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Abstract

In this article, a frequency-domain modal parameter estimation method is proposed. The algorithm
automatically separates physical poles from mathematical ones. An important issue in the auto-
matization of the algorithm is the inclusion of noise information to estimate the standard deviations of
the poles. These standard deviations are used (together with other features) as the inputs of a fuzzy
clustering algorithm. The clustering algorithm then classifies the poles into the mathematical and physical
ones. The method requires no user interaction, and a parameter is available quantifying the success of the
classification.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

During the last decades, a large number of modal parameter estimation algorithms has been
proposed—both in the time and the frequency domain. A crucial step in most of these algorithms
is the determination of the correct model order to capture the modes present in the frequency
range of interest. Often this model order determination is computationally involved, or a large
amount of user interaction is required. Other algorithms perform quite well in ideal laboratory
conditions, but fail when the noise level on the measurements increases.
For simple structures in an ideal environment, the detection of the physical poles can be done

by means of inspection of mode indicating functions, like frequency response functions (FRFs)
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and complex mode indicator functions [1]. When the modes are closely spaced or highly damped,
or the FRFs are noisy, the model order selection using visual inspection can be tedious and results
are often user dependent.
In the modal analysis literature different tools were developed to eliminate computational

poles. Most of them give an indication based on the mode shape properties. The mode over
complexity [2] computes the mode’s average shift due to a mass addition, which gives a value close
to unity for physical poles. Other mode shape criteria, like the mode phase collinearity [3] and the
mean phase deviation [2] evaluate the degree of relationship between real and imaginary part of
the mode shapes.
One of the most widespread techniques to detect physical poles is the so-called stabilization

diagram, which is constructed by estimating poles with an increasing model order. Ideally, the
physical poles should stabilize, while the computational poles are scattered. For high noise levels
the stabilization diagrams can be difficult to interpret and give different results depending on the
user. Moreover, stabilization diagrams require interaction and therefore they cannot directly be
used when an autonomous modal parameter estimation is needed, as is for example the case for
periodic inspection of bridges.
To obtain a fully autonomous modal parameter estimation algorithm several approaches which

use neural networks [4], fuzzy logic [5], genetic algorithms [6,7] were proposed recently.
Unfortunately the computational load for these methods is quite high.
In the framework of system identification literature, a lot of work has been done on model

order selection and model validation in general. For the determination of the correct model order,
techniques based on rank testing are often used [8,9]. They allow one to determine an approximate
(slightly overestimated) model order which has to be reduced further. The actual validation of the
reduced model order is traditionally done using different criteria—like Akaike’s information
criterion [10,11], the maximum description length [12] and the F -test [13]. Alternatively, the
maximum likelihood estimator (MLE) cost function can be used to decide if over or under
modelling is present [14]. A problem arises when in addition to the measurement noise, non-
linearities or systematic errors are present in the FRFs. In the former case the so-called function of
dependency (FOD) can be used [15] as a model validation criterium. The FOD is a particular
example of the so-called residual whiteness test [16] which can be used in the presence of high
noise levels and non-linear distortions.
Although the mentioned model validation criteria can perform well on validating the model,

they cannot be used to detect which poles should be rejected if the model is over fitted. For this
goal one of the different existing pole–zero cancellation algorithms can be used [9,17,18]. One of
the main disadvantages of these algorithms is that a new identification iteration step is necessary
after the deletion of a few pole–zero pairs, making the application unapt when a large amount of
measurements has to be processed. In Ref. [19] an approach was proposed to eliminate
computational poles in different steps without the need to re-estimate the modal parameters each
time a pole is eliminated. The different steps are based on different quantifiers which represent a
measure of goodness of a certain mode.
In the next section a global model selection procedure will be outlined which uses a set of well-

defined measures as inputs for a clustering algorithm to solve the physical/mathematical
classification problem. Because the standard deviations on the poles is an important feature for
the classification, a maximum likelihood approach is used.
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2. Theory

2.1. Overview of the algorithm

The automatic frequency domain modal parameter estimation algorithm consists of the
following steps:

(1) Measure the force(s) and responses of the structure. Convert the data to the frequency domain
using an Fast Fourier Transform (FFT) and compute the FRFs.

