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Abstract

Vibrating linear mechanical systems, in particular continuous systems, are often modelled considering
proportional damping distributions only, although in many real situations this simplified approach does
not describe the dynamics of the system with sufficient accuracy. In this paper an analytical method is given
to take into account the effects of a more general viscous damping model, referred to as non-proportional
damping, on a class of vibrating continuous systems. A state-form expansion applied in conjunction with a
transfer matrix technique is adopted to extract the eigenvalues and to express the eigenfunctions in
analytical form, i.e., complex modes corresponding to non-synchronous motions. Numerical examples are
included in order to show the efficiency of the proposed method; non-proportional damping distributions
of different type, such as internal and external lumped or distributed viscous damping, are tested on non-
homogeneous Euler–Bernoulli beams in bending vibration with different boundary conditions. Finally, a
discussion on root locus diagrams behaviour and on modal damping ratio significance for non-
proportionally damped systems is presented.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The effects of non-proportional damping distributions on vibrating linear mechanical systems
have been not exhaustively studied in terms of modal analysis, especially with regard to
continuous systems. In fact, continuous systems are often modelled considering proportional
damping distributions only, which carry little further analytical and computational effort in
addition to the undamped case analysis, since the mode shape remain unchanged. However in
many real situations, the proportional damping assumption is not valid and this simplified
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approach does not describe the dynamics of the system with sufficient accuracy. In particular, the
efforts of many authors were devoted to quantify the non-proportionality, giving a measure of the
difference between proportional and non-proportional viscous damping models for a multi-
degree-of-freedom systems [1], but such indexes, unfortunately, give no information in order to
predict the effects of a known damping distribution on the dynamic behaviour.
The problem of vibrating, non-homogeneous, continuous systems, especially Euler–Bernoulli

beams, seems to be of some interest in engineering, since a large number of papers on this subject
have been published in recent years. For example, the following particular cases have been
considered: transverse vibrations of an Euler–Bernoulli beam carrying two particles in-span [2],
free vibrations of stepped beams with intermediate elastic supports [3], free vibrations of axially
loaded beams with intermediate elastic supports [4], continuous structures with lumped spring and
masses [5], and straight beams with different boundary conditions [6].
Conversely, only few authors have included non-proportional damping in their analysis of

continuous vibrating systems. These include a method to compute the eigenvalues of a
homogeneous beam with lumped mass, stiffness and damping elements is presented in Ref. [7],
applying the Laplace transform technique; complex modes of non-homogeneous vibrating beams
with lumped or piecewise constant distributed viscous damping are computed in Ref. [8], by
dividing the beam into homogeneous segments and then setting the boundary conditions in a
matrix, whose dimensions proportionally increase with the number of segments; a similar
approach, with a more general substructure coupling procedure, is presented in Refs. [9,10].
The method proposed in this paper, starting from a partition of the continuous system in

homogeneous substructures or segments, presents a different approach based on the reduction of
the differential equations order in conjunction with a transfer matrix technique. Consequently, it
can be easily applied to a large number of continuous vibrating systems with non-proportional
damping, provided that closed-form solutions of the undamped case for each homogeneous
segment are known. Moreover, the proposed approach leads to an easy computer implementation
and presents a high computational efficiency, due to the invariance of the matrix dimensions with
respect to the number of segments considered. The particular case of flexural vibrations of Euler–
Bernoulli non-homogeneous beams with different non-proportional internal and external
damping distributions and various lumped constraints is considered here. Actually, only few
coefficient adjustments would be required to analyze the problem of strings, rods, shafts or
Timoshenko beams with viscous or more complicated damping models. Some numerical examples
are included, showing the effects of particular cases of internal and external non-proportional
damping on eigenvalues, eigenfunctions and root locus diagrams.

