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Abstract

In this paper, a frequency-domain method to estimate modal parameters from short data records with
known input (measured) forces and unknown input forces is presented. The method can be used for an
experimental modal analysis, an operational modal analysis (output-only data) and the combination of
both. A traditional experimental and operational modal analysis in the frequency domain starts
respectively, from frequency response functions and spectral density functions. To estimate these functions
accurately sufficient data have to be available. The technique developed in this paper estimates the modal
parameters directly from the Fourier spectra of the outputs and the known input. Instead of using Hanning
windows on these short data records the transient effects are estimated simultaneously with the modal
parameters. The method is illustrated, tested and validated by Monte Carlo simulations and experiments.
The presented method to process short data sequences leads to unbiased estimates with a small variance in
comparison to the more traditional approaches.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the past different methods were developed to process output-only data [1]. These methods
can be used for situations where it is difficult to perform an artificial forced excitation. The main
idea of the output-only modal analysis is to use the unknown natural forces as excitation (e.g.,
traffic/wind excitation for civil structures, atmospheric turbulence for airplanes, etc.). A benefit of
an operational modal analysis is that the modal parameters are identified in real operational
conditions, which can differ a lot with laboratory conditions.
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An experimental modal analysis starts from input and output measurements to estimate the
modal parameters. In this case all natural unknown forces are considered as undesirable process
noise on the output measurements. The use of a non-parametric H1 frequency response function
(FRF) estimator eliminates the noise contributions on the outputs. When sufficient data samples
are available the FRFs can be estimated without suffering from a low-frequency resolution.
Recently, maximum likelihood (MLE FRF) estimators were developed to deal with noisy FRF
data [2].
A bridge excited with a shaker but on the same time by the traffic, or flight flutter tests where

the airplane is excited by its flaps but on the same time by atmospheric turbulence, are practical
examples in which the structure is excited with a known force but at the same time with unknown
forces. Traditional methods such as the least squares complex exponential (LSCE), least squares
complex frequency domain (LSCF), or MLE estimators can only handle this problem if sufficient
data is available because they start from FRFs [2]. Aircraft in-flight test data are typically
characterized by short time records and a high noise level due to atmospheric turbulence. It is
desired to decrease the flight flutter testing time for practical, economical and safety reasons and
to improve the accuracy of the estimation [3–6]. Furthermore, to identify slow time-varying
systems (e.g., a car at different speeds or under different road conditions, an airplane in different
flight conditions) short time records, which, when small enough, can be assumed time invariant,
must be processed. These examples show the need to develop methods which can deal with short
time records and a combination of known and unknown input forces.

2. Theoretical aspects

The considered situation is represented in Fig. 1 with F the known input spectra (consider only
one known input for reasons of simplicity), Ei the unknown white-noise input spectra, nY

o the
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Fig. 1. Frequency-domain errors-in-variables noise model.

B. Cauberghe et al. / Journal of Sound and Vibration 265 (2003) 609–625610



noise on the outputs and Yo the measured output spectra. If the known input F is zero, the scheme
represents an operational modal analysis. Relationship (1) between the discrete signals can be
written as

fyðtÞg ¼ fHðq; yÞgf ðtÞ þ ½Gðq; ZÞ�feðtÞg; t ¼ 0; 1;y;N 	 1; ð1Þ

with dimðfHðq; yÞgÞ ¼ No 
 1; dimð½Gðq; ZÞ�Þ ¼ No 
 Ni; No the number of outputs and Ni the
number of unknown inputs. Since fHðq; yÞg and ½Gðq; ZÞ� represent the same mechanical system,
they have the same physical poles.

