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Abstract

This paper presents the research devoted to the study of instability phenomena in non-linear model with
a constant brake friction coefficient. Indeed, the impact of unstable oscillations can be catastrophic. It can
cause vehicle control problems and component degradation. Accordingly, complex stability analysis is
required. This paper outlines stability analysis and centre manifold approach for studying instability
problems. To put it more precisely, one considers brake vibrations and more specifically heavy trucks
judder where the dynamic characteristics of the whole front axle assembly is concerned, even if the source of
judder is located in the brake system. The modelling introduces the sprag-slip mechanism based on dynamic
coupling due to buttressing. The non-linearity is expressed as a polynomial with quadratic and cubic terms.
This model does not require the use of brake negative coefficient, in order to predict the instability
phenomena. Finally, the centre manifold approach is used to obtain equations for the limit cycle
amplitudes. The centre manifold theory allows the reduction of the number of equations of the original
system in order to obtain a simplified system, without loosing the dynamics of the original system as well as
the contributions of non-linear terms. The goal is the study of the stability analysis and the validation of the
centre manifold approach for a complex non-linear model by comparing results obtained by solving the full
system and by using the centre manifold approach. The brake friction coefficient is used as an unfolding
parameter of the fundamental Hopf bifurcation point.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

During recent years, the understanding of the dynamic behaviour of systems with non-linear
phenomena have been developed in order to predict dangerous or favourable conditions and to
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exploit the whole capability of structures by using systems in the non-linear range. As an
illustration, self-excited vibrations can have consequences, ranging from passenger discomfort,
through reduced service life, to loss of control and catastrophe. Consequently, the customers’
requests induces one to consider the optimization of all elements of a structure, and the dynamic
design of products becomes one of the most important factors for manufacturers. Usually, a
parametric study with linear stability theory is carried out to determine the effect of system
parameters on stability. Stability was investigated by determining eigenvalues of the linearized
perturbation equations about each steady state operating point, or by calculating the Jacobian of
the system at the equilibrium points. While stability analyses are extremely useful in evaluating the
effect of changes in various system parameters, they cannot evaluate limit cycles amplitudes.

Of course, robust software has been developed in order to solve differential–algebraic equations
corresponding to systems including several non-linearities; time-history response solutions of the
full set of non-linear equations can determine the vibration amplitude. Nevertheless, the study of
an instability problem may require consideration of several factors. In some cases, changes in
masses, stiffnesses, or geometry, are necessary in order to stabilize a system; in other cases,
vibration absorbers may be appropriate. In this way, time-history response solutions of the full set
of non-linear equations are both time consuming and costly to perform, when extensive
parametric design studies are needed. For this reason, an understanding of the behaviour of
systems with many degrees of freedom requires simplified methods in order to reduce the order
of the system of equations and/or eliminate as many non-linearities as possible in the system of
equations. Moreover, many physical systems are modelled by differential equations depending on
a control parameter. In the study of the dynamical behaviour of such systems, bifurcation
problems often arise within the control parameter range.

Due to the fact that such non-linear systems occur in many disciplines of engineering and
science, considerable work has been devoted to effect explicit reductions. Perturbation methods,
such as the methods of multiple scales and averaging [1], have been used as simplification methods
in many studies. There is a reduction in the dimension, as one goes from the original system to the
averaged system. The normal form approach can be also used to eliminate as many non-linear
terms of the non-linear equations as possible through a non-linear change of variable. These
problems have already been studied by several groups (see Refs. [2–11], etc.). Moreover, one of the
most important simplification method is the centre manifold approach. The centre manifold
theorem [12] characterizes the local bifurcation analysis in the vicinity of a fixed point of the non-
linear system. The centre manifold approach can be considered as a simplification method that
reduces the number of equations of the original system in order to obtain a simplified system
without loosing the dynamics of the original system as well as the contributions of non-linear
terms [2,5,13]. However, if this technique has been applied in scientific areas such as engineering, it
has received little attention in the field of friction induced vibration in braking systems.

In this paper, the centre manifold reduction is applied to a self-excited system with many
degrees of freedom containing quadratic and cubic non-linear terms that characterizes the
modelling of heavy truck judder.

Firstly, some basic concepts of friction and brake noise will be introduced. Next, a model for
the analysis of judder mode vibration in automobile braking systems will be presented. The model
does not use brake negative damping and predicts that system instability can occur with a
constant brake friction coefficient. Then, results from stability analyses and parametric studies
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using this model will be presented. System stability can be altered by changes in the brake friction
coefficient, pressure, stiffness, geometry and various brake design parameters.

Finally, the centre manifold approach will be used in order to predict limit cycle amplitudes. A
compromise between an analytical method and a numerical approach is proposed in order to
obtain limit cycles amplitudes. Usually, the polynomial approximations of stable variables
represented as a power series in the centre manifold are obtained numerically. In this paper, an
analytical development is presented for the calculation of the expression of second order and third
order polynomials. Results from the centre manifold approach will be compared with results
obtained by integrating the full original system in order to validate the centre manifold approach
and the polynomial approximations of stable variables as a power series in centre variables.

2. Friction induced brake vibration

A greater concentration of work on brake noise and vibration has appeared previously.
However, there has been no uniformly accepted theory to characterize the problem; various types
of vibrations have been investigated, such as disk brake squeal [14–16], aircraft brake squeal [17],
railway wheel squeal [18] and band brake squeal [19]. In this way, analytical models have been
proposed for the description of the dynamics of brake systems, including brake calliper, pads and
disc: some of the most famous studies were proposed by Jarvis and Mill [20] (cantilever-disc
models), Earles and Soar [15], Earles and Lee [21] (pin-disc models), Spurr [22] (sprag-slip model)
and North [14] (binary flutter model).

One of the most important phases in studying brake systems is the determination of the
mechanism of the unstable friction-induced vibration. There is no unique mathematical model
and theory in order to explain the mechanisms and dynamic phenomena associated with friction.
According to Ibrahim [23–24], Oden and Martins [25], Crolla and Lang [26], there are four general
mechanisms for friction-induced system instability, and more specifically friction-induced
vibration in disc-brake systems: stick–slip, variable dynamic friction coefficient, sprag-slip and
coupling mechanism.

The first two approaches rely on changes in the friction coefficient with relative sliding speed
affecting the system stability. The last two approaches used kinematic constraints and modal
coupling in order to develop the instability; in these cases, instability can occur with a constant
brake friction coefficient.

Stick–slip is a low sliding speed phenomenon caused when the static friction coefficient is higher
than the dynamic coefficient. A simple system that has been used for the examination of the stick-
slip phenomenon is that of a mass sliding on a moving belt as shown in Fig. 1(a). During the
sliding phase, there is no change in the friction force that tends to make the mass stick on the
moving belt. The sliding force increases until it exceeds the static friction force maximum.
Consequently, the mass starts to slide. Next, the mass continues to slide until the force causing the
sliding drops to the sliding friction value. Then, sliding and sticking occur in succession.

Early in 1938, a study by Mills [27] led to an initial understanding that brake squeal was
associated with a decrease in friction coefficient with rubbing speed as shown in Fig. 1(a). Due to
this negative slope, the steady state sliding becomes unstable and caused friction-induced
vibrations. Although this mechanism is still recognized as explaining some low-frequency brake
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vibration problems, it was soon realized that a decrease in friction coefficient was insufficient to
explain some friction-induced vibrations.

It was later realized that this tribological property was not the only reason for a brake to squeal,
and that vibration could occur when the friction coefficient remained sensibly constant with
speed. Spurr [22] also proposed that instability with constant friction coefficient could occur by
considering sprag-slip phenomenon. The sprag-slip phenomenon occurs due to locking action of
the slider into the sliding surface as defined in Fig. 1(b). An important failure of this mechanism is
the angle a between the resulting force at the friction contact and the normal direction of the
sliding belt.

Later, researchers gradually increased the sophistication of these sprag slip models by
developing a more generalized theory describing the mechanism as a geometrically induced or
kinematic constraint instability. At least two degrees of freedom are essential for this mechanism
to be effective. For example, Jarvis and Mills [20] developed a cantilever-disc model in which the
disc vibrated transversely due to spragging action. Their work showed that the variation of the
coefficient of friction with sliding speed was insufficient to cause the friction-induced vibrations
and so that the instability was due to coupling even if the coefficient of friction was constant.
Modal coupling of the structure involved sliding parts and the coupling results in changes of
friction forces necessary for self-excited vibration. In the same way, Earles and Lee [21], North
[14], Miller [16], Dweib and D’Souza [28] described models using this latter theory for a single-pin-
disc system and a double-pin-disc system, and showed that frictional instability can occur due to
the coupling among the normal, tangential and torsional degrees of freedom. Some theoretical
and experimental studies were investigated to show that the stability was affected by varying the
coefficient of friction, disc stiffness and geometry.

Actually, it is accepted that there is no uniform theory for the characterization of the problem
and that stick–slip phenomenon [29,30], negative friction velocity slope (see Refs. [31,32], etc.),
sprag–slip phenomenon and geometric coupling of the structure involving sliding parts ([33–35]
contributed to the description of mechanisms causing dynamic instability of the brake system.

Actually, the analysis of mechanism of disc brakes still presents a broad problem in spite of the
numerous recent studies on the subject. Effectively, there are many types of brake vibration
problem with various phenomena. It is clear that these headings can be described by using the
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same mechanism, even if a specificity, particularly experimental observations, exists for each
group. Specialists such as Crolla and Lang [26] divided them into three headings : disc brake
noise, brake judder and brake drum noise.