2. Method of analysis

In this section an analytical technique is proposed to solve the free vibration problem for non-
proportionally damped Euler–Bernoulli non-homogeneous beams. In particular, two different
damping models are considered, that is, internal viscous damping and external lumped or
distributed viscous damping. By separating spatial and time variables, the classical boundary
value problem reduces to a differential eigenvalue problem. Assuming the beam to be a sequence
of homogeneous segments leads to a set of ordinary differential equations, one for each segment,
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which can be solved applying appropriate boundary conditions. Finally, a state-form expansion
applied in conjunction with a transfer matrix technique (which is a modification of the classical
transfer matrix technique [11]) make it possible to extract the eigenvalues and to express the
eigenfunctions in analytical form.

2.1. The boundary value problem

The partial differential equation of motion for a distributed viscously damped system can be
expressed in the operator form

M
@2

@t2
wðx; tÞ

� �
þ C

@

@t
wðx; tÞ

� �
þ K ½wðx; tÞ� ¼ f ðx; tÞ; xAD; ð1Þ

where M, C, K are linear homogeneous differential operators [12], and are referred to as mass
operator, damping operator and stiffness operator, respectively, f is the external force density
(also including all non-conservative forces other than viscous damping ones), w and x are the
displacement and the spatial variable in the domain of extension D, respectively. Associated with
the differential equation (1), appropriate boundary conditions must be satisfied by the solution w

at every point of the boundary of the domain D.
In the special case of an Euler–Bernoulli beam in bending vibration, the mass operator and the

stiffness operator consist of

M ¼ mðxÞ; ð2Þ

K ¼
@2

@x2
kðxÞ

@2

@x2

� �
; ð3Þ

where m(x) is the mass per unit length of beam and kðxÞ ¼ EIðxÞ is the bending stiffness, or
flexural rigidity, in which E is Young’s modulus of elasticity and I is the area moment of inertia.
The damping operator can be expressed as

C ¼
@2

@x2
cinðxÞ

@2

@x2

� �
; ð4Þ

which is the case of internal damping (according with the Kelvin–Voigt model, used in
conjunction with the assumption that cross-sectional areas remain planar during deformation
[12]) or, simply, as

C ¼ cðxÞ; ð5Þ

which is the case of external distributed viscous damping (note that the two distributions cinðxÞ
and cðxÞ are dimensionally different).
If the damping operator can be expressed as a linear combination of the mass operator and

stiffness operator, damping is said to be proportional. In this paper the more general case in which
damping results to be non-proportional is considered.
The partial differential equation of motion (1) for an Euler–Bernoulli beam in bending

vibration with external distributed viscous damping under the distributed transverse force

ARTICLE IN PRESS

S. Sorrentino et al. / Journal of Sound and Vibration 265 (2003) 765–782 767



f ðx; tÞ is

mðxÞ
@2

@t2
w x; tð Þ þ cðxÞ

@

@t
w x; tð Þ þ

@2

@x2
kðxÞ

@2

@x2
w x; tð Þ

� �
¼ f ðx; tÞ: ð6Þ

Two boundary conditions must be satisfied at x ¼ 0 and l (length of the beam). In the simple cases
of clamped end, pinned end and free end, they are

clamped end

wðx; tÞ ¼ 0;

@

@x
wðx; tÞ ¼ 0;

8<
: ð7Þ

pinned end

wðx; tÞ ¼ 0;

kðxÞ
@2

@x2
wðx; tÞ ¼ 0;

8<
: ð8Þ

free end

kðxÞ
@2

@x2
wðx; tÞ ¼ 0;

@

@x
kðxÞ

@2

@x2
wðx; tÞ

� �
¼ 0:

8>><
>>: ð9Þ

2.2. The differential eigenvalue problem

In the absence of external forces, f ðx; tÞ ¼ 0; the partial differential equation of motion (6)
reduces to

mðxÞ
@2

@t2
wðx; tÞ þ cðxÞ

@

@t
wðx; tÞ þ

@2

@x2
kðxÞ

@2

@x2
wðx; tÞ

� �
¼ 0; ð10Þ

which, in conjunction with appropriate boundary conditions, describes the free bending vibration
of the beam. In the following, the existence of solutions of Eq. (10) will be explored by separating
the variables in the form

wðx; tÞ ¼ fðxÞqðtÞ; ð11Þ

where f only depends on the spatial position and q only depends on time.
The above separation of variables leads to the reduction of the boundary value problem into a

differential eigenvalue problem [12]. Introducing Eq. (11) in Eq. (1), defining the state vector

wðx; tÞ ¼
wðx; tÞ

’wðx; tÞ

( )
; ð12Þ

(the dot denoting derivative with respect to time) and the linear homogeneous differential
operators