2.1. Experimental modal analysis

The process noise ½Gðq; ZÞ�feðtÞg is considered as undesirable noise on the output in a traditional
modal analysis. The use of the H1 non-parametric estimation of the FRFs eliminates this noise
contribution (as a result the information contained in ½G� is not used) under the assumption that
feðtÞg is uncorrelated with f ðtÞ; thus

fHg1 ¼
PM

n¼1fYgnFn
nPM

n¼1 FnFn
n

; ð2Þ

with M being the number of averages. Enough averaging yields to an accurate estimation of the
FRFs if there is no noise on the inputs. A maximum likelihood estimator can work with less
averages and as a consequence more noise on the FRFs, but still a minimum number of averages
(typically 4) is necessary to obtain the noise information. All FRF-based estimators deal with a
trade-off in an effort to produce statistically reliable spectral estimates (i.e., minimize the
variances by increasing M) of a highest possible frequency resolution (i.e., maximize the number
of samples within the record) from a finite amount of data samples [7]. If no periodic signals are
used, leakage problems appear in the case of short data sequences. The use of a window—such as
for instance a Hanning window—certainly helps to reduce the effects of leakage, but introduces a
bias error. One concludes that methods based on an averaging process need sufficient data to keep
a reasonable frequency resolution and to deal with process noise and leakage.

2.2. Operational modal analysis

If the known input F is zero, Fig. 1 represents an operational modal analysis. Frequency-
domain output-only methods start from the power- and cross-spectral densities of the output
measurements ½SyyðjoÞ� ¼ 1=N

PN
n¼1 YnYH

n to estimate the modal parameters. The frequency-
domain methods are based on Eq. (3), which holds for stationary stochastic processes

½SyyðjoÞ� ¼ ½HðjoÞ�½SeeðjoÞ�½HðjoÞ�H: ð3Þ

In case of white-noise inputs, the density matrix of the inputs ½Sff ðjoÞ�; is a constant matrix
independent of the frequency. According to the modal theory, the FRF matrix ½HðjoÞ� can be
decomposed as

½HðjoÞ� ¼
XNm

r¼1

fwrgfLrg
T

jo	 lr

þ
fwrg

nfLrg
H

jo	 ln

r

� �
: ð4Þ
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where Nm is the number of modes, lr is the rth pole, fwrg is the rth mode shape and fLrg is the
participation vector of the rth mode. Substituting Eq. (4) into Eq. (3) and assuming white-noise
inputs leads to

½SyyðjoÞ� ¼
XNm

r¼1

fwrgfQrg
T

jo	 lr

þ
fwrg

nfQrg
H

jo	 ln

r

þ
fQrgfwrg

T

	jo	 lr

þ
fQrg

nfwrg
H

	jo	 ln

r

� �
: ð5Þ

The reference vector fQrg of the rth mode depends on the constant ½Sff � matrix and the modal
parameters of the structure. Eq. (5) forms the basis to extract the modal parameters from the
frequency-domain output-only data. One of the drawbacks of these methods is that sufficient data
have to be available to perform an accurate non-parametric estimation of the power- and cross-
spectral density functions of the output measurements. Two methods exist to estimate these
spectral density functions [8]. The direct method, periodogram method, divides the time-domain
data in different blocks which are transferred to the frequency domain and averaged. Typically,
Hanning windows are used to reduce the leakage of these short data blocks. The indirect method
first estimates the auto- and cross-correlation to obtain the spectral density by Fourier
transforming these time functions to the frequency domain. Both approaches have to make a
trade-off between the variance and bias of the non-parametric estimation (e.g., the direct method
applied on many short data blocks leads to a small variance, but a larger bias error due to
leakage). Again one concludes that enough data has to be available to use the classical spectral
density approach to process output-only measurements.

