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1. Introduction

The proper orthogonal decomposition (POD) is a powerful and elegant method for data
analysis aimed at obtaining low-dimensional approximate descriptions of a high-dimensional
process. It is an important and essential technique for data reduction and feature extraction, and
has been widely used in various disciplines including image processing, signal analysis, data
compression, process identification, adaptive control, and many others. In general, there are two
different interpretations for the POD. The first interpretation regards the POD as the Karhunen—
Loéve decomposition (KLD) and the second one considers that the POD consists of three
methods: the KLD, the principal component analysis (PCA), and the singular value
decomposition (SVD) [1]. The first interpretation appears in many engineering literatures related
to the POD. Because of the close connections and the equivalence of the three methods, the
authors prefer the second interpretation for the POD, that is, the POD includes the KLD, PCA
and SVD.

The widespread applications of the POD methods enable the POD to be a popular tool in many
fields. In recent years, there have been many reported applications of the POD methods in
engineering fields. More recently, the POD methods have also been successfully used in structural
vibrations, such as the physical interpretation of the proper orthogonal modes [2—4], applications
of the KLD [3—6], the SVD [2,7] and the PCA [5,8—11] for system identification, dynamic analysis,
and many others. With the increasing applications of the POD methods, it has been found that the
loose description on the connection of the POD methods may confuse the applications. Therefore,

*Corresponding author: College of Computer Science and Technology, Jilin University, Changchun 130012, People’s
Republic of China.
E-mail addresses: wuchunguo@sina.com.cn (C.G. Wu), liangyc@ihpc.a-star.edu.sg (Y.C. Liang).

0022-460X/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0022-460X(03)00032-4



1104 C.G. Wu et al. | Journal of Sound and Vibration 265 (2003) 11031110

a summary of the equivalence of the three POD methods has been made and some mathematical
derivations about them have been performed in Ref. [1]. In this paper, on the basis of Ref. [1] from
the authors, the PCA of a random vector is obtained by discretizing the KLD of a continuous
stochastic process, and then the equivalence of the KLLD and the PCA is proven. A novel proof on
the proper orthogonal basis vectors of the SVD satisfying the optimality of the POD is presented
and the equivalence of the SVD and the PCA (KLD) is expounded.

2. The equivalence of KLLD and PCA

Karhunen and Loéve independently developed a theory regarding optimal series expansions of
continuous-time stochastic processes [12]. The theory is called Karhunen—Loéve decomposition
and has been used extensively in the fields such as image processing, digital communication, and
many others. Their results extend the PCA to the case of infinite-dimensional spaces, such as the
space of continuous-time functions. Inversely, if discretizing the KLD for the continuous-time
stochastic process and taking the finite discrete time to consider problems we may use the PCA for
processing random vectors.

Let x(¢) € R be a continuous-time stochastic process with a zeromean, where ¢€[a, b] (a, b finite),
and the autocorrelation function be

r(t, 1) = E{x(t)x(f)} (a<t, i <D). (D)

From E{x(t)x(¢)} = E{x(¢')x(t)} and the continuity of x(¢) it follows that r.(z, ') is symmetric and
continuous.
For all y(-) satisfying

b
/ Y1) di< o, )

we have

b b b b
/ / ro(t, W (OY() de df :E{ / / x(z)x(t’)lp(t)lp(t’)dtdt’}

2
- E{ ( / ' x(OW(t) dt> } >0. (3)

Therefore, from Mercer’s theorem [13], it follows that the continuous symmetric function r(z, t’)
satisfies the condition for the series expansion, that is, we have

) = 3 hwehend), @
i=1

where the functions e;(¢) are called eigenfunctions of the expansion and the numbers 4; are called
eigenvalues, which satisfy

b
/ ry(t, )ei(t') di’ = Jiei(t). (5)

For the ¢,(f) and 4; (i = 1,2, ...) in the expansion, we have the following theorem.
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Theorem 1 (Diamantaras and Kung [12]). Let x(¢) be a zero-mean continuous-time stochastic
process with correlation r(t,t') = E{x(t)x(t')}. Then

x(1) = Z)’iei(f), (6)
i=1
where
b
yi= [ xteo ™
are uncorrelated random variables with zero mean and variance A;, that is,
0, i#j,
E{yiyi}y = {/1 . ()
i =]

Eq. (7) in Theorem 1 is called the Karhunen—Lo¢ve transform of x(z), and Eq. (6) is called the
Karhunen—Loéve decomposition of x(¢). In order to extend the continuous-time process into the
discrete-time process and expound the equivalent relationship between the KLD and PCA, we
present the following theorem.