Generally, brake noises are divided into categories according to the sound frequency. On the
basis of previous brake experiments, there are many types of brake noises with varying
phenomena as squeal noise, groan noise, judden noise, squelch noise and pinch-out noise. Squeal
noise and groan noise are the two important phenomena of brake noise. Technically speaking,
noise is the result of a self-excited oscillation or dynamic instability of the brake. Squeal is
accepted as being the result of such instabilities. For example, squeal can be due to a resonance of
drums, rotors or back plates. The frequency spectrum of squeal is in the 1–10 kHz range. In
contrast to squeal, groan occurs at very slow vehicle speed and, is caused by stick–slip at the
rubbing surface; the frequency spectrum of groan is in the 10–300Hz range.

The most important drum brake noise is squeal. As drum brakes were gradually replaced by
disc brakes on vehicle front axles, studies and experimental investigations were gradually
decreased. According to Kusamo et al. [36], the drum brake noise frequency increased with
increasing brake hydraulic pressure; moreover, Lang and Newcomb [37] proposed the
introduction of asymmetry into drum structures in order to reduce drum brake squeal. The
frequency spectrum of drum brake noise is observed in the 500–4000Hz range.

Unlike brake noise, judder is a lower frequency vibration that is generally felt rather that heard.
Judder is defined as a forced vibration. In order to find a solution to this friction-induced
vibration and to minimize vibration, the effect of suspension and vehicle body dynamics on the
transmission of judder to the driver have been investigated. The frequency spectrum of judder
vibration is in the 10–100Hz range.

3. Analytical model

In order to link the effect of specific parameter variation on stability to the design features of
brake systems, it is necessary to work with mechanical models. Most of the analytical approaches
can be divided into three parts. First, a parameter model including friction forces at the rubbing
surface and mechanisms for friction-induced system instability is established and the equations of
motion are determined. Next, stability analyses are investigated by considering the parameter
values that make the model stable or unstable. Finally, parametric studies are realized in order to
relate the effect of specific parameter variation to the stability and to the evolution of limit cycle
amplitudes. Indeed, changes in masses, stiffnesses, brake friction characteristics, damping, or
geometry could be significant on stability. Various researchers successfully achieved the two first
points [33–35,38], but the effects of parameter variations were not always conducted; this is
probably due to the fact that the determination of the vibration amplitude is both time consuming
and costly to perform, when extensive parametric design studies are needed. So, these studies
related only to the effect of parameter variations to stability, and neglected the studies of
evolution of limit cycle amplitudes. One of the most important stages in the study of brake
systems is the determination of parametric models.

In a previous work Boudot [33] presented heavy truck judder. According to experimental
investigations, judder vibration was observed on brake control and front axle assembly, and the
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frequency spectrum was in the 50–100Hz range. It seems, therefore, that the dynamic
characteristics of the whole front axle assembly is concerned, even if the source of judder is
located in the braking system. Moreover, there is only a very small variation of the brake friction
coefficient during a judder vibration event, as described by Boudot [33]. So the variation of the
brake friction coefficient can be assumed to be negligible in this case, although this is not always
the case for modelling brake systems. This context is selected because it is complex, both in order
to be qualitatively predictive, and simple in order to allow sensitivity analysis. In this study, the
mechanism used in order to explain the judder is a classical mechanism: brake judder is modelled
as a flutter instability due to the non-conservative aspect of Coulomb’s friction [32–35].

As a result, one considers the sprag-slip theory based on dynamic coupling due to buttressing;
the dynamic characteristics of the front axle assembly will be concerned in judder vibration.

The dynamic system is defined in Fig. 2 with the following assumptions:

* The brake friction coefficient m is assumed to be a constant when brake vibrations occur.
* When the rotor is in a rotating condition, the direction of the friction forces at the interface

does not change.
* The speed V is constant and represents the rotation of the rotor.
* The rotor and the pad friction surfaces are always in contact.

Judder is a relatively complex self-excited vibration. It results from coupling between the
torsional mode of the front axle and the normal mode of the brake control. In this way, the
dynamic behaviour of the braking system is expressed by two free–free modes of the structure:
the first (k2;m2) is tangential to the friction contact and the second (k1;m1) is normal to the
friction contact. In the case of the grabbing of brake system, k2 and m2 define the torsional mode
of the front axle excited by the tangential forces of the disc. The normal forces are provided by the
brake control, whose dynamic behaviour is described by the second mode (k1;m1). Consequently,
the tangential and normal degree of freedom are coupled only by friction forces. This expresses
the braking system contribution.
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In order to simulate a braking system placed crosswise due to overhanging caused by static
force effect, one considers the moving belt slopes with an angle y: This slope couples the normal
and tangential degree-of-freedom induced only by the brake friction coefficient. This
consideration called sprag-slip, is based on dynamic coupling due to buttressing motion.
Moreover, one considers the effect of braking force, that is an important parameter in friction-
induced vibration. The force Fbrake transits through the braking command, that has a non-linear
behaviour. The dynamic system is modelled here as a three-degree-of-freedom system:
translational and normal displacement in the x direction of the mass m2 defined by X ðtÞ and
yðtÞ; respectively, and the translational displacement in the y direction of the mass m1 defined
by Y ðtÞ:

Therefore, one considers the possibility of having a non-linear contribution. Then, one
expresses this non-linear stiffness as a quadratic and cubic polynomial in the relative
displacement:

k1 ¼ k11 þ k12Dþ k13D2;

k2 ¼ k21 þ k22dþ k23d
2; ð1Þ

where D is the relative displacement between the normal displacement in the y direction of the
mass m1 and the mass m2 (one has D ¼ y � Y ), and d the translational displacement defined by the
frictional x direction of the mass m2 (one has d ¼ X ). This non-linearity is applied in order to
indicate the influence and the importance of non-linear terms in the understanding of the dynamic
behaviour of systems with non-linear phenomena, the prediction of dangerous or favourable
conditions, and the exploitation of the full capability of structures by using systems in the non-
linear range. To be more precise, the non-linear dynamic behaviour of the brake command of the
system (k1;m1), and the non-linear dynamic behaviour of the front axle assembly and the
suspension (k2;m2) are concerned, respectively.

One assumes that the tangential force T is generated by the brake friction coefficient m;
considering the Coulomb’s friction law:

T ¼ mN: ð2Þ

With reference to Fig. 2, and considering the non-linear expression of the stiffness k2 defined in
Eq. (1), the equation of motion in the Ox direction for the mass m2 can be written as

m2
.X þ c2

’X þ k21X þ k22X 2 þ k23X 3 ¼ �N sin yþ T cos y: ð3Þ

Considering the non-linear expression of the stiffness k1 defined in Eq. (1), the equation of motion
in the Oy direction for the mass m2 can be written as

m2 .y þ c1ð ’y � ’YÞ þ k11ðy � Y Þ þ k12ðy � Y Þ2 þ k13ðy � Y Þ3 ¼ N cos yþ T sin y ð4Þ

and the equation of motion in the Oy direction for the mass m1 as

m1
.Y þ c1ð ’Y � ’yÞ þ k11ðY � yÞ þ k12ðY � yÞ2 þ k13ðY � yÞ3 ¼ �Fbrake: ð5Þ

ARTICLE IN PRESS

J.-J. Sinou et al. / Journal of Sound and Vibration 265 (2003) 527–559 533



Finally, the three equations of motion can be expressed as

m1
.Y þ c1ð ’Y � ’yÞ þ k11ðY � yÞ þ k12ðY � yÞ2 þ k13ðY � yÞ3 ¼ �Fbrake;

m2
.X þ c2

’X þ k21X þ k22X 2 þ k23X 3 ¼ �N sin yþ T cos y;

m2 .y þ c1ð ’y � ’YÞ þ k11ðy � Y Þ þ k12ðy � Y Þ2 þ k13ðy � Y Þ3 ¼ N cos yþ T sin y: ð6Þ

Using the transformations y ¼ X tan y and x ¼ fX YgT; and considering Coulomb’s friction
law T ¼ mN; the non-linear two-degree-of-freedom system has the form

M .xþ C ’xþ Kx ¼ Fþ FNL; ð7Þ

where .x; ’x and x are the acceleration, velocity and displacement response two-dimensional vectors
of the degrees of freedom, respectively. M is the mass matrix, C is the damping matrix and K is the
stiffness matrix. F is the vector force due to brake command and FNL contains moreover the non-
linear stiffness terms. One has

M ¼
m2ðtan2 yþ 1Þ 0

0 m1

" #
; ð8Þ

C ¼
c1ðtan2 y� m tan yÞ þ c2ð1 þ m tan yÞ c1ð�tan yþ mÞ

�c1 tan y c1

" #
; ð9Þ

K ¼
k21ð1 þ m tan yÞ þ k11ðtan2 y� m tan yÞ k11ð�tan yþ mÞ

�k11 tan y k11

" #
; ð10Þ

FNL¼
ð�tan yþ mÞðk12ðX tan y� Y Þ2 þ k13ðX tan y� Y Þ3Þ þ k22ð1 þ m tan yÞX 2 þ k23ð1 þ m tan yÞX 3

�k12ðY � X tan yÞ2 � k13ðY � X tan yÞ3

( )
;

ð11Þ

F ¼
0

�Fbrake

( )
: ð12Þ

The values of the parameters are given in Appendix A.
The general form of the equation of motion for the non-linear judder model can be expressed in

the following way:

M .xþ C ’xþ Kx ¼ Fþ
X2

i¼1

X2

j¼1

f
ij
ð2Þxixj þ

X2

i¼1

X2

j¼1

X2

k¼1

f
ijk
ð3Þxixjxk; ð13Þ

where f
ij
ð2Þand f

ijk
ð3Þ are the vectors of quadratic and cubic non-linear terms, respectively. M, C and K

are 2� 2 matrices.