L1 ¼
0 M

�K �C

" #
; L2 ¼

M 0

0 M

" #
; ð13Þ
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it is possible to rewrite the differential equation of motion (1) in the standard state-form,
consisting of two first order ordinary differential equations. As is known, the solution of the
homogeneous system follows from the associated eigenvalue problem, which can be stated in the
canonical form

L1½w� ¼ sL2½w�; ð14Þ

where the generally complex constant s has to be determined so that Eq. (14) admits non-trivial
solutions satisfying the boundary conditions [12].
In order to acknowledge the effects of non-proportional viscous damping, the differential

eigenvalue problem (14) will be solved for the special case (of some interest in engineering) in
which mðxÞ; cðxÞ and kðxÞ can be considered piecewise constant on D (see Fig. 1).
Dividing the beam into N segments of length Dxp ¼ xpFxp21 (where x0 ¼ 0; xN ¼ l), and

assuming mðxÞ; cðxÞ and kðxÞ constant on each segment, Eq. (14) reduces to a set of N fourth
order ordinary differential equations with constant coefficients of the type

fIV
p ðxÞ ¼ �spfpðxÞ; ð15Þ

(the order of derivative with respect to the spatial variable is denoted by a roman number) with
appropriate boundary conditions, where

sp ¼ ðmps2 þ cpsÞk�1
p ; ð16Þ

which holds for external distributed damping, or

sp ¼ mps2ðcin;ps þ kpÞ
�1; ð17Þ

which holds for internal damping. Note that more complicated damping laws, even involving
fractional derivatives, could be easily taken into account simply by modifying the definition of sp

in function of s. In any case, s is obviously the same for every segment.
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Fig. 1. Non-homogeneous Euler–Bernoulli beam with non-proportional damping and different constraints.

S. Sorrentino et al. / Journal of Sound and Vibration 265 (2003) 765–782 769



Once again it is convenient to put the problem in state-form, thus Eq. (15) becomes

yIpðxÞ ¼ SpypðxÞ; ð18Þ

where y and Sp correspond to a state vector and to the transpose of a companion matrix,
respectively, i.e.,

yðxÞ ¼

fIII xð Þ

fII xð Þ

fI xð Þ

f xð Þ

8>>>><
>>>>:

9>>>>=
>>>>;
; Sp ¼

0 0 0 �sp

1 0 0 0

0 1 0 0

0 0 1 0

2
6664

3
7775: ð19Þ

The four eigenvalues (functions of s) of the companion matrix are

lp1 ¼
ffiffiffiffiffiffiffiffiffi
�sp

4
p

¼ ap;

lp2 ¼ �
ffiffiffiffiffiffiffiffiffi
�sp

4
p

¼ �ap;

lp3 ¼ i
ffiffiffiffiffiffiffiffiffi
�sp

4
p

¼ iap;

lp4 ¼ �i
ffiffiffiffiffiffiffiffiffi
�sp

4
p

¼ �iap;

ð20Þ

where ap corresponds to a transmission factor; so the solution of Eq. (18) is

yp xð Þ ¼ Fpe
Lpxcp; ð21Þ

where Up is the pth segment eigenvectors matrix, Kp is the pth segment eigenvalues matrix and cp

is the pth segment constants vector.