2.3. Combined operational–experimental modal analysis

In the previous two subsections a contradiction clearly appears: in the case of an experimental
modal analysis the process noise ½Gðq; ZÞ�feðtÞg is considered as undesirable, where in the
operational modal analysis this information is used to obtain the modal parameters. An
estimation based on the frequency spectra of the outputs and the known inputs leads to an
approach where all the information is used. In this section a combined non-linear least squares
frequency method on input output spectra (CLSF-IO) is proposed.
This approach can deal with short time data records, since no averaging process is used and

hence the spectra of the total time record is used, which leads to a higher frequency resolution. A
scalar representation of Eq. (6) in the discrete frequency domain yields

YoðkÞ ¼ Hoðk; yÞF ðkÞ þ
XNi

n¼1

Goiðk; ZÞEiðkÞ; ð6Þ

where Xk ¼ ð1=
ffiffiffiffiffi
N

p
Þ
PN	1

n¼0 xðnÞe	i2pnk=NðX ¼ Yo;F ;Ei and x ¼ yo; f ; eiÞ: Since EoðkÞ is assumed
to be normal distributed white noise, the sum

PNi

n¼1 Goiðk; ZÞEiðkÞ can be replaced for each output
by Goðk; ZÞEoðkÞ with EoðkÞ a new normal distributed white noise source. Even when the
unmeasured force EiðkÞ is not normally distributed, this substitution is valid by applying the
central limit theorem [9]. In this way each output can be represented by

YoðkÞ ¼ Hoðk; yÞF ðkÞ þ Goðk; ZÞEoðkÞ: ð7Þ
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Using a common-denominator model leads to

YoðkÞ ¼
Aoðzk; aoÞ
Bðzk; bÞ

F ðkÞ þ
Coðzk; coÞ
Bðzk; bÞ

EoðkÞ þ
Toðzk; toÞ
Bðzk; bÞ

; ð8Þ

where Aoðzk; aoÞ;Boðzk; boÞ;Coðzk; coÞ and Toðzk;moÞ are polynomials in zk with, respectively,
coefficients x ¼ ½x1x2yxNx

] (x ¼ ao; co; b; to) and zk ¼ expðj2pk=NÞ: Toðzk; toÞ ¼
PNt

n¼0 tonzn is a
polynomial of order Nt ¼ maxðNa;Nb;NcÞ 	 1 ðNa ¼ NcÞ that takes into account the transient
effects caused by the finite length of the data [10]. The appearance of the extra polynomial
Toðzk; toÞ can be understood by considering the Laplace transform of the jth derivative of the force
signal f ðtÞ

L
d jf ðtÞ
dt j

¼ s j 	
Xj	1	r

r¼0

drf ðtÞ
dtr

( )					
t¼0

; ð9Þ

where the sum over the initial conditions introduces the polynomial. The use of a common
denominator Bðz; bÞ for all outputs leads to global estimates of the poles. Since the denominators
of Hoðk; yÞ and Goðk; ZÞ are modelled with the same polynomial Bðz; bÞ the information in Goðk; ZÞ
is also used to determine the poles. For example if one mode is not observable in fHðk; yÞg
because the excitation F took place in a node, this mode can still be detected if it is excited by the
unknown noise forces.
The CLSF-IO method forces a parametric model on the input–output measurements in such a

way that the residues EoðkÞ (in the present case the unmeasured forces) will be white noise. This
approach is similar to the identification process of auto regressive moving average (ARMA)
models in the time domain where the minimization of the prediction error eðtÞ leads to the model
parameters. This prediction error eðtÞ of an ARMA process m0yðtÞ þ m1yðt 	 1Þ þ?þ mny

ðt 	 nÞ ¼ d0eðtÞ þ d1eðtÞ þ?þ dkeðt 	 kÞ can be considered as an unknown excitation source.
Thus the frequency-domain estimates of the parameters a; b; c and t are obtained by minimizing
the cost function V ða; b; v; tÞ Eq. (10) with respect to the parameters a ¼ ½a1; a2;y; aNo

�; c ¼
½c1; c2;y; cNo

� and t ¼ ½t1; t2;y; tNo
�:

Vða; b; c; tÞ ¼
XNo

o¼1

Voðao; co; b; toÞ; ð10Þ

where

Voðao; co; b; toÞ ¼
XNk	1

k¼0

jEoðk; ao; co; b; toÞj
2;