4. Solution methodology

The study can be divided into two parts. The first one is the static problem: the steady state
operating point for the full set of non-linear equations is obtained by solving them at the
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equilibrium points. Stability is investigated by calculating the Jacobian of the system at the
equilibrium points. The second step is the estimation of the limit cycle. The non-linear dynamic
equations can be integrated numerically in order to obtain a time-history response and the limit
cycle. However this procedure is too much time consuming. So the equations are reduced by the
centre manifold theory. This approach simplifies the dynamics of the centre manifold by the
reduction of the order of the dynamical system; however, it retains the essential features of
the dynamic behaviour near a Hopf bifurcation point.

The first step in the solution procedure is to obtain the steady state operating point for the full
set of the non-linear sprag-slip equations (13) by the determination of the equilibrium point. The
equilibrium point x0 is obtained by solving the non-linear static equations for a given net brake
hydraulic pressure. This equilibrium point satisfies the following conditions:

Kx0 ¼ Fþ FNLðx0Þ: ð14Þ

One notes that there can be more than one steady state operating point at a given net brake
hydraulic pressure, since the sprag-slip equations are non-linear.

The stability is investigated by calculating the Jacobian of the system at the equilibrium points.
The complete expression of the Jacobian matrix J is given in Appendix B. The eigenvalues of the
constant matrix J provide information about the local stability of the equilibrium point x0.
Moreover, it is possible to obtain the fourth-degree characteristic polynomial

l4 þ a3l
3 þ a2l

2 þ a1lþ a0 ¼ 0; ð15Þ

where l are the eigenvalues of the Jacobian matrix J. The expressions of a3; a2; a1 and a0 are given
in Appendix B. Note that this polynomial defines the fourth-degree characteristic polynomial of
the linearized system.

If all roots of the characteristic equation (15) have a negative real part, the system is stable and
one does not have vibration. If one root has a positive real part, one has an unstable root and
vibration. The imaginary part of this root represents the frequency of the unstable mode.
Moreover, applying the Routh–Hurwitz criterion [39] to this characteristic equation gives the
ollowing conditions for the stability: (a) a3 > 0; (b) a2a3 � a1 > 0; (c) a1ða2a3 � a1Þ � a0a2

3 > 0:
Using the base parameters defined previously, the computations are conducted with respect to

the brake friction coefficient. The Hopf bifurcation point is detected for m0 ¼ 0:2:
A representation of the evolution of frequencies against brake friction coefficient is given in

Fig. 3. In Fig. 4, the associated real parts are plotted. As shown in Fig. 3, one notices that there
are two stable modes at different frequencies when mom0: On the other hand, the real part of
eigenvalues is negative when mom0 as illustrated in Fig. 4. As the brake friction coefficient
increases, these two modes move closer until they reach the bifurcation zone. One obtains the
coalescence for m ¼ m0 of two imaginary parts of the eigenvalues (frequency about 50Hz). For
m ¼ m0; there is one pair of purely imaginary eigenvalues. All other eigenvalues have negative real
parts. After the bifurcation, the two modes couple and form a complex pair as shown in Fig. 3. On
the other hand, the real part of eigenvalues is positive as illustrated in Fig. 4.

As showed in Fig. 3, the system is unstable for m > m0; and stable for mom0: This stability
analysis indicates that the instability can occur with a constant friction coefficient. Moreover, the
frequency o0 of the unstable mode, obtained for m ¼ m0 is near 50Hz. There is a perfect
correlation with experiment tests where judder vibration is observed in the 40–70Hz range.
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Moreover, it is possible to perform a stability analysis using two parameters. There is obviously
an infinity of combinations of parameters that could be examined. The base parameters are taken
as the starting set for this investigation. The evolutions of stable and unstable regions versus two
specific parameters are shown in Figs. 5a to 12a. With regard to the evolution of coupled resonant
frequency, a simple representation can be obtained by plotting frequency and the real part of
eigenvalue on the complex plan as illustrated in Figs. 5b to 12b. The vertical axis shows the
frequency and the horizontal axis is a measurement of system damping. The right side of the
complex plane is the unstable region, where modes have negative damping. Conversely, the left
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Fig. 3. Coupling of two eigenvalues.

Fig. 4. Evolution of the real part of two coupling modes.
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side of the complex plane is the stable region, where modes are uncoupled. One knows that the
modes couple and form a complex pair after the Hopf bifurcation. In fact, the range coupled
resonance frequency is determined at the bifurcation point m ¼ m0:

It is observed that stability is a complex problem. Parametric design studies show that stability
can be altered by changes in the brake friction coefficient, brake force, stiffness, damping and
angle. Some general indications have been obtained. It must be emphasized that increasing or
decreasing stiffness, angle and mass have some effect on the stable region. This is further reflected
in Figs. 5–12.

To put it more precisely, decreasing brake friction coefficient reduces the unstable region. In
some case, as illustrated in Figs. 8, 9 and 11, the two-coupled modes can reach the bifurcation
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Fig. 5. Stability and complex eigenvalues as a function of mass m1 and stiffness k11: Coupled resonant frequencies

between 47 and 57 Hz.

Fig. 6. Stability and complex eigenvalues as a function of force Fbrake and stiffness k11: Coupled resonant frequencies

between 47–48 and 55–56 Hz.
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zone and decoupled by decreasing brake friction coefficient. This is one way to stabilize the
system.

On the other hand, parametric studies as a function of angle y and stiffness k21 or as a
function of angle y and stiffness k21 are very interesting. Indeed, in this case, one observes a
closed unstable region as shown in Fig. 10. This close area is readily explained by the evolution of
modes that coupled and decoupled with the evolution of parameters. For example, in Fig. 10, the
modes reach the bifurcation zone at k21E0:75�105 N=m for y ¼ 0:15 rad and coupled when
k21X0:75�105 N=m: But, the two modes reach again the bifurcation zone at k21E1:25�105 N=m
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Fig. 7. Stability and complex eigenvalues as a function of stiffness k21 and stiffness k11: Coupled resonant frequencies

between 10 and 70 Hz.

Fig. 8. Stability and complex eigenvalues as a function of angle y and brake friction coefficient. Coupled resonant

frequencies between 50 and 51Hz.

J.-J. Sinou et al. / Journal of Sound and Vibration 265 (2003) 527–559538



for y ¼ 0:15 rad and decoupled when k21p1:25�105 N=m: So, one has successively stable,
unstable and stable zones for y ¼ 0:15 rad with varying stiffness coefficient k21:

Moreover, decreasing both linear stiffness k11 and k21 reduces the unstable region as illustrated
in Fig. 7. The frequency spectrum of resonant coupled vibration is in the 10–70Hz range.

The angle y is also very important in the stabilization of the system, as shown in Figs. 8 and 10.
For the purposes of comparison, stability as a function of stiffness k11 and brake friction
coefficient (Fig. 11), and stability as a function of stiffness k21 and brake friction coefficient
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Fig. 9. Stability and complex eigenvalues as a function of stiffness k21 and brake friction coefficient. Coupled resonant

frequencies between 45 and 58Hz.

Fig. 10. Stability and complex eigenvalues as a function of angle y and stiffness k21: Coupled resonant frequencies

between 47 and 54 Hz.

J.-J. Sinou et al. / Journal of Sound and Vibration 265 (2003) 527–559 539



(Fig. 9), are similar. However, one can note that unstable regions show some small differences
versus the stiffnesses.

Consequently, a stability study is a very complex problem: stable and unstable regions can be
obtained by varying parameters and one has an infinity of combinations of parameters that could
be examined. As an example of possible parametric studies, Figs. 5–12 illustrate stability analysis
and the frequency range of resonant coupled vibration. In some cases, stable and unstable zones
are very simple; in other cases, more complex zones of instability can be obtained.
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Fig. 11. Stability and complex eigenvalues as a function of stiffness k11 and brake friction coefficient. Coupled resonant

frequencies between 48 and 52Hz.