2.3. The boundary conditions

The boundary conditions at the ends of the beam can be written in the form

Be0y1ð0Þ ¼ 0;

BelyNðlÞ ¼ 0;
ð22Þ

where Be are 2� 4 matrices depending on the kind of constraints. For a clamped end, a pinned
end or a free end, matrices Be are simply

Be ¼

0 0 1 0

0 0 0 1

" #
; Be ¼

0 1 0 0

0 0 0 1

" #
; Be ¼

1 0 0 0

0 1 0 0

" #

clamped pinned free

; ð23Þ

which become a little more complicated if at the ends of the beam there are other external
constraints, such as lumped inertia, damping or stiffness elements.
Moreover, it is necessary to introduce appropriate constraint conditions at the ends of each

segment. The N � 1 boundary conditions between the N beam segments can be written as

ypðxp�1Þ ¼ Bp�1yp�1ðxp�1Þ; p ¼ 2;y;N; ð24Þ
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where Bp�1 are 4� 4 matrices obtained by imposing the continuity of displacement, rotation,
moment and shear in x ¼ xp�1: Bp21 can be written in the following form:

Bp�1 ¼

b�1
p bp�1 0 0 �b�1

p r
ðwÞ
p�1

0 b�1
p bp�1 b�1

p r
ðWÞ
p�1 0

0 0 1 0

0 0 0 1

2
666664

3
777775; ð25Þ

where bp and bp�1 depend on internal stiffness and damping, i.e.,

bp ¼ kp ðsegment p undamped or with external distributed dampingÞ;

bp ¼ cin;ps þ kp ðsegment p with internal dampingÞ;
ð26Þ

while rðwÞ and rðWÞ depend on external constraints.
Note that Bp21 ¼ I if the following conditions are all satisfied:

* no external constraints at xp�1;
* segments p and pF1 without internal damping;
* kp ¼ kp21:

If at xp21 there are external constraints, such as lumped inertia, damping or stiffness elements,
then, in accordance with Fig. 1,

rðwÞ ¼Mws2 þ Cws þ Kw;

rðWÞ ¼KW; ð27Þ

where Mw is a lumped mass, Cw is a lumped damping, Kw is a lumped linear stiffness, and KW is a
lumped rotational stiffness.
Taking into account Eqs. (21) and (24), it is not difficult to derive the relation

ypðxÞ ¼ Fpe
Lpðx�xp�1ÞF�1

p Bp�1yp�1ðxp�1Þ; ð28Þ

for xp21oxpxp; where p ¼ 1;yN; B0 ¼ I and the pth segment eigenvectors matrix and its
inverse, written as functions of ap; have the form

Fp ¼

a3p �a3p �ia3
p ia3

p

a2p a2
p �a2p �a2

p

ap �ap iap �iap

1 1 1 1

2
66664

3
77775; F�1

p ¼
1

4

a�3
p a�2

p a�1
p 1

�a�3
p a�2

p �a�1
p 1

ia�3
p �a�2

p �ia�1
p 1

�ia�3
p �a�2

p ia�1
p 1

2
66664

3
77775: ð29Þ

Moreover, Eq. (28) yields

ypðxpÞ ¼ P
1

i¼p
½Fie

Liðxi�xi�1ÞF�1
i Bi�1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PpðxpÞ

y1ð0Þ; ð30Þ

so it is possible to express yðlÞ as a function of yð0Þ; i.e.,

yNðlÞ ¼ PNðlÞy1ð0Þ; ð31Þ
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and the boundary conditions (22) become

Be0y1ð0Þ ¼ 0

BelPNðlÞy1ð0Þ ¼ 0

(
or; equivalently

Be0F1c1 ¼ 0;

BelPNðlÞF1c1 ¼ 0:

(
ð32Þ

Eq. (32) forms a set of four linear homogeneous algebraic equations in four unknowns c1i and can
be rewritten in the form

Yc1 ¼ 0: ð33Þ

Remembering that the elements of the coefficient matrix H depend on the unknown eigenvalue s,
and that Eq. (33) possesses a non-trivial solution if and only if the determinant of the coefficient
matrix is zero, then the solutions of

det½Y� ¼ 0; ð34Þ

are the solutions of the differential eigenvalue problem (14). In case of underdamped continuous
systems, they form a infinite set of complex conjugate pairs sn; snn of discrete values. Each pair
characterizes a mode and is related with a pair of eigenfunctions, which result step-defined from
Eq. (28), except for a global complex constant.
The solution wnðx; tÞ related to the nth mode (in the following referred to as modal

displacement) must be real and it can be expressed in the form

wnðx; tÞ ¼ gnfnðxÞe
snt þ gnnf

n

nðxÞe
snnt ¼ 2Re½gnfnðxÞe

snt�; ð35Þ

or, equivalently,

wnðx; tÞ ¼ 2e�GntfRe ½gnfnðxÞ� cosOnt � Im ½gnfnðxÞ� sinOntg; ð36Þ

where gn is an indeterminate scaling factor, generally complex, which depends on the initial
conditions,

On ¼ jIm½sn�j is the modal frequency of damped free vibration,
Gn ¼ �Re ½sn� ¼ �Re½snn� is the modal damping factor.

