velocity, multiplied by a relaxation factor. In our
computations, the value of this relaxation factor was fixed at 0.5. The boundary conditions
imposed on the boundaries of the numerical domain are shown in Fig. 13.

4.2.3. Numerical domain
The numerical domain used for computations on a cross-junction with sharp edges is shown in

Fig. 13. The numerical domain consists of structured grid blocks. The block just at the junction
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between the main pipe and the closed side branches contained 40 cells both in x and y directions.
This region corresponds to the region where vortices are formed (source region). In the
downstream part of the numerical domain (two diameters downstream of the closed side
branches), the blocks in the main pipe had a gradually decreasing number of cells in the y

direction. The coarse discretization in this ‘buffer’ region acted to reduce the vorticity leaving the
numerical domain. In the closed side branches, the number of cells in the blocks was gradually
decreased in the x direction, one diameter above and below the source region. This numerical
domain allowed an accurate description of the near field, while an excessive refinement in the low-
frequency plane-wave propagation region was avoided.

The length of the upstream part of the numerical domain was varied in order to study its
influence on the amplitude of the acoustical pressure fluctuations. The length of the upstream
block did not have an important effect. This is due to the fact that, as explained above, the cross-
junction is an acoustically closed system. A length of two pipe diameters was found sufficient to
get computed results independent of this length.

The influence of grid refinement on the results of the numerical simulations was studied by
comparing fine, intermediate and coarse-grid results. The fine grid had twice the refinement of the
intermediate grid in both x and y directions. In the source region (junction between the main pipe
and the closed side branches), the intermediate grid had 40 � 40 cells and the coarse grid had
30 � 30 cells. Fig. 14 shows the pulsation amplitudes predicted in terms of the cell width Dx of
each grid used for the computations. The number of oscillation periods calculated before reaching
a steady oscillation was typically 40.
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4.2.4. Kutta condition

Non-linear stability in the numerical method is ensured by means of an additional artificial
viscosity term. The magnitude of this dissipation is grid-dependent (decreasing with refinement).
However, its presence is sufficient to enforce a Kutta condition near a sharp edge and ensure
separation, due to high local cell-to-cell gradients [27]. Therefore, for a cross-junction with sharp
edges, separation will automatically occur at the sharp edges. In the case of the cross-junction
with rounded edges (Fig. 4), the numerical flow separation is enforced at a fixed point by
considering chamfered edges rather than rounded edges (Fig. 15). The chamfer is arbitrarily
chosen along the line [y ¼ �x þ rð0:5 �

ffiffiffi
2

p
Þ], half way between the outer tangent and the line

joining the points (�r; 0) and (0;�r). Experiments at TU/e have shown that cross-junctions with
such chamfered edges have a similar flow behaviour as that observed in cross-junctions with
rounded edges [28]. Replacing the rounded edges by chamfered edges changes the pulsation
amplitude by less than 10%.

5. Results

5.1. Time dependence of the acoustical pressure

Fig. 16 presents the time dependence of the predicted acoustical pressure at the closed end of a
side branch compared to the measured signal for the cross-junction with sharp edges. The
dimensionless amplitude p0=ðr0c0U0Þ shown in Fig. 16 corresponds to the dimensionless amplitude
of the acoustical velocity field jdx=dtj=U0: While the Euler numerical simulations predict the
oscillation frequency f within 2%, they overestimate the amplitude of the pulsation amplitudes by
30% (at the Strouhal number considered). This overestimation is partially due to the fact that the
numerical method used does not take into account visco-thermal losses. However, calculations by
Hofmans [12], based on a vortex-blob method combined with an energy balance including
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visco-thermal losses (Section 2.3), also overestimate the pulsation amplitudes by about 30%. This
indicates that the discrepancy between theoretical and experimental data could be due to wall
vibration effects (Section 2.1). Energy losses in experiments due to wall vibrations are a possible
source of the problem and could explain at least 15% discrepancy.

In the case of the cross-junction with rounded edges, very high pulsation amplitudes are
reached and shock wave formation was observed both in experiments [2,3] and in our Euler
numerical simulations. Fig. 17 shows the history of the acoustical pressure at the end of the closed
side branch. The shocks correspond to the local peak in the acoustical pressure at the end wall.
The shock wave formation is well predicted by the Euler computations but the amplitude of the
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Fig. 17. Cross-junction with rounded edges (r=H ¼ 0:2). Time dependence of the acoustical pressure at the end of a
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pressure oscillations is still 40% higher than the experimental results. Our Euler numerical
calculations confirm the conclusion of Hofmans [12] that radiation due to shock wave formation
is not sufficient to explain the difference between predicted and observed pulsation levels.