Fig. 12. Stability and complex eigenvalues as a function of stiffness k12 and force Fbrake: Coupled resonant frequencies

between 47 and 47 Hz.
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5. Complex non-linear problem

In order to conduct a complex non-linear analysis, it is necessary to consider complete
expressions of the non-linear forces. Moreover, the complete non-linear expressions of the non-
linear forces are expressed about the equilibrium point x0 for small perturbations %x:

x ¼ x0 þ %x: ð16Þ

The complete non-linear equation can be written as follows:

M .%xþ C ’%xþ K %x ¼ PNLð %xÞ; ð17Þ

where .%x; ’%x and %x are the acceleration, velocity and displacement response two-dimensional vectors
of the degrees of freedom, respectively. M is the mass matrix, C is the damping matrix and K is the
stiffness matrix. PNL ¼ fPX

NL PY
NLg

T is the non-linear force due to net brake hydraulic pressure
and non-linear stiffness. It contains the linear and non-linear terms about the equilibrium point
for small perturbations. One has

PX
NL ¼ FX

L þ FX
NL; ð18Þ

PY
NL ¼ FY

L þ FY
NL; ð19Þ

where FX
L ; FY

L are the linear terms of PX
NL and PY

NL: FX
NL and FY

NL are the quadratic and cubic terms
of PX

NL and PY
NL about the equilibrium point. These expressions are:

FX
L ð %xÞ ¼ ð�tan yþ mÞ½2k12 tan2 yX0 %X þ 2k12Y0 %Y � 2k12 tan yY0 %X � 2k12 tan yX0 %Y

þ 3k13 tan3 yX 2
0
%X � 6k13 tan2 yX0Y0 %X � 3k13 tan2 yX 2

0
%Y þ 3k13 tan yY 2

0
%X

þ 6k13 tanyX0Y0 %Y � 3k13Y 2
0
%Y
 þ ð1 þ m tan yÞ½2k22X0 %X þ 3k23X 2

0
%X
; ð20Þ

FY
L ð %xÞ ¼ � 2k12Y0 %Y � 2k12tan2 y:X0: %X þ 2k12tan y:X0: %Y þ 2k12tan y:Y0: %X

� 3k13tan2 yX 2
0
%Y � 6k13 tan2 yX0Y0 %X þ 3k13 tan3 yX 2

0
%X

� 3k13Y 2
0
%Y þ 6k13 tan yX0Y0 %Y þ 3k13 tan yY 2

0
%X; ð21Þ

FX
NLð %xÞ ¼ k12ð�tanyþ mÞ½tan2 y %X2 þ %Y2 � 2 tan y %X %Y
 þ k13ð�tan yþ mÞ½tan3 yð %X3 þ 3 %X2X0Þ

� 3 tan2 yð %X2 %Y þ 2 %X %YX0 þ %X2Y0Þ þ 3 tan yð %X %Y2 þ 2 %X %YY0 þ %Y2X0Þ � %Y3 � 3 %Y2Y0


þ k22ð1 þ m tan yÞ %X2 þ k23ð1 þ m tan yÞ½ %X3 þ 3 %X2X0
; ð22Þ

FY
NLð %xÞ ¼ � k12½ %Y2 � 2 tan y %X %Y þ tan2y %X2
 � k13½ %Y3 þ 3 %Y2Y0 � 3 tan yð %X %Y2 þ 2 %X %YY0 þ %Y2X0Þ

þ 3 tan2 yð %X2 %Y þ 2 %X %YX0 þ %X2Y0Þ � tan3 yð %X3 þ 3 %X2X0Þ
: ð23Þ

The non-linear sprag-slip equation about the equilibrium point x0 ¼ fX0 Y0g
T for small

perturbations %x ¼ f %X %YgT can be expressed as

M .%xþ C ’%xþ K %x ¼
X2

i¼1

f i
ð1Þ %xi þ

X2

i¼1

X2

j¼1

f
ij
ð2Þ %xi %xj þ

X2

i¼1

X2

j¼1

X2

k¼1

f
ijk
ð3Þ %xi %xj %xk; ð24Þ

where the vectors f i
ð1Þ; f

ij
ð2Þ and f

ijk
ð3Þ are the coefficients of the linear, quadratic and cubic terms due

to the non-linear stiffness about the equilibrium point, respectively.
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The rearrangement of the linear and non-linear terms on the left and right sides of Eq. (24),
respectively, gives the new non-linear system

M .%xþ C ’%xþ *K %x ¼
X2

i¼1

X2

j¼1

f
ij
ð2Þ %xi %xj þ

X2

i¼1

X2

j¼1

X2

k¼1

f
ijk
ð3Þ %xi %xj %xk: ð25Þ

One notes that *K is the stiffness matrix containing the terms of the first stiffness matrix K defined
in Eq. (10), and the linear terms FX

L and FY
L of PX

NL and PY
NL about the equilibrium point defined

in Eqs. (20) and (21), respectively. The vectors f
ij
ð2Þ and f

ijk
ð3Þ are the coefficients of the quadratic and

cubic terms, respectively, due to the non-linear stiffness about the equilibrium point. The
expressions of f i

ð1Þ; f
ij
ð2Þ and f

ijk
ð3Þ are given in Appendix C.

In order to obtain time-history responses, the complete set of non-linear dynamic equations
may be integrated numerically. However this procedure is time consuming, when parametric
design studies are needed. So one will present the centre manifold approach in order to obtain
equations for the limit cycle amplitude.

In order to use the centre manifold approach, the non-linear judder equation is written in state
variables

’y ¼ Ayþ
X4

i¼1

X4

j¼1

gij
ð2Þyiyj þ

X4

i¼1

X4

j¼1

X4

k¼1

gijk
ð3Þyiyjyk; ð26Þ

where

y ¼
%x

’%x

( )
; ð27Þ

’y ¼
’%x

.%x

( )
; ð28Þ

A ¼ �
C M

I 0

" #�1
*K 0

0 I

" #
; ð29Þ

gð2Þ ¼
C M

I 0

" #�1
fð2Þ

0

" #
; ð30Þ

gð3Þ ¼
C M

I 0

" #�1
fð3Þ

0

" #
; ð31Þ

gij
ð2Þ and gijk

ð3Þ are quadratic and cubic non-linear terms of the state variables, respectively.
This system can be written by using the Kronecker product # [40]:

’y ¼ Ayþ gð2Þy#yþ gð3Þy#y#y; ð32Þ

where y#y is defined as the basis of quadratic terms and y#y#y is defined as the basis of cubic
terms. A is a (4� 4) matrix.
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6. The centre manifold approach

This section describes the method to obtain the lower dimensional system, defined on the centre
manifold. Locally, the stability of the centre manifold is equivalent to the stability of the original
system.

Consider the non-linear ordinary four-dimensional differential equations

’y ¼ fðy;mÞ ¼ AðmÞyþ gð2Þy#yþ gð3Þy#y#y; ð33Þ

where m is a parameter. AðmÞ; gij
ð2Þ and gijk

ð3Þ are the (4� 4) matrix, quadratic and cubic non-linear
terms, respectively, evaluated at the equilibrium point and defined previously in Eqs. (30) and
(31). This system has an equilibrium point X0ðmÞ if fðX0;mÞ ¼ 0: One may assume, without loss of
generality, that X0 ¼ 0: The stability of this point is obtained by the analysis of eigenvalues of the
linearized system. The bifurcation appears when one or several eigenvalues cross the imaginary
axis in the complex plane with the variation of m:

At the Hopf bifurcation point, the previous system can be written in the form

’vc ¼ Jcvc þG2ðvc; vsÞ þG3ðvc; vsÞ;

’vs ¼ Jsvs þH2ðvc; vsÞ þH3ðvc; vsÞ; ð34Þ

where Jc and Js have eigenvalues l such as Re½lJcðm0Þ
 ¼ 0 and Re½lJsðm0Þ
a0: G2; G3; H2 and H3

are polynomials of degree 2 and 3 in the components of vc and vs: By considering the physically
interesting case of the stable equilibrium loosing stability, it may be assumed that all eigenvalues
of Js have negative real part. Moreover, one considers the first scoupling modes. For a Hopf
bifurcation, the centre variables are two dimensional. Consequently, vc consists of two terms
vc ¼ fvc1 vc2g

T: Because G2; G3; H2 and H3 are polynomials of degree 2 and 3 in the components
of vc and vs; they are infinitely differentiable. So, a local centre manifold exists and the centre
manifold theory allows the expression of the variables vs as a function of vc [41]:

vs ¼ hðvcÞ: ð35Þ

It is very important to note that vs is a local invariant manifold, since the expression of vs as a
function of vc satisfies Eq. (34) for only small jjvcjj: The expression of h cannot be solved explicitly.
However, it is possible to define an approximate solution of h by a power expansion. Considering
the tangency conditions at the bifurcation point to the centre eigenspace, the function h satisfies
hð0Þ ¼ 0 and Dhð0Þ ¼ 0; the polynomial approximations do not contain constant and linear terms.
One defines vs ¼ hðvcÞ as a power series in vc of degree m; without constant and linear terms
ðmX2Þ:

Upon differentiating Eq. (35) and substituting into the second equation of Eq. (34) one obtains

Dvc
ðhðvcÞÞðJcvc þG2½vc; hðvcÞ
 þG3½vc; hðvcÞ
Þ ¼ JshðvcÞ þH2½vc; hðvcÞ
 þH3½vc; hðvcÞ
: ð36Þ

By solving Eq. (36), one obtains the coefficients of the terms of h. Provided that a polynomial
approximation of h up to sufficient order is obtained, the dynamics of Eq. (33) restricted to the
centre manifold is defined by the system

’vc ¼ Jcvc þG2ðvc; hðvcÞÞ þG3ðvc; hðvcÞÞ; ð37Þ

where G2 and G3 are given as a power series in vc for the parameter m ¼ m0: vs ¼ hðvcÞ is a power
series in vc of degree m; without constant and linear terms (mX2).
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The stability of this reduced system is equivalent to that of the original system. Here one
reduces the number of equation from 4 to 2. Moreover, the more complex the non-linear system is
and has many degrees of freedom, the more interesting the centre manifold approach is, allowing
a saving in time.