It is very important to note that, in general, the well-known relations Gn ¼ znon and

On ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
; where on is the modal natural frequency and zn is the modal damping ratio,

are valid only if damping is proportional. Moreover, if damping is proportional, arg½fðxÞ� is
constant, whilst in general for non-proportional damping arg½fðxÞ� varies with respect to the
spatial variable. As a consequence, from Eq. (36) it is clear that if damping is non-proportional,
then the system does not execute synchronous motions, which are characterized by the fact
that the ratio of the displacements corresponding to different points is constant with respect to
time [12].
It should finally be noted that mathematically Eq. (36) provides a solution in the classical sense

(i.e., four time continuously differentiable in D) everywhere, except in a finite subset of D (i.e.,
x ¼ xp; with p ¼ 1;y;NF1); here is weak as a consequence of the discontinuities introduced in
functions mðxÞ; cðxÞ and kðxÞ; which have been assumed to be piecewise constant on D.
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3. Numerical examples

Three numerical examples are presented as applications of the proposed method, in order both
to validate it by comparisons to other less general methods and to show its reliability in problems
involving non-proportional damping. Moreover, it should be noted that the proposed method has
also been successfully applied by the authors to solve a number of particular cases, proposed in
several papers concerning non-homogeneous continuous systems [2–4,7].
In all numerical cases studied, the proposed method has performed well in terms of

computational time, due to the reduced dimensions of the matrices involved in the numerical
procedure. In fact, (4� 4) matrices are always needed for the method to be applied to continuous
beams of any complexity. Most of the computational effort is only devoted to a zero finding
routine in the complex domain, involved in Eq. (34). This problem has been solved by means of
the secant method [13] applied to a real function of complex variable.

3.1. Example 1

A homogeneous pinned–pinned Euler–Bernoulli beam with external constraints is considered as
the first numerical example (lumped inertial, stiffness and damping elements) as proposed in Ref.
[7]. Clearly, if a lumped damping element is considered, then the beam becomes non-
proportionally damped. System parameters are chosen as follows:

* beam mass density m1 ¼ m2 ¼ m ¼ 1:6363� 104 kg=m;
* beam bending stiffness k1 ¼ k2 ¼ k ¼ 1:6669� 1011 Nm2;
* beam length l ¼ 15:24m;
* added mass M1 ¼ 0:1 ml at position l1 ¼ l=2;
* added translational spring with K1 ¼ 0:1 mlo2

1 at position l1 ¼ l=2 (where o1 is the first natural
frequency of the beam without added mass and spring);

* added viscous damper with C1 ¼ 0:1 mlo1at position l1 ¼ l=2:

The continuity of displacement, rotation, moment and shear in x ¼ x1 is stated by Eq. (24),
where matrix Bp�1; Eq. (25), reduces to

B1 ¼

1 0 0 �k�1r

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð37Þ

being r ¼ M1s
2 þ C1s þ K1:

In Table 1, the first three eigenvalues obtained from Eq. (34) are compared with those
computed in Ref. [7]: an excellent agreement is achieved. Note that the second mode is not
affected by the presence of the added mass, spring and damper, due to their position, which is
coincident with the node of the second undamped mode.
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3.2. Example 2

Example 2 concerns a homogeneous beam with a non-proportional external damping
distribution consisting of four different homogeneous segments. Since matrix dimensions remain
constant (i.e., 4� 4), the present approach reduces the increase of computational effort that
affects those methods in which the dimensions grow proportionally to the number N of segments
[8].
An Euler–Bernoulli beam clamped at x ¼ 0 and free at x ¼ l is chosen, with beam total length

l ¼ 0:30 m: The system parameters for each segment are summarized in Table 2.
Due to the absence of lumped constraints and internal damping, matrices Bp�1; Eq. (25) with

p ¼ 1; 2; 3; 4; simply reduces to identity. In Table 3 the first eight eigenvalues obtained by
Eq. (34) are presented.