Eoðk; ao; co; b; toÞ ¼
Bðzk; bÞYoðkÞ 	 Aoðzk; aoÞF ðkÞ 	 Toðzk; toÞ

Coðzk; coÞ
;

with Nk ¼ N=2: Because the expected value of every individual cost function Voðao; co; b; toÞ is
minimal in the true parameters, the total cost function V ða; b; c; tÞ is also minimal in the true
parameters. Strong consistence follows under the assumption that Hoðk; yÞ is a stable and
inversely stable monic function and if the zk values cover uniformly the unit circle ½0; 2p� in the
case of complex coefficients and half the unit circle ½0; p� in case of real coefficients. Thus a scaling
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of the frequency band of interest has to take place to fulfill this condition. A detailed discussion
about the mathematical background and the different properties can be found in Refs. [9,11].
The poles of the structure are easily found by calculating the roots of Bðz; bÞ: In case the

unmeasured forces are not white, extra poles are identified which try to model the color of the
unmeasured forces. The non-physical poles are characterized by a very high damping ratio and
corresponding cancelling zeros in the deterministic part Hoðk; yÞF ðkÞ: The mode shapes are
obtained from the residues of fHðk; yÞg:

fwgr ¼ lim
z-zr

fAðz; aÞg
Bðz; bÞ

ðz 	 zrÞ; ð11Þ

with fAðz;mÞg ¼ ½A1ðz;m1Þ;y;ANo
ðz;mNo

Þ�T: In the case of one known input these residues are
equal to the mode shapes. When multiple known inputs are used, a single value decomposition
(SVD) on the residue matrix of each pole leads to the mode shapes and participation vectors. In
the operational case YoðkÞ ¼ ½Coðzk; coÞ=Bðzk; bÞ�EoðkÞ þ Toðzk; toÞ=Bðzk; bÞ all the parameters b; c; t
can still be obtained by minimizing the same cost function. No problem occurs in the
determination of the poles, but the mode shape information has to be calculated from the density
matrix Syy according to Eq. (5). The leakage free representation of the Syy is given by Eq. (12).

SyyðPkÞði;jÞ ¼
Ciðzk; ciÞCn

j ðzk; cjÞ

jBðzk; bÞj2
: ð12Þ

Unfortunately, the proposed estimation method has the restriction that the system must be
inversely stable in order to converge. This means that the estimated zeros of the Coðz; coÞ must be
stable or inside the unit circle. This restriction is forced in the implementation and leads to a loss
of phase information of the estimated numerators Coðzk; coÞ: So only the magnitude is well
estimated and as a result only the diagonal elements of the density matrix Syy can be calculated
correctly, because they are real-valued and thus independent of the phase. From the unit modal ar

scaling model [12] relationship Rii;r ¼ jci;rj
2 can be established, with

Rii;r ¼ lim
z-zr

jCiðz; ciÞj2

jBðz; bÞj2
ðz 	 zrÞ: ð13Þ

As a result, only the magnitude of the mode shapes can be obtained from Goðk; ZÞ:
One summarizes that the proposed method determines the poles from Bðz; bÞ; the mode shapes

from Aoðz; aoÞ=Bðz; bÞ and the magnitude of the mode shapes from Coðz; coÞ=Bðz; bÞ: So the method
can be used in case of an experimental (known force), an operational modal analysis (only
unknown forces) and in the combination (known and unknown forces). In the case of an
operational modal analysis only the magnitude of the mode shapes can be retrieved. The method
needs no Hanning window to reduce leakage effects and no averaging process to preprocess the
data. As a result it well suited to process short time records with transient effects.

2.4. Implemented algorithm

A Gauss–Newton method is used to solve the non-linear optimization problem. The highest
order coefficients bNb

; co;Nc
of the polynomials Bðz; bÞ ¼

PNd

n¼0 bnzn and Coðzk; coÞ ¼
PNn

n¼0 co;nzn

are set to one to make the other parameters identifiable. The normal equations (14), to estimate
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real-valued coefficients, are formed explicitly to speed up the implementation [2].