In this study, one will consider a simple extension to the centre manifold method when dealing
with a parametrized system. The final stage involves a consideration of the dynamics for
parameter values near the bifurcation point. An extension of the centre manifold theorem to
system (34) is the consideration of the augmented system

’vc ¼ Jcð #mÞvc þG2ðvc; vs; #mÞ þG3ðvc; vs; #mÞ;

’vs ¼ Jsð #mÞvs þH2ðvc; vs; #mÞ þH3ðvc; vs; #mÞ;
’#m ¼ 0; ð38Þ

where #m is a parameter. At ðvc; vs; #mÞ ¼ ð0; 0; 0Þ; this system has a three-dimensional centre
manifold tangent to ðvc; #mÞ space. For small ||vc|| and jj #mjj; the centre manifold is described by

vs ¼ hðvc; #mÞ; ð39Þ

where the function h is such that, at the fixed point (0, 0, 0),

h ¼ 0; Dhð0Þ ¼ 0 and @h=@ #m ¼ 0: ð40Þ

Therefore, the local centre manifold is represented by the polynomial expansion of degree m

vs ¼ hðvc; #mÞ ¼
Xm

p¼iþjþl¼2

Xp

j¼0

Xp

l¼0

aijlv
i
c1v

j
c2 #m

l ; ð41Þ

where aijl are vectors of constant coefficients. One notices that the terms such as vc1 #m; vc2 #m; vs1 #m
and vs2 #m are treated as non-linear terms. The vectors aijl will be determined by solving Eq. (36),
augmented with the parameter #m: One obtains

Dvc; #mðhðvc; #mÞÞðJcvc þG2½vc; hðvc; #mÞ; #m
 þG3½vc; hðvc; #mÞ; #m
Þ

¼ Jshðvc; #mÞ þH2½vc; hðvc; #mÞ; #m
 þH3½vc; hðvc; #mÞ; #m
: ð42Þ

Moreover, the dynamic of Eq. (33) restricted to the centre manifold and augmented with the
consideration of the parameter #m is defined by the system

’vc ¼ Jcð #mÞvc þG2ðvc; hðvc; #mÞ; #mÞ þG3ðvc; hðvc; #mÞ; #mÞ;
’#m ¼ 0: ð43Þ

7. Determination of the coefficients

In order to obtain an approximation of the stable variables vs as a power series in ðvc; #mÞ; one
may obtain the coefficients ak;ijl defined in Eq. (41). Usually, the polynomial approximations are
taken as quadratic or cubic in the first approximation. But in studies of hard non-linear dynamical
systems with more than two degrees of freedom, the second order or the third order polynomial
approximation is not sufficient to provide a good approximation of the stable and unstable
variables. In fact, the fourth order (or higher order) polynomial approximation is used in order to
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describe correctly the dynamics of the system. It is impossible to obtain an analytical expression of
the coefficients ak;ijl ; due to the complexity of the polynomial approximations and the important
numbers of non-linearities where the centre, stable and unstable variables are non-linearly
coupled.

Now, it is possible to describe a systematic analytical method in order to perform the
determination of the coefficients ak;ijl ; by using the increasing power of Eq. (42), and retaining
only the terms corresponding to the power investigated. First, the developed expression of
Eq. (34) has the form by using the Kronecher product # [40]

’vc ¼ Jcvc þ G
ij
ð2Þv#vþ Gik

ð3Þv#v#v;

’vs ¼ Jsvs þ H
ij
ð2Þv#vþ Hik

ð3Þv#v#v;

’#m ¼ 0; ð44Þ

with v ¼ fvc1 vc2 vs1 vs2 #mgT: G
ij
ð2Þ; Gik

ð3Þ; H
ij
ð2Þ and Hik

ð3Þ are quadratic and cubic non-linear terms of v,
respectively (with i ¼ 1; 2; j ¼ 1;y; 25 and k ¼ 1;y; 125). These notations will be used to define
expressions for the coefficients of the polynomial approximations vs ¼ hðvc; #mÞ as a power series in
ðvc; #mÞ:

7.1. Second order solution

One can express the stable variables by using second order polynomial approximations. One
recalls that the polynomial approximations contain no constant or linear terms. So, the
expressions of the stable variables vs as a power series in ðvc; #mÞ of degree 2 can be written as

vs ¼ hð1Þðvc; #mÞ ¼
X2

p¼iþjþl¼2

Xp

j¼0

Xp

l¼0

aijlv
i
c1v

j
c2 #m

l

¼ a200v2
c1 þ a110vc1vc2 þ a020v2

c2 þ a101vc1 #mþ a011vc2 #mþ a002 #m2; ð45Þ

where aijl are unknown vectors of coefficients. To find the (6� n) coefficients (where n defines the
number of stable variables, n ¼ 2 in this case), one needs only the coefficients of the second order
terms in the polynomials on both sides in Eq. (36). So, by considering only second order terms, the
simplified expression of Eq. (36) has the form

Dvc; #mðh
ð1Þðvc; #mÞÞJcvc ¼ Jsh

ð1Þðvc; #mÞ þH2ðvc; #mÞ: ð46Þ

One notes that this system is the exact system for second order polynomial approximations.
It is possible to obtain an analytical expression of the coefficients ak;ijl by solving Eq. (46). One
obtains

ak;200 ¼
Hk1

ð2Þ

ð2Jc1 � JskÞ
; ak;110 ¼

ðHk2
ð2Þ þ Hk6

ð2ÞÞ

ðJc1 þ Jc2 � JskÞ
; ak;020 ¼

Hk7
ð2Þ

ð2Jc2 � JskÞ
;

ak;101 ¼
ðHk5

ð2Þ þ Hk21
ð2Þ Þ

ðJc1 � JskÞ
; ak;011 ¼

ðHk10
ð2Þ þ Hk22

ð2Þ Þ

ðJc2 � JskÞ
; ak;002 ¼

�Hk25
ð2Þ

Jsk

;

ð47Þ

for k ¼ 1; 2: k defines the kth degree of freedom of stable variables. Jc1 and Jc2 are the first and
second terms of the diagonal matrix Jc as defined in Eq. (44), respectively. Jsk is the kth term of
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the diagonal matrix Js as defined in Eq. (44). Hki
ð2Þ defined the term of the kth-line and ith-column of

the matrix defined by H2. Now, one observes that the expression of the stable variables uses only the
quadratic non-linear terms of centre variables on the right side of Eq. (42) contained in H2. All
quadratic terms of centre variables on the left side of Eq. (42), as well as quadratic and cubic terms
of stable variables on both sides, are not considered for the determination of the coefficients ak;ijl :

Here, the second order approximation is not sufficient, due to the fact that the limit cycles
obtained by integrating Eq. (43) diverge. Effectively, equations describing the dynamics of system
(33) on the centre manifold, and described in Eq. (34), contain all linear, quadratic and cubic
terms, but the dynamics of this reduced and of the original sytems , defined in Eq. (43), are not
equivalent. The methodology and centre manifold theory is not in question, but the polynomial
approximation of stable variables vs as a power series in ðvc; #mÞ of degree 2 does not represent a
good approximation. So, it is necessary to define the third order (or fourth order, etc.) polynomial
approximation in order to describe correctly the dynamics of the system.

7.2. Third order solution

It has been previously shown that the second order polynomial approximation was not
sufficient. So one needs to use the third order polynomial approximation. The expressions of the
stable variables vs; as a power series in ðvc; #mÞ of degree 3 without constant and linear terms, can be
defined by adding third order polynomial terms in the first second order polynomial
approximation defined in Eq. (45). These expressions have the form

vs ¼
X3

p¼iþjþl¼2

Xp

j¼0

Xp

l¼0

aijlv
i
c1v

j
c2 #m

l ¼ hð1Þðvc; #mÞ þ hð2Þðvc; #mÞ

¼ hð1Þðvc; #mÞ þ a300v3
c1 þ a210v2

c1vc2 þ a120vc1v2
c2 þ a030v3

c2

þ a201v2
c1 #mþ a111vc1vc2 #mþ a021v2

c2 #mþ a102vc1 #m2 þ a012vc2 #m2 þ a003 #m3; ð48Þ

where aijl are unknown vectors of coefficients (for i þ j þ l ¼ 3). hð1Þðvc; #mÞ defines the first
approximation using second order polynomial approximation. In fact, substituting the assumed
quadratic and cubic polynomial approximations in Eq. (42) and equating the coefficients of the
different terms in the polynomials on both sides, gave the same system of algebraic equations for
the coefficients of the polynomials, than that obtained by considering second order and neglecting
higher order. Therefore, one only needs to find the (10� n) coefficients (where n defines the
number of stable variables, n=2 in this case) of the third order terms in the polynomials on both
sides in Eq. (42). So, the consideration of the third order terms gives the simplified expression of
Eq. (42):

Dvc; #mðh
ð1Þðvc; #mÞÞ½G2ðvc; #mÞ
 þ Dvc

ðhð2Þðvc; #mÞÞJcvc

¼ Jsh
ð2Þðvc; #mÞ þH2ðfvc; 0; #mg#f0; hð1Þðvc; #mÞ; 0g þ f0; hð1Þðvc; 0Þg#fvc; 0; #mgÞ þH3ðvc; #mÞ: ð49Þ