ARTICLE IN PRESS

Table 2

Example Case 2 system parameters

Segment Length (m) Mass density (kg/m) Bending stiffness (Nm2) Damping density (Ns /m2)

1 0.1905 0.243 4.725 5� 10�4

2 0.035 0.243 4.725 50

3 0.0395 0.243 4.725 5� 10�4

4 0.035 0.243 4.725 50

Table 1

Eigenvalues sn rad/s of example Case 1

Mode (n) Present study [7]

1 �1.130627e+00171.351799e+002i �1.130626e+00171.351799e+002i

2 075.425144e+002i �4.177324e�01275.425147e+002i

3 �8.482803e+00071.128716e+003i �8.482803e+00071.128716e+003i

Table 3

Eigenvalues snof example Case 2

Mode (n) Eigenvalue sn [rad/s]

1 �5.720324e+00171.626707e+002i

2 �3.205648e+00171.078383e+003i

3 �3.681733e+00173.022033e+003i

4 �1.997599e+00175.923198e+003i

5 �1.818495e+00179.792150e+003i

6 �2.861540e+00171.462773e+004i

7 �2.496616e+00172.043052e+004i

8 �2.417755e+00172.720052e+004i
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Note that the real part of the eigenvalues is different for each mode as a direct consequence of
the non-proportionality. On the contrary, in case of external damping operator proportional to
the mass operator, i.e., cðxÞ ¼ bmðxÞ; where b is a constant, Re½sn� is the same for each mode. For
example, the same beam has been considered under the effect of different levels of proportional
damping:

* damping constant equal to the minimum of the non-proportional distribution, i.e., c ¼
5� 10�4 Ns=m2; leading to Re½sn� ¼ �1:0288� 10�3 rad=s;

* damping constant equal to the maximum of the non-proportional distribution, i.e., c ¼
50Ns=m2; leading to Re½sn� ¼ �1:0288� 102 rad=s;

* damping constant equal to the integral mean value of the non-proportional distribution, i.e.,
c ¼ 11:67Ns/m2, leading to Re½sn� ¼ �24:012 rad=s:

Comparing the last value (Re½sn� ¼ �24:012 rad/s) with those of Table 3, it is evident that such a
non-proportional damping distribution produces more relevant effects on lower order modes than
on higher ones: in particular, the first three modes decay rates increase significantly. Hence, an
optimum damping distribution may be chosen to control particular (low order) modes.
In Fig. 2 time-dependent second mode displacements (Eq. (35)) are depicted, corresponding to

arbitrary initial conditions. It shows that, if motion is asynchronous, there is no stationary point
and the points having zero displacement fluctuate during motion. It should be noted that,
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Fig. 2. Case 2: time-dependent modal displacement corresponding to the second pair of complex eigenfunctions.

S. Sorrentino et al. / Journal of Sound and Vibration 265 (2003) 765–782 775



although it is possible to define zn ¼ �Re½sn�=jsnj even if damping is non-proportional, it does not
correspond to a modal damping ratio in the classical sense, and it does not provide any
information about the modal asynchronous behaviour: in fact, a relevant non-stationary modal
displacement may correspond to a small zn; as can be seen in Fig. 2, where z2 ¼ 3% only.

3.3. Example 3

Example 3 concerns a homogeneous beam with non-proportional damping distributions
consisting of two different homogeneous segments. An Euler–Bernoulli beam clamped at x ¼ 0
and free at x ¼ l is considered, with total length l ¼ 0:30 m and external or internal damping
distributions alternatively. The system parameters for each segment are as follows:

* length l1 ¼ 0:20m; l2 ¼ 0:10 m;
* beam mass density m1 ¼ m2 ¼ m ¼ 0:243 kg=m;
* beam bending stiffness k1 ¼ k2 ¼ k ¼ 4:725 Nm2:

In the following, different levels of non-proportionality are obtained by increasing the damping of
a single segment, the other remaining unchanged. Differences between proportional and non-
proportional damping effects are clearly outlined by means of root locus diagrams for the first
three modes of the beam.