R1 0 ? S1

0 R2 S2

^ & ^

SH1 SH2 ? T

2
6664

3
7775

DP1

DP2

^

Db

2
6664

3
7775 ¼ 	

V1

V2

^

F

2
6664

3
7775 ð14Þ

with

Ro ¼ Re
@Eoðao; b; co; toÞ
@ðao; bo; toÞ

� �H @Eoðao; b; co; toÞ
@ðao; co; toÞ

� � !
;

So ¼ Re
@Eoðao; b; co; toÞ
@ðao; co; toÞ

� �H @Eoðao; b; co; toÞ
@ðbÞ

� � !
;

Vo ¼ Re
@Eoðao; b; co; toÞ
@ðao; co; toÞ

� �H
Eo

 !
;

T ¼
XNo

o¼1

Re
@Eoðao; b; co; toÞ

@ðbÞ

� �H @Eoðao; b; co; toÞ
@ðbÞ

� � !
;

F ¼
XNo

o¼1

Re
@Eoðao; b; co; toÞ

@ðbÞ

� �H
Eo

 !
; DPo ¼ ½DaTo DcTo DtTo �

T: ð15Þ

Eliminating the DPo and inserting Eq. (16) in the last equation of the matrix equation structure
(14) gives Eq. (17),

DPo ¼ 	R	1
o ðSoDb þ VoÞ; ð16Þ

XNo

o¼1

	SHo R	1
o ðSoDb þ VoÞ þ TDb þ F ¼ 0: ð17Þ

Solving Eq. (17) gives the polynomial coefficients b of the common denominator Bðz; bÞ: Inserting
these coefficients in Eq. (16) provides the coefficients ao of Aoðz; aoÞ; co of Coðz; coÞ and the
coefficients to of Toðz;toÞ: In this way the estimation can work iteratively and converges, if in each
step the zeros of the nominators Coðz; coÞ are forced in the unit circle. In case of an experimental or
mixed experimental–operational modal analysis starting values for b; a and t are obtained from a
linear least squares problem. The starting values for c are set equal to those of a: In the
operational case the c coefficients are set to one and the other coefficients b and t are again
obtained from a least squares estimation. In the next two sections the CLSF-IO method will be
validated by means of simulations and experiments.

3. Simulations

Fig. 2 illustrates the discrete mechanical system of 7 degrees of freedom (d.o.f.s) used to
simulate some measurements. The 7 natural frequencies are chosen between 1 and 12 Hz: A total
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measurement time of only 30 s was simulated while the system is excited by normal random noise
(standard deviation sf ðtÞ ¼ 1) at location d.o.f. 5. Since the excitation signal is normal distributed
noise, the output is also normally distributed. Two identification methods are compared to the
CLSF-IO method. The first method is a frequency maximum likelihood estimator (MLE FRF),
which starts from the FRFs. Minimizing the cost function (18) leads to an estimate of the modal
parameters [2]

V ða; b; tÞmle ¼
XNo

o¼1

XNk	1

k¼0

jAoðzk; aoÞ=Bðzk; bÞ 	 HoðzkÞj
2

varðHoðkÞÞ
; ð18Þ

with HoðzkÞ being the H1 estimate of the FRF.
The second method is a maximum likelihood input–output (MLE-IO) method in the frequency

domain [13]. This method minimizes the maximum likelihood cost function given by

V ðm; d; tÞmle ¼
XNo

o¼1

XNk	1

k¼0

jBðzk; bÞYoðkÞ 	 Aoðzk; aoÞF ðkÞ 	 Toðzk; toÞj2

jBðzk; bÞj
2 varðYoðkÞÞ

; ð19Þ

where varðYoðkÞÞ can only be calculated by averaging the outputs in the case where a periodical
excitation signal is used. In the case of an arbitrary input signal the variance varðYoðkÞÞ is set to
one for each frequency and the MLE-IO reduces to a weighted non-linear least squares problem
solved by a Newton–Gauss algorithm. While the CLSF-IO method estimates a parametric noise
model, the MLE-IO uses a non-parametric noise model as a weighting.
To simulate a realistic situation independent measurement noise with snfyoðtÞg ¼ 0:04syoðtÞ is