5.2. Flow visualization

Figs. 18 and 19 show the periodic vortex formation in the cross-junction with sharp edges for
different times t=T in one period of oscillation T : The predicted magnitude of the vorticity field by
means of the Euler computations is compared to the data obtained by Peters [2]. The path of the
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Fig. 18. Periodic vortex formation in the cross-junction with sharp edges (L ¼ 0:564 m; U0 ¼ 35 m=s; f ¼ 156:3 Hz;
Sr ¼ 0:27; ðjdx=dtj=U0Þexp ¼ 0:76). Comparison between flow visualization and numerical predictions by means of

Peters’ vortex-blob method [2] and the Euler calculations (vorticity magnitude). t=T ¼ 0:09; 0.23, 0.34 and 0.48 with

t=T ¼ 0; the point at which the sign of the acoustic velocity becomes positive.
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vortex predicted by means of the Peters’ vortex-blob method is compared to the path observed in
the flow visualization of Peters (Fig. 20). The origin of time is chosen to be the time at which the
acoustic velocity field becomes positive (minimum of the pressure in the upper closed side branch).
The results shown in Figs. 18 and 19 were obtained for closed side branches with a length
L ¼ 0:564 m: For this configuration, the pulsation amplitudes were maximal at the critical
Strouhal number Sr ¼ fH=U0 ¼ 0:27 (which corresponds to a resonance frequency f ¼ 156:3 Hz
and a main flow velocity U0 ¼ 35 m=s).

From Figs. 18 and 19, the path of the vortex shed at the upstream edge of the upper side of the
junction is deduced. Fig. 20 shows that the vortex path predicted by Peters [2] using the blob
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Fig. 19. Periodic vortex formation in the cross-junction with sharp edges (L ¼ 0:564 m; U0 ¼ 35 m=s; f ¼ 156:3 Hz;
Sr ¼ 0:27; ðjdx=dtj=U0Þexp ¼ 0:76). Comparison between flow visualization and numerical predictions by means of

Peters’ vortex-blob method [2] and the Euler calculations (vorticity magnitude). t=T ¼ 0:58; 0.70, 0.75 and 0.85 with

t=T ¼ 0; the point at which the sign of the acoustic velocity becomes positive.
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method is very close to the experimental vortex path. In these calculations, however, the
acoustical amplitude is not predicted but rather imposed as a boundary condition to the
incompressible flow simulations of the flow at the junction. The vortex path predicted by the Euler
simulations deviates slightly from the experimental results. This is expected to be due to the fact
that the theory overestimates the pulsation amplitude by about 30% (Fig. 16). In all cases, the
vortex does not hit the downstream edge. Note that our calculations show a significant vortex
shedding at the downstream edge of the junction between the side branch and the main pipe
(Fig. 19). This vortex shedding is difficult to observe in the flow visualization but does occur. It
was ignored in the blob method. Vortex-blob simulations by Hofmans [12] on a similar
configuration showed that this vortex shedding at the downstream edge had only a minor effect
on the energy balance.

5.3. Dependence on Strouhal number

The amplitude of self-sustained oscillations in a cross-junction depends on the geometry
(rounded or sharp edges, length of the closed side branches). The maximum of amplitude occurs
at critical Strouhal numbers. The dimensionless amplitude jdx=dtj=U0 is shown in Fig. 21 as a
function of the Strouhal number Sr ¼ fH=U0: The experimental results are compared with the
predicted numerical data obtained by means of our Euler code and with analytical data from the
Nelson et al. vortex model for the cross-junctions with either rounded ðr ¼ 0:2HÞ or sharp edges.

Again Fig. 21 shows that the amplitudes predicted by the Euler numerical computations are
40% higher than those found in the experiments for the cross-junction with rounded edges
(Fig. 21b), and 30% for the cross-junction with sharp edges (Fig. 21a).

In the case of the cross-junction with rounded edges (Fig. 21b), the new analytical model gives a
better prediction of the maximum of the amplitude than our Euler numerical calculations.
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Fig. 20. Vortex path in the cross-junction with sharp edges (L ¼ 0:564 m; U0 ¼ 35 m=s; f ¼ 156:3 Hz; Sr ¼ 0:27;
ðjdx=dtj=U0Þexp ¼ 0:76Þ: The data are deduced visually from the pictures shown in Figs. 18 and 19. Comparison between

flow visualization (\) and numerical predictions by means of Peters’ vortex-blob method (3) [2] and the Euler

calculations (m).
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Kriesels et al.’s moderate-amplitude approach [14] systematically underestimates the amplitude by
a factor of two. The Strouhal number range within which pulsations do occur is much better
predicted by the Euler numerical model than by the analytical model and Kriesels et al.’s
moderate-amplitude model [14].