3.3.1. External distributed damping
In this example, the distributed external damping density relative to the first segment, c1 ¼

1:675Ns=m2; is kept constant, while c2 varies from c2 ¼ c1 (proportional damping) to infinite
(non-proportional damping limit case).
Fig. 3 shows a root locus comparison between proportional and non-proportional external

damping for the first three modes of the beam. The curves relative to the proportional damping
case are obtained by varying both c1 and c2 with c2 ¼ c1: For each mode, the two trajectories
(proportional and non-proportional case) start from the same point sðpropÞ corresponding to c2 ¼
c1 ¼ 1:675N s=m2: For the first mode no relevant difference can be observed between
proportional and non-proportional external damping: the curves are nearly coincident, although
they represent two different functions of c1 and c2: Otherwise, for the second and third mode the
curves are nearly coincident in the neighbourhood of the starting point sðpropÞ; then they strongly
diverge at higher values of damping. In particular, the non-proportional behaviour for the second
and third mode is substantially different: the second mode curve reaches the real axis for a certain
value of c2; i.e., the second mode becomes critically damped; on the other hand, the third mode
curve never reaches the real axis, but it tends to s

ðlimÞ
3 for c2-N: The asymptotic behaviour of the

third mode root locus can be explained by considering that as c2-N; the clamped–free beam
under analysis tends to transform into a clamped–clamped beam of total length l1: As a
consequence, the third mode of the initial configuration tends to the first mode (real) of the limit
constraint set-up (see Fig. 4), while the first two modes vanish. In order to verify the accuracy of
the proposed method, the value s

ðlimÞ
3 has been successfully compared with the first eigenvalue of

the clamped-clamped beam of total length l1 (with proportional damping c1) obtained by a
classical technique [14] and also by the proposed method.
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Fig. 3. Example 3: root locus for distributed external damping. Solid line: c2 increases and c1 remains unchanged (non-

proportional damping); dashed line: both c2 and c1 increase with c2 ¼ c1 (proportional damping).

Fig. 4. Clamped–free beam with distributed external damping: modal displacement corresponding to the third pair of

complex eigenfunctions; (a) c2 ¼ c1 (proportional damping); (b) c2-N:
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3.3.2. Internal damping

In this example, differences between external and internal damping are in evidence, considering
the same beam under the effect of an internal damping distribution, which is kept constant in the
first segment, cin;1 ¼ 6:7� 10�5 N s m2; while in the second one it varies from cin;2 ¼ cin;1

(proportional damping) to infinite (non-proportional damping limit case).
In Fig. 5 a root locus for the first three modes of the beam with non-proportional internal

damping is depicted. If compared with the proportional case, the trajectory of each mode starts
from the same point s(prop) corresponding to cin;2 ¼ cin;1 ¼ 6:7� 10�5 N s m2; it is nearly coincident
only in a restricted region of the starting point, then it strongly diverges at higher values of
damping and tends to sðlimÞ for cin;2-N: As cin;2 increases, no mode becomes overdamped, but, on
the contrary, the clamped–free beam under analysis tends to transform into a clamped–free beam
with the second segment l2 of infinite flexural rigidity, i.e., a clamped–free beam of total length l1
connected at its end to a rigid body of length l2 and mass m2 (see Fig. 6).
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Fig. 5. Example 3: root locus for internal damping; cin;2 increases and cin;1 remains unchanged (non-proportional

damping). (a) root locus for the first three modes; (b) zoom on first mode; (c) zoom on second mode.
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Also in this example, the accuracy of the proposed method has been successfully tested. The
values sðlimÞ have been compared with the first eigenvalues of the limit constraint set-up obtained
by the proposed method restricted to the first segment. Note that in this case the boundary
conditions matrix Bel1 becomes