added to each output. Three different cases are simulated by solving the differential equations of
the system: an experimental modal analysis; a combined experimental–operational analysis and
an operational modal analysis. One hundred runs (for each run new noise sequences were
generated to use as known input, unknown inputs and measurement noise on the outputs) of a
Monte Carlo simulation is performed in each case. In each run of the Monte Carlo all three
methods are used to identify the modal parameters. The natural frequencies and damping ratios
are statistically processed. The mean value and the standard deviation of each natural frequency
ðmf ;sf Þ and damping ratio ðmd ; sd Þ are compared to draw some conclusions. The availability of
confidence intervals offered by MLE estimators must be taken with caution. The asymptotic
properties of the MLE estimators cannot be used for these short data records and the full co-
variance matrix of the outputs should be taken into account in case of process noise (correlated
noise over the different outputs).
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Fig. 2. Seven d.o.f. model.
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3.1. Case I: experimental modal analysis

The simulated mechanical system is excited by one exactly known force f ðtÞ at d.o.f. 5
in the absence of unknown noise forces. For one run Fig. 3 shows the excitation signal
(white noise) and the output at d.o.f. 6 in which the transient effect is still present. In each
run the time record of Fig. 3 is divided in 4 equal time blocks to perform a H1 estimate of the
FRFs.
Table 1 gives an overview of the mean values and standard deviations of the natural

frequencies and damping ratios over the different runs. It is clear that the MLE FRF, suffers
from the low-frequency resolution, which yields to a high standard deviation on the natural
frequency in comparison with the two other methods. The Hanning window, used to calculate the
H1 estimate, introduces a bias and a large standard deviation on the damping ratio. Using a
uniform window instead of a Hanning window leads to useless FRFs due to the very short
time records. On the level of the natural frequencies the MLE-IO performs well, but serious
problems arise in the determination of the damping ratios of the last five modes. The MLE-IO
method suffers from the noise on the output, because no noise information varðYoðkÞÞ has been
taken into account. The CLSF-IO method leads to unbiased damping ratios and natural
frequencies and standard deviations 10–20 times smaller than with the classical FRF approach. It
is clear that if no noise information is available the CLSF-IO method gives the best results
even in absence of external noise inputs (process noise) to process short time records. Fig. 4
illustrates the damping ratios estimated by the CLSF-IO method and the MLE FRF method
in each run of the Monte Carlo simulation. The synthesized FRF H65 of one run is shown in
Figs. 5 and 6.
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Fig. 3. Top, applied force f ðtÞ at d.o.f. 5; bottom, displacement of d.o.f. 6.
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3.2. Case II: combined experimental–operational modal analysis

Besides the known force excitation in d.o.f. 5, the structure is also excited by unknown white
noise ðseiðtÞ ¼ 0:1sf ðtÞÞ in the other d.o.f.s. The contribution in the outputs due to these unknown
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Table 1

Overview of modal parameter estimators—experimental approach

fexact (Hz) mf CLSF	IO (Hz) sf CLSF	IO (Hz) mf mle io (Hz) sf mle io (Hz) mf mle frf (Hz) sf mle frf (Hz)

2.02 2.02 1E-4 2.02 1E-4 2.02 0.043

3.72 3.72 2E-4 3.72 2E-4 3.71 0.026

5.45 5.45 0.001 5.45 0.010 5.46 0.027

6.80 6.80 0.000 6.80 0.001 6.80 0.016

8.39 8.39 0.003 8.37 0.025 8.39 0.024

9.19 9.19 0.002 9.20 0.010 9.19 0.020

10.52 10.53 0.004 10.52 0.007 10.52 0.017

dexact (%) md CLSF	IO (%) sd CLSF	IO (%) md mle io (%) sd mle io (%) md mle frf (%) sd mle frf (%)