(2) Estimate the modal parameters using a high model order Np (for instance use Np ¼ 60
modes).

(3) Classify the Np modes in physical and computational modes using a clustering algorithm.

Since noise information is important in the presented algorithm it is assumed that in step (1) the
variance of the FRFs is also available (remark that the variance is easily obtained when using
multiple periods of a periodic excitation signal). The high order modal parameter estimation
algorithm that is used in step (2) will be described in Section 2.2. In Section 2.3 the classification in
step (3) will be explained.

2.2. Modal parameter estimation

The modal parameter estimation algorithm starts from the MLE-like cost function:

kðyÞ ¼
XNf

k¼1

XNi

i¼1

XNo

o¼1

jHoiðokÞ � Hoiðok; yÞj2

varðHoiðokÞÞ
; ð1Þ

where HoiðokÞ is the measured FRF at output o and input i and Hoiðy;okÞ is the FRF modelled
using the following common denominator model:

Hoiðy;okÞ ¼

PNp

j¼1 z�kBoijPNp

j¼1 z�kAj

ð2Þ

with z ¼ eojTs and Ts the sample period. The estimated polynomial model coefficients:

y ¼ ðB111 ? BNoNi1 B112 ? BNoNi2 ? BNoNiNp
A1 A2 ? ANp

Þ ð3Þ

are computed by minimizing Eq. (1). A particular efficient optimization method to perform this
task is the well-known Gauss–Newton algorithm (Remark that the cost function (1) has many
local minima, so a good choice of starting value estimators like the algorithms presented in
Ref. [20] is necessary). After the polynomial coefficients are calculated, the zeros and poles of the
system can be computed by calculating the eigenvalues of companion matrices. Finally, the poles
pi and zeros qi are converted to resonance frequencies oi ¼ ImðpiÞ; damping values xi ¼

�ReðpiÞ
AbsðpiÞ

and
mode shapes Ci:
In Ref. [21] it was shown that by applying structured numerical algorithms, the computation

speed of the above-mentioned MLE-like algorithm can be reduced such that the computational
load of one iteration of the MLE algorithm is comparable to the well-known least-squares
complex exponential (LSCE) [2] algorithm.
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Moreover because noise information is used in the estimator, uncertainties on the poles can be
computed, practically without additional effort. This noise information is one of the key issues in
the success of the model order selection procedure developed in the next section. Further
information on the MLE-like modal parameter estimation algorithm can be found in Ref. [21].

2.3. Model order selection by classification

The proposed model order selection consists of the following steps:

(1) Compute and validate a model with a high model order.
(2) Classify modes into physical and computational ones.
(3) Re-iterate the modal parameter estimation process with physical modes only.
(4) Validate the final modal fit.

Steps (1) and (4) can be performed using one of the validation criteria presented above (for
example the FOD).
The actual classification in step (2) is done in three stages:

(1) variable selection,
(2) interval scaling,
(3) clustering algorithm.

In the variable selection phase, the criteria which are used to quantify if a pole is physical or not
are determined. Using the statistical classification terminology [22], the variables Xk consist of Np

objects, with Np the number of identified modes (both computational and physical). The goal is to
use as much of the available information (of the estimated poles and mode shapes) without
significantly increasing the computational load of the identification procedure. The following
eight criteria serve this goal:

(1) Variable 1: X1 are the standard deviations of the estimated resonance frequencies (computed
in the MLE).

(2) Variable 2: X2 are the standard deviations of the estimated damping values.
(3) Variable 3: X3 are the standard deviations of the estimated damping values over the last half

of the MLE Newton–Gauss.
(4) Variable 4: X4 are the standard deviations of the estimated resonance frequencies over the last

half of the MLE Newton–Gauss.
(5) Variable 5: X5 gives an indication of the stabilization of the pole with an increasing model

order. The criterion gives a quantitative value to the amount in which a maximal order pole
stabilizes in the MLE stabilization diagram by computing the standard deviation with respect
to poles at lower model orders. (To pair poles of two different model orders, the closest poles
are chosen, unless the distance between two poles is larger than, e.g., three times the standard
deviation. In the latter case the pole is considered to become unstable at that order. In this
case no pairing pole is used.) To give early stabilizing poles a higher weight, the standard
deviation is multiplied with the lowest order at which it is still stable (i.e., changes smaller than
three times the standard deviation).
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(6) Variable 6: X6 is the number of sign changes in each of the mode shapes to detect if the mode
shapes are spatially correlated:

X6ðrÞ ¼ #fi jCrðxi; yiÞ:Crðxiþ1; yiþ1Þo0g

with Cr the rth mode shape and xi and yi represent the spatial co-ordinates of the vibration
pattern outputs, with i for instance the ranking number of the output obtained by sorting the
magnitudes of the x and y co-ordinates (alternatively, if the sorting of the d.o.f.s is not
possible, the MPC or MPD can also be used for Variable 6.)

(7) Variable 7: X7 is the number of zeros which fall in 3spr
uncertainty sphere around each

pole pr (spr
¼ stdðprÞ is the uncertainty on pole number r; for r ¼ 1;y;Np). (Remark

that because physical poles are usually well separated by the zeros, the variable also
works when instead of three the uncertainty sphere is more than three (e.g., 10) times larger
than spr

:)
(8) Variable 8: X8 is the inverse of the root mean squared (RMS) magnitude of the mode shapeCr

for r ¼ 1;y;Np:

The selection of the criteria is based on the observation that estimated poles which model the
noise in the measurements:

* Have a large uncertainty (Variables 1 and 2).
* Converge slower (Variables 3 and 4).
* Do not stabilize with an increasing model order (Variable 5).
* Give rise to noisy mode shapes (Variable 6).
* Usually have a number of cancelling zeros in their neighborhood (Variable 7).
* Lead to small magnitude mode shapes.

The computational load for the variable selection step is negligible (typically a few seconds)
compared to the modal parameter estimation step. After the variables have been computed, an
interval scaling [22] is performed in order to obtain variables of the same type, which are defined
in the same interval (e.g., ½0; 1�). In a first step of the interval scaling procedure, the variables with
a large range (i.e., all variables except X6 and X7) are transformed using a logarithmic transform
(Without this transform outliers which could give rise to an erroneous classification could be
present.) Secondly, all variables are subtracted by their minimum and divided by their range (i.e.,
the maximum minus minimum).
The actual clustering algorithm determines the success of the classification of the objects. An

iterative fuzzy C-means clustering algorithm [23], implemented in the Matlab fuzzy logic toolbox
[24], was used. The algorithm works as follows:

(1) INITIALIZATION STEP
Select random cluster centres ck

j (j denotes the Variable and k the cluster number).
Compute the distance dik from the objects xij to the centres ck

j :

d2
ik ¼

XJ

j¼1

ðxij � ck
j Þ

2: ð4Þ
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For each object xi compute the membership function mik with respect to cluster k:

m2ik ¼
XK

l¼1

dik

dil

� �2=ðm�1Þ

ð5Þ

with m the fuzzy-ness factor (typically m ¼ 2).
(2) ITERATION STEPS

FOR n ¼ 1;y;Niter

(a) Update the centres ck
j with respect to cluster k:

ck
j ¼

PI
i¼1 ðmikÞ

mxijPI
i¼1 mik

: ð6Þ

(b) Update the distances dik in Eq. (4) using the new centres ck
j :

(c) Update the membership functions mik in Eq. (5) using the new distances dik:
(d) Compute the cost function d:

d ¼
XI

i¼1

XK

k¼1

ðmikÞ
md2

ik ð7Þ

END

The output of the algorithm gives a membership function mik for the classes of physical and
computational poles (i.e., K ¼ 2). If the membership function for an object with respect to a class
is larger than 50% then it is decided that the object belongs to that class.

ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

35

40

Frequency, in KHz

M
od

el
 o

rd
er

Fig. 1. Stabilization diagram for the simulation data, using the LSCE estimator.
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In the following sections it will be shown by means of simulations and experimental data that
the classification approach usually gives good results, even if some of the variables do not allow a
successful classification.