Bel1 ¼
1 0

�m2l
2
2s2

2ðEI1 þ cin;1sÞ
�m2l2s

2

EI1 þ cin;1s

0 1
m2l

3
2s2

3ðEI1 þ cin;1sÞ
m2l

2
2s2

2ðEI1 þ cin;1sÞ

2
6664

3
7775; ð38Þ
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Fig. 6. Clamped–free beam with internal damping: modal displacement corresponding to a pair of complex

eigenfunctions; left column cin;2 ¼ cin;1 (proportional damping); right column cin;2-N; (a) and (b) first mode; (c)

and (d) second mode; (e) and (f) third mode.
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due to shear and moment equilibrium equations of the rigid body of length l2: This is an example
of a boundary value problem with boundary conditions depending on the eigenvalues [12].
By comparing Figs. 3 and 5 some further considerations may apply:

* non-proportional damping distributions produce root locus curves very different from the
circles due to proportional damping;

* the same non-proportional damping distribution leads to different root locus curves for
different damping models (for example internal, external, etc.): that is not the case if damping is
proportional;

* under the effect of non-proportional damping, some modes may not become overdamped and
as damping tends to infinite they may transform into modes of a different system.

4. Conclusions and future work

An analytical method has been developed for the analysis of a class of vibrating continuous
systems with non-proportional viscous damping distributions, according to different damping
models. The proposed method has been implemented in particular for non-homogeneous Euler–
Bernoulli beams in bending vibration; however, it can be easily applied also to strings, shafts, rods
and Timoshenko beams with all possible boundary conditions. Complex modes, corresponding to
non-synchronous motions, are obtained by a state-form expansion, applied together with a
transfer matrix technique, resulting in easy computing implementation and high computational
efficiency. Numerical examples show that non-proportional damping distributions induce relevant
changes in root locus diagrams, depending also on the assumed damping model, and significant
effects on the dynamic behaviour, corresponding to non-synchronous motions. Moreover, the
numerical results confirm that optimum damping distributions may be chosen to control
particular modes, and show that the damping ratio defined in the classical sense is scarcely
informative when damping is non-proportional. Future effort may be devoted to making linear
dynamic identification techniques able to take into account the effects due to non-proportionality,
in particular in order to provide a correct estimate of natural frequencies and damping ratios. As a
natural complement of the present study, the complex eigensolutions obtained will be the starting
point of modal analysis, which will lead to the expression of impulse and frequency response
functions and, consequently to enable comparisons with experimental data.

Appendix A. Nomenclature

a transmission factor for a homogeneous beam segment
B boundary conditions matrix
b coefficient of matrix B depending on flexural rigidity and internal damping
C lumped damping
c vector of constants
c external damping per unit length of beam
cin internal damping per unit length of beam
D spatial domain
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E Young’s modulus of elasticity
f load per unit length of beam or force density
I identity matrix
I area moment of inertia
i imaginary unit
K lumped stiffness
k stiffness per unit length of beam or flexural rigidity
l length of the beam
M lumped mass
m mass per unit length of beam
N total number of steps of the spatial domain partition
q normal co-ordinate
r coefficient of matrix B depending on external constraints
S transposed companion matrix
s complex eigenvalue
t time
w state vector
w transverse displacement
x, x spatial variables
y vector built with the eigenfunction f and its first three derivatives with

respect to x

Dx beam segment length
U eigenvector matrix of S
/ eigenfunction
G damping factor
g complex scaling factor
L eigenvalue matrix of S
l eigenvalue of S
P boundary conditions global transfer matrix
H coefficient matrix of the algebraic boundary conditions system
s coefficient of the fourth-order differential equation for a homogeneous beam

segment
O angular frequency of damped free vibration
o angular frequency
z damping ratio

Operators
C[ � ] damping operator
Im[ � ] imaginary part
K[ � ] stiffness operator
L[ � ] linear operator
M[ � ] mass operator
Re[ � ] real part
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Subscripts

e ends of the beam
n modal index
p spatial domain partition index

Superscripts

* complex conjugate
I–IV first to fourth derivative with respect to x
(w) translational degree of freedom
(W) rotational degree of freedom
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