This system is the exact system for third order polynomial approximations. It is possible to obtain
an analytical expression of the coefficients ak;ijl by solving Eq. (49). So, one obtains

ak;300 ¼
�2ak;200G11

ð2Þ þ a1;200ðHk3
ð2Þ þ Hk11

ð2Þ Þ þ a2;200ðHk4
ð2Þ þ Hk16

ð2Þ Þ � ak;110G21
ð2Þ þ Hk1

ð3Þ

ð3Jc1 � JskÞ
;
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ak;210 ¼

ð�2ak;200ðG12
ð2Þ þ G16

ð2ÞÞ � ak;110ðG11
ð2Þ þ G22

ð2Þ þ G26
ð2ÞÞ � 2ak;020G21

ð2Þ þ a1;110ðHk3
ð2Þ þ Hk11

ð2Þ Þ

þa2;110ðHk4
ð2Þ þ Hk16

ð2Þ Þ þ a1;200ðHk8
ð2Þ þ Hk12

ð2Þ Þ þ a2;200ðHk9
ð2Þ þ Hk17

ð2Þ Þ þ Hk2
ð3Þ þ Hk6

ð3Þ þ Hk26
ð3Þ Þ

ð2Jc1 þ Jc2 � JskÞ
;

ak;120 ¼

ð�2ak;200G17
ð2Þ � ak;110ðG27

ð2Þ þ G12
ð2Þ þ G16

ð2ÞÞ � 2ak;020ðG22
ð2Þ þ G26

ð2ÞÞ þ a1;020ðHk3
ð2Þ þ Hk11

ð2Þ Þ

þa2;020ðHk4
ð2Þ þ Hk16

ð2Þ Þ þ a1;110ðHk8
ð2Þ þ Hk12

ð2Þ Þ þ a2;110ðHk9
ð2Þ þ Hk17

ð2Þ Þ þ Hk7
ð3Þ þ Hk27

ð3Þ þ Hk31
ð3Þ Þ

ðJc1 þ 2Jc2 � JskÞ
;

ak;030 ¼
ð�2ak;020G27

ð2Þ þ a1;020ðHk8
ð2Þ þ Hk12

ð2Þ Þ þ a2;020ðHk9
ð2Þ þ Hk17

ð2Þ Þ � ak;110G17
ð2Þ þ Hk32

ð3Þ Þ

ð3Jc2 � JskÞ
;

ak;201 ¼

ð�ak;101G11
ð2Þ � ak;011G21

ð2Þ � 2ak;200ðG15
ð2Þ þ G121

ð2Þ Þ � ak;110ðG25
ð2Þ þ G221

ð2Þ Þ þ a1;101ðHk3
ð2Þ þ Hk11

ð2Þ Þ

þa2;101ðHk4
ð2Þ þ Hk16

ð2Þ Þ þ a1;200ðHk15
ð2Þ þ Hk23

ð2Þ Þ þ a2;200ðHk20
ð2Þ þ Hk24

ð2Þ Þ þ Hk5
ð3Þ þ Hk21

ð3Þ þ Hk101
ð3Þ Þ

ð2Jc1 � JskÞ
;

ak;021 ¼

ð�ak;101G17
ð2Þ � ak;011G27

ð2Þ � 2ak;020ðG210
ð2Þ þ G222

ð2Þ Þ � ak;110ðG110
ð2Þ þ G122

ð2Þ Þ þ a1;020ðHk15
ð2Þ þ Hk23

ð2Þ Þ

þa2;020ðHk20
ð2Þ þ Hk24

ð2Þ Þ þ a1;011ðHk8
ð2Þ þ Hk12

ð2Þ Þ þ a2;011ðHk9
ð2Þ þ Hk17

ð2Þ Þ þ Hk35
ð3Þ þ Hk47

ð3Þ þ Hk107
ð3Þ Þ

ð2Jc2 � JskÞ
;

ak;102 ¼

ð�2ak;200G125
ð2Þ � ak;110G225

ð2Þ � ak;101ðG15
ð2Þ þ G121

ð2Þ Þ � ak;011ðG25
ð2Þ þ G221

ð2Þ Þ þ a1;101ðHk15
ð2Þ þ Hk23

ð2Þ Þ

þa2;101ðHk20
ð2Þ þ Hk24

ð2Þ Þ þ a1;002ðHk3
ð2Þ þ Hk11

ð2Þ Þ þ a2;002ðHk4
ð2Þ þ Hk16

ð2Þ Þ þ Hk25
ð3Þ þ Hk105

ð3Þ þ Hk121
ð3Þ Þ

ðJc1 � JskÞ
;

ak;012 ¼

ð�ak;110G125
ð2Þ � 2ak;020G225

ð2Þ � ak;101ðG110
ð2Þ þ G122

ð2Þ Þ � ak;011ðG210
ð2Þ þ G222

ð2Þ Þ

þa2;011ðHk20
ð2Þ þ Hk24

ð2Þ Þ þ a1;011ðHk15
ð2Þ þ Hk23

ð2Þ Þ þ a1;002ðHk8
ð2Þ þ Hk12

ð2Þ Þ

þa2;002ðHk9
ð2Þ þ Hk17

ð2Þ Þ þ Hk50
ð3Þ þ Hk110

ð3Þ þ Hk122
ð3Þ Þ

ðJc2 � JskÞ
;

ak;111 ¼

ð�ak;101ðG12
ð2Þ þ G16

ð2ÞÞ � ak;110ðG15
ð2Þ þ G121

ð2Þ þ G110
ð2Þ þ G122

ð2Þ Þ � 2ak;200ðG110
ð2Þ þ G122

ð2Þ Þ

�2ak;020ðG25
ð2Þ þ G221

ð2Þ Þ � ak;011ðG22
ð2Þ þ G26

ð2ÞÞ þ a1;110ðHk15
ð2Þ þ Hk23

ð2Þ Þ þ a2;110ðHk20
ð2Þ þ Hk24

ð2Þ Þ

þa1;101ðHk8
ð2Þ þ Hk12

ð2Þ Þ þ Hk10
ð3Þ þ Hk22

ð3Þ þ a2;101ðHk9
ð2Þ þ Hk17

ð2Þ Þ þ a1;011ðHk3
ð2Þ þ Hk11

ð2Þ Þ

þa2;011ðHk4
ð2Þ þ Hk16

ð2Þ Þ þ Hk30
ð3Þ þ Hk46

ð3Þ þ Hk102
ð3Þ þ Hk106

ð3Þ Þ

ðJc1 þ Jc2 � JskÞ
;

ak;003 ¼
ðak;102G125

ð2Þ þ ak;012G225
ð2Þ � a1;002ðHk15

ð2Þ þ Hk23
ð2Þ Þ � a2;002ðHk20

ð2Þ þ Hk24
ð2Þ Þ � Hk125

ð3Þ Þ

Jsk

: ð50Þ

For k ¼ 1; 2: k defines the kth degree of freedom of stable variables. Jc1 and Jc2 are the first and
second terms of the diagonal matrix Jc as defined in Eq. (44), respectively. Jsk is the kth term of
the diagonal matrix Js as defined in Eq. (44). Hki

ð2Þ and Hki
ð3Þ defined the terms of the kth-line and
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ith-column of the matrix defined by H2 and H3, respectively. Gki
ð2Þ defined the term of the kth-line

and ith-column of the matrix defined by G2.
Now, one notes that the expression of stable variables in a power series in ðvc; #mÞ; using a third

order polynomial approximation, uses a part of the quadratic non-linear terms in centre
variables on the left side of Eq. (42) contained in G2. Moreover, cubic terms of centre variables
contained in H3 and quadratic terms of stable variables contained in H2, on the right side
of eq. (34), appear. Then the third order polynomial approximation allows a better approxi-
mation than the second order polynomial approximation, with a participation of most
non-linear terms in the determination of coefficients ak;ijl : Furthermore, the determination of
third-order polynomial approximation in Eq. (48) used the values of second order polynomial
approximation.

7.3. Fourth order and higher order solutions

If the third order polynomial approximation is not available, one has to use higher order
polynomial approximation. The determination of coefficients ak;ijl for higher order is exactly the
same than the determination for second order and third order forms. The expressions of the stable
variables vs ¼ hðvc; #mÞ as a power series in ðvc; #mÞ of degree 4 and 5, without constant and linear
terms, are defined in Eq. (41). Moreover, the more higher order terms are used in order to express
the stable variables as a power series of center variables, the more the non-linear terms appear in
Eq. (42) for the determination of coefficients ak,ijl.

In this section, it has been shown how to determine the exact values of coefficients ak,ijl for a
strong non-linear system with many degree of freedoms. It has been emphasized that the
determination of coefficients ak,ijl can be obtained order by order and no recalculation of lower
order for a new evaluation of polynomial approximation vs ¼ hðvc; #mÞ using higher order have to
be performed. An analytical expression has been determined for the coefficients of second order
and third order polynomial approximation of vs ¼ hðvc; #mÞ:

As explained previously, after the determination of the local centre manifold vs ¼ hðvc; #mÞ; the
dynamics restricted to the centre manifold is also defined by system (43).

8. Limit cycles

Now, the procedure to obtain limit cycles for parameter values near the bifurcation point
m ¼ m0 þ %m; where m0 is the bifurcation point and %m ¼ em0 (with e{1), is described.

An application of the centre manifold to system (26) augmented with the equation ’%m ¼ 0; shows
that if the equilibrium is preserved, then the dynamics is given by Eq. (43). The local centre
manifold is represented by the polynomial expansion vs ¼ hðvc; %mÞ as defined previously. One notes
that this method of determination of the limit cycles is a simple extension to the centre manifold
method, which is useful when dealing with parameterized families of systems.