0.16 0.16 0.006 0.16 0.007 0.90 1.184

0.32 0.32 0.005 0.32 0.006 0.78 0.633

0.46 0.46 0.014 0.34 0.297 0.98 0.563

0.54 0.54 0.007 0.54 0.014 0.89 0.226

0.72 0.71 0.036 	0.02 0.784 1.11 0.491

0.68 0.68 0.020 0.56 0.26 1.06 0.239

0.95 0.94 0.035 0.80 0.243 1.27 0.160
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Fig. 4. Top, estimated damping ratios with the CLSF-IO method; bottom, estimated damping ratios with the MLE

FRF method.
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forces is between 15% and 20%, depending on the output, of the contribution due to the known
force. Table 2 draws a comparison between the results obtained by the different estimators.
Figs. 7 and 8 show the synthesized FRF H65: Although the standard deviation of the damping
ratios are larger than in the previous case, the CLSF-IO method leads to much better results than
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Fig. 5. Synthesized FRF H65ðoÞ: - - - dashed, exact FRF; * * ; H1 estimation; ——, MLE-FRF.
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Fig. 6. Synthesized FRF H65ðoÞ: - - -, exact FRF; ——, CLSF-IO; � 	 � 	 �; MLE-IO.
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the other methods. This simulation approximates aircraft in-flight flutter tests, where the input
(e.g., electrical signal to the flaps) and the acceleration measurements are disturbed by
atmospheric turbulence (unknown forces). Since the flutter prediction and the determination of
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Table 2

Overview of modal parameter estimators—combined approach

fexact (Hz) mf CLSF	IO (Hz) sf CLSF	IO (Hz) mf mle io (Hz) sf mle io (Hz) mf mle frf (Hz) sf mle frf (Hz)

2.02 2.02 0.001 2.02 0.002 2.01 0.036

3.72 3.72 0.002 3.72 0.004 3.71 0.024

5.45 5.45 0.008 5.46 0.012 5.45 0.039

6.80 6.80 0.003 6.80 0.004 6.80 0.019

8.39 8.39 0.014 8.36 0.036 8.39 0.055

9.19 9.19 0.007 9.20 0.013 9.19 0.020

10.52 10.53 0.009 10.52 0.016 10.52 0.020

dexact (%) md CLSF	IO (%) sd CLSF	IO (%) md mle io (%) sd mle io (%) md mle frf (%) sd mle frf (%)

0.16 0.17 0.066 0.15 0.098 0.93 1.337

0.32 0.32 0.066 0.29 0.113 0.87 0.624

0.46 0.46 0.159 	0.03 0.38 1.00 0.804

0.54 0.54 0.035 0.50 0.071 0.91 0.292

0.72 0.71 0.177 	0.63 0.716 1.07 0.710

0.68 0.67 0.074 0.32 0.290 1.06 0.262

0.95 0.94 0.092 0.64 0.263 1.28 0.199
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Fig. 7. Synthesized FRF H65ðoÞ: - - -, exact FRF; * * *, H1 estimation; ——, MLE-FRF.
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the flight envelope of the airplane is based on the estimated damping ratios the obtained results of
the CLSF-IO method are promising. The typical overestimation of the damping ratios in case of
an H1 and thus the Hanning window-based method leads to dangerous situations in the prediction
of flutter phenomena.
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Table 3

Overview of modal parameter estimators—output-only approach

fexact (Hz) mf CLSF	IO (Hz) sf CLSF	IO (Hz) mf mle frf (Hz) sf mle frf (Hz)

2.02 2.02 0.007 2.00 0.015

3.72 3.72 0.011 3.73 0.02

5.45 5.45 0.016 5.45 0.021

6.80 6.80 0.019 6.80 0.026

8.39 8.39 0.033 8.39 0.052

9.19 9.19 0.026 9.18 0.04

10.52 10.53 0.037 10.53 0.054

dexact (%) md CLSF	IO (%) sd CLSF	IO (%) md mle frf (%) sd mle frf (%)