3. Simulations

An FRF matrix for a system with nine modes (damping values 1%; equidistant
resonance frequencies between 0 Hz and 1:6 kHz and mode shapes with consecutive
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Fig. 2. (a) Variable 2, (b) Variable 3, (c) Variable 5, (d) Variable 6, (e) Variable 8 used to classify the poles for the

simulation data. o, estimated poles; ^; physical poles.
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wave number sines) was generated at 256 frequencies and 20 outputs. Then, 1% of noise was
added.
From Fig. 1, where the LSCE stabilization diagram is shown, it can be seen that besides the true

system poles other mathematical poles seem to stabilize. This is caused by the fact that the LSCE
fits the noise when a high degree of over-modelling is used. Although the selection of the physical
poles from the LSCE stabilization diagram in Fig. 1 would not cause too much problem for an
experienced user, the procedure could not be applied autonomously.
When looking at the variables used in the automatic classification approach (Fig. 2), it is clear

that is not possible to separate the physical and the mathematical poles by inspecting the variables
individually. Indeed, Variable 8 (Fig. 2(e)) has a low value for the mathematical pole around
1:6 kHz; while Variables 2 (Fig. 2(a)) and 3 (Fig. 2(b)) have high values for the first three physical
poles. Nevertheless, the classification is performed successfully (see Fig. 3). The true physical poles
(indicated by the vertical dotted lines) have a membership degree of more than 90% for the
physical pole class and are therefore far above the 50% threshold (dashed horizontal line) used to
decide if a pole is a physical or a mathematical one.

4. Experiments

In this section some experimental results of the automatic modal parameter estimation
algorithm will be discussed. Firstly, the proposed technique will be illustrated using good quality
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Fig. 4. Stabilization diagram for the sub-frame measurements, using the LSCE estimator.
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measurement a car sub-frame (Section 4.1). Secondly, results on poor quality laser vibrometer
measurements will be shown (Section 4.2).

4.1. Sub-frame data

The device under test is a structure which is constructed to resemble the sub-frame on which the
engine of a car is mounted. Twenty-eight outputs were measured while exciting the structure with
uncorrelated white noise sequences at two locations. Measurements were made up to 512 Hz with
a frequency resolution of 0:25 Hz: More details on the setup can be found in Ref. [25].
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The LSCE stabilization diagram in Fig. 4 is reasonably clear and 14 poles can be selected in the
frequency range of interest.
The clustering algorithm is performed with success (see Fig. 5). The pole around 156 Hz

however has a reasonably low membership function (60%). This is not surprising, since for some
of the variables (used in the classification approach) this pole belongs to the class of the
mathematical poles (in particular Variable 5 gives incorrect information as can be seen in Fig. 6).
Still, the classification result is quite acceptable.

4.2. Composite data

A composite rectangular panel of 25 cm� 20 cm with a thickness of about 3 mm was measured
with a scanning laser vibrometer at 40 by 30 spatial locations. The panel was excited with a
periodic excitation signal and measurements up to 1 kHz were made with a frequency resolution
of 1 Hz: Firstly, a reference measurement with a good quality (average signal-to-noise ratio
(SNR) about 30 dB) was performed (see the stabilization diagram in Fig. 7). From this reference
measurement the modes which were present could be extracted. The actual measurement which
was used to validate the model order selection procedure was obtained by reducing the excitation
amplitude (and therefore the SNR) with 30 dB: For clarity of the figures only the frequency range
up to 500 Hz is displayed.
From the stabilization diagram in Fig. 8 it can be seen that several physical modes cannot be

found back anymore. This is the case for modes around 100, 240, 340 and 430 Hz: Moreover, a
disturbance due to noise gives rise to a stabilizing behaviour around 260 Hz:
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The proposed automatic modal parameter estimation algorithm, however, enables the detection
of all nine modes from the noisy (0 dB SNR) FRFs (see Fig. 9). This is remarkable considering the
poor quality of the data, and the failure of some of the variables used in the classification (see
Fig. 10).

5. Conclusions

In this paper an automatic modal parameter estimation algorithm, based on the maximum
likelihood estimator, was proposed. The standard deviations of the poles were used (together with
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other quantitative criteria of the poles and the mode shapes) to quantify the degree of
‘physicalness’ of a mode. By making use of a clustering algorithm, the classification of physical
and computational poles could be performed in an automatic manner. Even if some of the criteria
(i.e., variables) did not allow a correct classification, the global clustering result was satisfying—
even in the case of high noise levels and highly coupled modes.
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