6. Conclusions

Self-sustained oscillations at cross-junctions in pipes with square cross-section have been
considered. The junction has either sharp or rounded edges. The coupling between acoustic
standing waves and instabilities of the shear layers induces self-sustained oscillations. The
pulsation amplitudes can reach very large values (u0=U0 ¼ Oð1Þ). The presence of shock waves,
visualized by Peters [2] in the cross-junction with rounded edges for low main flow velocities
ðM ¼ U0=c0E0:1Þ; has been confirmed by the present Euler numerical simulations (Fig. 17).

An analytical aero-acoustical model based on Nelson et al.’s vortex model [7] has been
proposed. The two resolution methods considered, an energy balance and an averaging method
[23], gave almost identical results for the pulsation amplitude (Fig. 12).

The Euler numerical simulations provide a prediction of the measured pulsation amplitudes
within 40% (Fig. 21) and predict the oscillation frequency within 2% (Fig. 16). Compared to the
analytical model proposed, the Euler numerical simulations provide a much better insight into the
flow behaviour in the cross-junctions. Due to the overestimation of the amplitude of the acoustical
pressure at the end of a closed side branch, the vortex path predicted by the numerical simulations
deviates from the experimental vortex path (Fig. 20). The overestimation of the amplitude of the
acoustical pressure at the end of the closed side branches (in our results from the Euler numerical
simulations) cannot be explained by the absence of visco-thermal losses alone in the numerical
method. Previous calculations by Hofmans [12] for a similar pipe system, based on a vortex-blob
method including visco-thermal losses, also overestimated the pulsation amplitudes by 30%. Our
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numerical simulations confirm the results of Hofmans [12] showing that radiation losses generated
by non-linear wave steepening cannot explain this discrepancy. The difference in predicted and
measured pulsation amplitudes could be due to experimental problems such as wall vibrations
(Section 2.1). Further research should be carried out to include visco-thermal losses at the wall in
an Euler calculation. This could be done by using locally reacting impedance boundary conditions
instead of hard wall boundary conditions.

The analytical model based on Nelson et al.’s vortex model is quite attractive for engineering
applications. Some research could be carried out to improve its prediction of the Strouhal number
range at which pulsations occur.

As an alternative to the analytical model based on Nelson et al.’s vortex model [7], the use of
Kriesels et al.’s moderate-amplitude model [14] was considered. In the present case, Nelson et al.’s
vortex model seems better because it predicts more accurately the maximum of the pulsation
amplitudes (Fig. 21).

Appendix

The conformal mapping is based on the Schwarz–Christoffel transformation [29] of the
boundaries of a polygon (in the z-plane) into the real axis of the complex z-plane (Fig. 10).

The transformation is given by the relation

dz

dz
¼ k1z

�1ðzþ 1Þ
1
2; ðA:1Þ

where k1 is an arbitrary constant which may be complex.
By integration

z ¼
iH

p
½2

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
þ logð

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
� 1Þ � logð

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
þ 1Þ� þ H: ðA:2Þ

The complex potential of a point source (at z ¼ 0) is

j ¼ �
QV

p
log z ¼ Fþ iC; ðA:3Þ

where QV is the rate of emission of volume per unit time. QV is related to the acoustical velocity
jdx=dtj and the width H of the pipe:

QV ¼ i
dx
dt

����
����H: ðA:4Þ

F and C are the velocity potential and the stream function of the irrotational two-dimensional
motion.

The complex acoustical velocity is u0n ¼ �dj=dz:
This yields

knðtÞ ¼
u0

y

dx=dt
¼

1ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
�����

�����: ðA:5Þ
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The determination of knðtÞ involves the numerical solution of non-linear equations. An
analytical solution based on a fit of the numerical solution is proposed. Near the edge ðz ¼
�1; z ¼ 0Þ; it is known the flow singularity behaves as z�1=3 [30]. Therefore the solution is fitted in
order to get an analytical expression for knðzÞ in the form

knðzÞ ¼ az�1=3 þ b; ðA:6Þ

where a ¼ 0:1941 and b ¼ 0:2978: In order to check the accuracy of this expression, the integral
can be calculated

1

H

Z H

0

knðzÞ dz ¼
3

2
aH�1=3 þ b ¼ 1:0415E1: ðA:7Þ

As it is assumed that the vortices are convected at the constant velocity UG; the geometric
parameter kn is then

knðtÞ ¼ aU
�1=3
G ðt � tnÞ

�1=3 þ b: ðA:8Þ
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