0.16 0.28 0.360 0.06 0.578

0.32 0.44 0.331 0.39 0.612

0.46 0.51 0.296 0.88 0.574

0.54 0.59 0.275 0.72 0.518

0.72 0.75 0.308 0.73 1.142

0.68 0.69 0.259 1.07 0.370

0.95 0.96 0.310 1.34 0.466
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3.3. Case III: operational modal analysis

In this case exactly the same data as in the previous Section 3.2 is processed as output-only
data. The output time records were divided into 4 blocks to calculate the spectral density No 
 No

matrix Syy: These spectral densities are processed with the MLE FRF method according to
Eq. (5). These results are compared to the CLSF-IO method, which operates directly on the
output spectra. All the estimates of the natural frequencies and damping are collected in Table 3.
The standard deviations of the estimated parameters increased, but the CLSF-IO method still
performs much better than the spectral density-based method. Like expected the CLSF-IO
method results in more accurate estimates if the measurable forces are taken into account.

4. Experiments

The acoustically excited aluminium plate (see Fig. 9) was measured in 39 points with a scanning
laser vibrometer. The structure is excited by two independent loudspeakers. The first loudspeaker
is producing periodic noise (each period contains 8192 time samples) to obtain leakage free
measurements as a reference. The electric signal to this speaker is measured and used as the known
input to the system. The second loudspeaker is connected with a random noise generator. This
excitation is an unknown noise source.
During the first test, only the first loudspeaker produces a periodic excitation force on the plate.

The responses of 10 periods are averaged with the H1 estimator to obtain the FRFs. These FRFs
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Fig. 9. Experimental set-up.

B. Cauberghe et al. / Journal of Sound and Vibration 265 (2003) 609–625622



ARTICLE IN PRESS

500 1000 1500 2000
-80

-60

-40

-20

0

20

40

frequency (Hz)

am
pl

itu
de

 (
dB

)

500 1000 1500 2000
-80

-60

-40

-20

0

20

40

frequency (Hz)

am
pl

itu
de

 (
dB

)

500 1000 1500 2000
-80

-60

-40

-20

0

20

40

frequency (Hz)

am
pl

itu
de

 (
dB

)

(c)

(b)

(a)

Fig. 10. (a) MLE-FRF, (b) MLE-IO, (c) CLSF-IO; ——, synthesized FRF (2048 samples); ..., measured FRF
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are considered as the exact FRFs since no transient (leakage) effects and process noise (unknown
forces) disturb the measurements.
During the second test the second loudspeaker is switched on to produce unknown forces

simultaneously with the measured forces (first loudspeaker). Only 2048 time samples (a quarter of
a period) are measured to obtain the modal model in a frequency band from 100 to 2000 Hz with
the MLE FRF, MLE-IO and CLSF-IO methods. Since a sample rate of 213 Hz is used, a
maximum frequency resolution of 4 Hz is obtained. This resolution is reached by the IO-based
methods, since they work directly on the Fourier spectra of the total time records. The MLE
FRF starts from FRFs with a resolution of 16 Hz; since four blocks were used in the
averaging process. Fig. 10 illustrates a synthesized FRF by the three identification methods.
It is clear that the FRF-based MLE overestimates the damping values due to the transient
and leakage effects, while the MLE-IO method suffers from the high level of process noise.
The modal model obtained by the CLSF-IO method leads to the best synthesize of the
‘‘exact’’ FRF, Fig. 11. The comparison between the deterministic contribution H4ðkÞsF and
the stochastic contribution G4ðkÞsE4

in Fig. 11 indicates that the effect of the unknown forces is of
the same level as the known forces. In a next step these unknown forces can be located and
identified [14].

5. Conclusions

In this paper, the CLSF-IO estimator was presented to process short data sets. This technique
can handle leakage effects and unknown forces which operate on the structure. The applicability
of this technique was tested by means of Monte Carlo simulations and experiments on a plate. A
comparison with existing identification methods, showed that the CLSF-IO gives more accurate
results to process short time records in the case of an experimental, operational and combination
experimental–operational modal analysis.
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