In this study, the limit cycles will be obtained only near the Hopf bifurcation point (with e very
small). In this case, one observes numerically that the expressions of vs ¼ hðvc; %mÞ can be
approximated by the expression of vs ¼ hðvcÞ with negligible errors. This approximation amounts
to the expression of vs at the Hopf bifurcation point m0 (aijl � 0 for la0). It is not necessary, but
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nevertheless it allows the simplification of the expression of vs: Therefore, the non-linear terms are
approximated by their evaluation at the bifurcation point m ¼ m0; provided that none of the
leading nonlinear terms vanish here; so the approximation G2½vc; hðvcÞ; m0
 and G3½vc; hðvcÞ;m0
 are
equivalent to G2½vc; hðvcÞ;m
 and G3½vc; hðvcÞ; m
 with negligible error due to the fact that e is very
small.

Finally, the dynamics of the system is described, with small errors, by the system

’vc ¼ JcðmÞvc þG2½vc; hðvcÞ; m0
 þG3½vc; hðvcÞ;m0
;

’m ¼ 0: ð51Þ

This reduced system is easier to study than the original one. Using an approximation of h of order
2 causes divergence in the evolutions of limit cycle amplitudes. This problem is due to the fact that
a polynomial approximation of h of order 2 is not sufficient. Then, one determines the limit cycles
of the system by using an approximation of h of order 3.

This study uses the base parameters defined previously and the determination of the coefficients
of the polynomial approximation of h of order 3. As previously defined, the Hopf bifurcation
point is detected for m0 ¼ 0; 2:

In Figs. 13 and 14, limit cycles are plotted for the two degrees of freedom of the physical system
(4). Thin lines and star lines show limit cycles by integrating the original system and by using the
centre manifold approach, respectively. One notices a good correlation between the integrated
system and the centre manifold approach by using an approximation of h of order 3.
Consequently, the centre manifold approach is validated and reduces the number of equations of
the original system in order to obtain a simplified system, without losing the dynamics of the
original system as well as the non-linear terms.

Now, it will be very interesting to determine the influence of varying parameters on the level
amplitude. So, it is necessary to use an approximation of h of order 5 in some cases, since an
approximation of h of order 3 or 4 is not enough.
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Fig. 13. X-limit cycle for %m ¼ m0=1000 (—— original system; center manifold approach).
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For each simulation, the Hopf bifurcation point and the value of brake friction coefficient m0

are detected as defined in Table 1.
Some indications have been observed by varying one parameter for the base values defined

previously. It may be noted that the limit cycle is defined near the Hopf bifurcation point, using
the brake friction coefficient as an unfolding parameter. It is observed that the level amplitude is a
very complex problem. Indeed, the evolution of limit cycle amplitude is not linear with the
evolution of a specific parameter. The increasing or decreasing level amplitude versus linear
evolution of a specific parameter is observed. This is further reflected in Figs. 15–18.

More precisely, the growth of limit cycle amplitudes is controlled by the rise and fall of the non-
linear stiffness k12, as illustrated in Fig. 16. Yet, the evolution of limit cycle does not decrease in
the same proportion as the non-linear stiffness k12 increases. The evolution is not linear and the Y

limit cycle grows with changing in form.
Moreover, limit cycles increase and decrease with constant increasing of mass m1, constant

increasing of the angle y; or constant increasing of the brake force Fbrake, as shown in Figs. 15, 17
and 18, respectively. The X-limit cycle evolution and Y-limit cycle evolution have not the same
behaviour, and for example, Y-limit cycle grows with changing in form in Fig. 15.
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Fig. 14. Y-limit cycle for %m ¼ m0=1000 (—— original system; center manifold approach).

Table 1

Values of brake friction coefficient at the Hopf bifurcation

Angle y (rad.) Quadratic non-linear stiffness k12 (N/m2)

0.1 0.3 0.4 0.5 107 1.5 107 2.5 107 108

m0 0.103 0.3102 0.424 0.547 0.204 0.204 0.204 0.205

Fbrake (N) Mass m1 (kg)

10 50 100 200 1.1 1.2 1.3 1.4

m0 0.204 0.204 0.205 0.206 0.216 0.247 0.293 0.351
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In conclusion, parametric studies of the evolution of limit cycles are a complex problem.
Parametric design studies show that evolution of limit cycle amplitude can be altered by changes
in the brake friction coefficient, brake force, stiffness, mass and angle.

9. Summary and conclusion

A non-linear model for the analysis of a mode of heavy truck judder has been developed.
Results from stability are investigated by calculating the Jacobian of the system at the equilibrium
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Fig. 16. X-limit cycle and Y-limit cycle for %m ¼ m0=1000 as a function of non-linear stiffness coefficient k12 (

k12=107 N/m2; – 
 – 
 – k12=1.5 107 N/m2; —— k12=2.5 107 N/m2; - - - - k12=108 N/m2).

Fig. 15. X-limit cycle and Y-limit cycle for %m ¼ m0=1000 as a function of angle y ( y=0.1 rad.; – 
 – 
 – y=0.3 rad.;

—— y=0.4 rad.; - - - - y=0.5 rad.).
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points. This stability analysis indicates that system instability can occur with a constant friction
coefficient. The correlation between experiments and theoretical coupled frequencies is sufficiently
satisfactory to justify the theoretical approach adopted and particularly the sprag-slip
phenomena. For further understanding of the effects due to the variation of some parameters,
stability analysis using two parameter evolutions has been realized. Indeed, changes in masses,
stiffness, brake friction coefficient, damping and angle of the sprag-slip phenomena are significant
on stability.

Moreover, this paper presents the centre manifold approach in order to obtain equations for
the limit cycle amplitude. This approach simplifies the dynamics on the centre manifold by
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Fig. 18. X-limit cycle and Y-limit cycle for %m ¼ m0=1000 as a function of mass m1 (—— m1=1.1 kg; – – – – m1=1.2 kg;

– 
 – 
 – m1=1.3 kg; m1=1.4 kg).

Fig. 17. X-limit cycle and Y-limit cycle for %m ¼ m0=1000 as a function of brake force Fbrake (—— Fbrake=10 N; - - - -

Fbrake=50N; – 
 – 
 – Fbrake=100N; Fbrake=200 N).
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reducing the order of the dynamical system, while retaining the essential features of the dynamic
behaviour near the Hop bifurcation point. One of the most important points is the determination
of polynomial approximations and of power that defines expressions of stable variables versus
centre manifold. The centre manifold theory for this non-linear model is validated by comparing
results obtained by solving the full system and by using the centre manifold approach.

Finally, a particular observation is the need to determine the instability amplitude obtained by
using the centre manifold approach, and not only the instability region obtained by calculating
the Jacobian of the system at the equilibrium points. In order to relate the effect of specific
parameter variations on the stability and on the evolution of limit cycle amplitude to the design
features of brake system, it is necessary to perform a complex non-linear analysis without
neglecting the study of evolution amplitude. In these cases, the centre manifold approach is very
interesting when time-history response solutions of the full set of non-linear equations are time
consuming to perform and when extensive parametric design studies are necessary.
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Appendix A. Parameter values

Fbrake ¼ 1N; brake force,
m1 ¼ 1 kg; equivalent mass of first mode,
m2 ¼ 1 kg; equivalent mass of second mode,
c1 ¼ 5 N=m=s; equivalent damping of first mode,
c2 ¼ 5 N=m=s; equivalent damping of second mode,
k11 ¼ 1 � 105 N=m; coefficient of linear term of stiffness k1;
k12 ¼ 1 � 106 N=m2; coefficient of quadratic term of stiffness k1;
k13 ¼ 1 � 106 N=m3; coefficient of cubic term of stiffness k1;
k21 ¼ 1 � 105 N=m; coefficient of linear term of stiffness k2;
k22 ¼ 1 � 105 N=m2; coefficient of quadratic term of stiffness k2;
k23 ¼ 1 � 105 N=m3; coefficient of cubic term of stiffness k2;
y ¼ 0:2 rad; sprag-slip angle,
m ¼ 0:3; brake friction coefficient,

Appendix B. Jacobian matrix and expressions of a3; a2; a1 and a0

The terms of the Jacobian matrix J of the system at the equilibrium points x0 ¼ fX0 Y0g
T; are

Jð1; 1Þ ¼ Jð1; 2Þ ¼ Jð1; 4Þ ¼ Jð2; 1Þ ¼ Jð2; 2Þ ¼ Jð2; 3Þ ¼ 0; Jð1; 3Þ ¼ Jð2; 4Þ ¼ 1;
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Jð3; 1Þ ¼
�1

m2ðtan2 yþ 1Þðk21ð1 þ m tan yÞ þ k11ðtan2 y� m tan yÞ

�ð�tan yþ mÞð2k12 tan2 yX0 � 2k12 tan yY0

þ3k13 tan3 yX 2
0 � 6k13 tan2 yX0Y0

þ3k13 tan yY 2
0 Þ þ ð1 þ m tan yÞð2k22X0 þ 3k23X 2

0 ÞÞ

;

Jð3; 2Þ ¼
�1

m2ðtan2 yþ 1Þðk11ð�tan yþ mÞ � ð�tan yþ mÞð2k12Y0 � 2k12 tan yX0

�3k13 tan2 yX 2
0 þ 6k13 tan yX0Y0 � 3k13Y 2

0 ÞÞ

;

Jð3; 3Þ ¼
�c1ðtan2 y� m tan yÞ þ c2ð1 þ m tan yÞ

m2ðtan2 yþ 1Þ
;

Jð3; 4Þ ¼
c1ðtan y� mÞ

m2ðtan2 yþ 1Þ
;

Jð4; 1Þ ¼
�1

m1ð�k11 tan yþ 2k12 tan2 yX0 � 2k12 tan yY0

�3k13 tan yY 2
0 þ 6k13 tan2 yX0Y � 3k13 tan3 yX 2

0 Þ

;

Jð4; 2Þ ¼
�1

m1ðk11 þ 2k12Y0 � 2k12 tan yX0 þ 3k13Y 2
0 � 6k13 tan yX0Y0 þ 3k13 tan2 yX 2

0 Þ
;

Jð4; 3Þ ¼
c1tan y

m1
; Jð4; 4Þ ¼

�c1

m1
:

The expressions of a3; a2; a1 and a0 are

a3 ¼
c1ðtan2 y� m tan yÞ þ c2ð1 þ m tan yÞ

m2ðtan2 yþ 1Þ
þ

c1

m1
;

a2 ¼
k11 þ 2k12Y0 � 2k12 tan yX0 þ 3k13Y 2

0 � 6k13 tan yX0Y0 þ 3k13 tan2 yX 2
0

m1
þ

c1c2ð1 þ m tan yÞ
m1m2ðtan2 yþ 1Þ

þ

k21ð1 þ m tan yÞ þ k11ðtan2 y� m tan yÞ � ð�tan yþ mÞð2k12 tan2 yX0 � 2k12 tan yY0

þ3k13 tan3 yX 2
0 � 6k13 tan2 yX0Y0 þ 3k13 tan yY 2

0 Þ þ ð1 þ m tan yÞð2k22X0 þ 3k23X 2
0 Þ

m2ðtan2 yþ 1Þ
;
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a1 ¼

c1ðk21ð1 þ m tan yÞ þ k11ðtan2y� mtanyÞ � ð�tan yþ mÞ � ð2k12 tan2 yX0 � 2k12 tan yY0

þ3k13 tan3 yX 2
0 � 6k13 tan2 yX0Y0 þ 3k13 tan yY 2

0 Þ þ ð1 þ m tan yÞð2k22X0 þ 3k23X 2
0 ÞÞ

þc1ðtan y� mÞð�k11 tan yþ 2k12 tan2 yX0 � 2k12 tan yY0 � 3k13 tan yY 2
0 þ 6k13 tan2 yX0Y

�3k13 tan3 yX 2
0 Þ þ c1 tan yðk11ð�tan yþ mÞ � ð�tan yþ mÞð2k12Y0 � 2k12 tan yX0

�3k13 tan2 yX 2
0 þ 6k13 tan yX0Y0 � 3k13Y 2

0 ÞÞ þ ðc1ðtan2 y� m tanyÞ þ c2ð1 þ m tan yÞÞ

�ðk11 þ 2k12Y0 � 2k12 tan yX0 þ 3k13Y 2
0 � 6k13 tan yX0Y0 þ 3k13 tan2 yX 2

0 Þ
m1m2ðtan2 yþ 1Þ

ðk21ð1 þ m tan yÞ þ k11ðtan2 y� m tan yÞ � ð�tan yþ mÞð2k12 tan2 yX0 � 2k12 tan yY0

þ 3k13 tan3 yX 2
0 � 6k13 tan2 yX0Y0 þ 3k13 tan yY 2

0 Þ þ ð1 þ mtanyÞð2k22X0 þ 3k23X 2
0 Þ

� ðk11 þ 2k12 Y0 � 2k12 tan yX0 þ 3k13Y 2
0 � 6k13 tan yX0Y0 þ 3k13 tan2 yX 2

0 Þ

þðk11 tan y� 2k12 tan2 yX0 þ 2k12 tan yY0 þ 3k13tanyY 2
0 � 6k13 tan2 yX0Y þ 3k13 tan3 yX 2

0 Þ

a0 ¼
�ðk11ð�tan yþ mÞ � ð�tan yþ mÞð2k12Y0 � 2k12 tan yX0 � 3k13 tan2 yX 2

0 þ 6k13 tan yX0Y0 � 3k13Y 2
0 ÞÞ

m1m2ðtan2 yþ 1Þ
:

Appendix C. Definition of f i
ð1Þ; f

ij
ð2Þ and f

ijk
ð3Þ coefficients

The vectors f i
ð1Þ; f

ij
ð2Þ and f

ijk
ð3Þ are coefficients of the linear, quadratic and cubic terms of the

nonlinear force PNL ¼ PX
NL PY

NL

� �T
; respectively, due to the non-linear stiffness about the

equilibrium point. The non-zero components of the vectors f i
ð1Þ ¼ f X ;i

ð1Þ f Y ;i
ð1Þ

n oT

; f
ij
ð2Þ ¼

f
X ;ij
ð2Þ f

Y ;ij
ð2Þ

n oT

and f
ijk
ð3Þ ¼ f

X ;ijk
ð3Þ f

Y ;ijk
ð3Þ

n oT

; respectively, are:

f X ;1
ð1Þ ¼ ð�tan yþ mÞ½2k12 tan2 yX0 � 2k12 tan yY0 þ 3k13 tan3 yX 2

0 � 6k13 tan2 yX0Y0

þ 3k13 tan yY 2
0 
 þ ð1 þ m tan yÞ½2k22X0 þ 3k23X 2

0 
;

f X ;2
ð1Þ ¼ ð�tan yþ mÞ½2k12Y0 � 2k12 tan yX0 � 3k13 tan2 yX 2

0 þ 6k13 tan yX0Y0 � 3k13Y 2
0 
;

f Y ;1
ð1Þ ¼ � 2k12 tan2 yX0 þ 2k12 tan yY0 þ 3k13 tan yY 2

0 � 6k13 tan2 yX0Y0 þ 3k13 tan3 yX 2
0 ;

f Y ;2
ð1Þ ¼ � 2k12Y0 þ 2k12 tan yX0 � 3k13Y 2

0 þ 6k13 tan yX0Y0 � 3k13 tan2 yX 2
0 ;

f X ;11
ð2Þ ¼ ð�tan yþ mÞ½k12 tan2 yþ 3k13 tan3 yX0 � 3k13 tan2 yY0
 þ ð1 þ m tan yÞ½k22 þ 3k23X0
;

f X ;12
ð2Þ ¼ ð�tan yþ mÞ½�2k12 tan y� 6k13 tan2 y X0 þ 6k13 tan yY0
;

f X ;22
ð2Þ ¼ ð�tan yþ mÞ½k12 � 3k13 tan yX0 � 3k13Y0
;
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f Y ;11
ð2Þ ¼ � k12tan2 y� 3k13tan2 yY0 þ 3k13 tan3 yX0;

f Y ;12
ð2Þ ¼ 2k12 tan yþ 6k13 tan yY0 � 6k13 tan2 yX0;

f Y ;22
ð2Þ ¼ � k12 � 3k13Y0 þ 3k13tan yX0;

f X ;111
ð3Þ ¼ ð�tan yþ mÞk13 tan3 yþ k23ð1 þ m tan yÞ;

f X ;112
ð3Þ ¼ � 3k13 tan2yð�tan yþ mÞ;

f X ;122
ð3Þ ¼ 3k13tan yð�tan yþ mÞ;

f X ;222
ð3Þ ¼ � k13ð�tan yþ mÞ;

f Y ;111
ð3Þ ¼ k13 tan3 y;

f Y ;112
ð3Þ ¼ � 3k13 tan2 y;

f Y ;122
ð3Þ ¼ 3k13 tan y;

f Y ;222
ð3Þ ¼ � k13:

Appendix D. Nomenclature

x scalar
x vector
’x vector of velocity
.x vector of acceleration
x0 equilibrium point
%x small pertubation
C damping matrix
K stiffness matrix
M mass matrix
J jacobian matrix of the system
F vector force
PNL vector of linear and non-linear terms
FL vector of linear terms
FNL vector of non-linear terms
FX X-co-ordinate of the vector F

FY Y-co-ordinate of the vector F

N normal load
T tangential load
m1 equivalent mass of tangential mode
m2 equivalent mass of torsional mode
k1 equivalent stiffness of tangential mode
k2 equivalent stiffness of torsional mode
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c1 equivalent damping of tangential mode
c2 equivalent damping of torsional mode
k11 coefficient of linear term of stiffness k1

k12 coefficient of quadratic term of stiffness k1

k13 coefficient of cubic term of stiffness k1

k21 coefficient of linear term of stiffness k2

k22 coefficient of quadratic term of stiffness k2

k23 coefficient of cubic term of stiffness k2

y sprag-slip angle
m brake friction coefficient
m0 brake friction coefficient at the Hopf bifurcation point
f i
ð1Þ coefficients of linear terms

f
ij
ð2Þ coefficients of quadratic non-linear terms

f
ijk
ð3Þ coefficients of cubic non-linear terms

gij
ð2Þ coefficients of quadratic non-linear terms in state variables

gijk
ð3Þ coefficients of cubic non-linear terms in state variables

aijl vector of the coefficients of the centre manifold
ak;ijl coefficients of the center manifold for the kth stable variable
vc vector of centre variables
vs vector of stable variables
h vector of the polynomial approximation of stable variables in centre variables
Js Jacobian matrix of stable variables
Jc Jacobian matrix of centre variables
G2 vector function of quadratic terms for the center variables
H2 vector function of quadratic terms for the stable variables
G3 vector function of cubic terms for the center variables
H3 vector function of cubic terms for the stable variables
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