Theorem 2. If the time is taken as finite discrete values and integrals are replaced by sums,
then the KLD of the continuous stochastic process x(t) is equivalent to the PCA of the random
vector.

Proof. Let x(f) be a given continuous stochastic process. Discretizing the time in [a,b]
infinitely, denoting the discrete-time points in order from left to right as #;,7,... and
denoting x; = x(¢;) (k=1,2,...), then we have that x;,x, ... is a discrete stochastic process
satisfying

E{xi} =0, % =r (xp,x) = E{xexs).

From Eq. (6), which is used to perform the KLD for the original continuous stochastic process,
we have

=3 wik, ©)
i=1
where
yi=Y xkef (10)
k=1

and ¢ = e;(tx) (k=1,2,...,) is the kth component of the infinitely dimensional eigenvector e; of
r&D which satisfies that

Z rkDel = 7 ek, (11)
I=1
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If we take the time as finite discrete values x; = x(#;) (k = 1,2, ...,m) and denote that

X:(xl,xb---,xm)Ts (12’)
ALD 2w
F2D 2D e
},.Ecm,l) ’,.E(m,2) . rgcm,m)
e = (e, e, ...,e’i”)T, (14)
y:()}17y27"'5ym)Ta (15)
then Egs. (9), (10) and (11) can be written in matrix forms, respectively, as
m
X= Zyieia (16)
i=1
yi=e'x, (i=1,2,..,m), (17)
Rxei = }vl‘e,', (l = 1,2, ,m) (18)

It can be seen that Egs. (16)—(18) have the identical forms with Egs. (24), (23) and (18) in Ref. [1].
Therefore, it is the principal component analysis of a random vector to perform KLD for a
continuous stochastic process and to take finite discrete values. This completes the proof of the
equivalence of the KLD and PCA. [

3. The equivalence of SVD and PCA (KLD)

The SVD was established for real square matrices at first, and was thereafter extended for
complex square matrices and general rectangular matrices. Similar to the eigenvalue decomposi-
tion the SVD is a very important and fundamental working tool in matrix analysis. Because the
SVD intimately relates to the matrix rank and reduced-rank least-squares approximation, it has
been extensively applied to many areas such as matrix theory, statistics, and signal analysis [12].

Suppose that n samples {x;}; , are given where x;€ R”. Let the sample matrix be X (X =
[X1,X2, ...,X,]). The equivalence of the SVD and PCA (KLD) has been demonstrated and proven in
Ref. [1] by using eigenvalue problems of matrices and the asymptotic connection of the samples. It
has also been proven that the proper orthogonal basis vectors of the SVD satisfy the optimality of
the POD in terms of Lagrangian function. In this paper, we present a novel proof on the optimality
of the proper orthogonal basis vectors of the SVD by using the Frobenius norm of the matrix. In the
following theorems ||®||, represents the Euclidian norm and ||e||z the Frobenius norm.

Theorem 3 (Diamantaras and Kung [12]). Let US_ VT be the SVD of an n x m matrix A with rank
r. Assume that the singular values are arranged in decreasing order 61 =>0,=--- =20, > 0,41 = - =
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on = 0, then for any I<r,

.
in [|[A—B|>=|A—A>= 2 19
min 1A = Blz = A = Afl; i;lo,, (19)

where

i
A= E aiul-vl.T.
i=1

Next, we present a theorem and its proof on that the proper orthogonal basis vectors of the
SVD satisfy the optimality of the POD.

Theorem 4. Let the sample matrix be X, the matrix formed by the proper orthogonal basis vectors
obtained from the SVD be V and the matrix formed by any other set of orthogonal basis vectors be
@. If the first | basis vectors of V and @ are taken to perform the reconstruction for the sample
matrix, respectively, and the errors of the reconstruction are denoted as ¢*(V;) for the former and
&(®)) for the latter, then we have

(@)= (V). (20)

Proof. Let X; (j = 1,2, ..., n) represent the reconstruction for the original samples using the first /
basis vectors of V.

I
ﬁj:Zocijv,- (]: 1,2,...,71), (21)
i=1
where
oy = vl.ij. (22)

Let X; (j = 1,2, ...,n) represent the reconstruction for the original samples using the first / basis
vectors of @

i
K=Y Byoi (=12,....m), (23)
i=1
where
By = ;% (24)
The error of the reconstruction of the former is
n
£V =Y lIx = &l = IX = X[z, (25)
J=1
where X = [X1,X2, ..., X,]. The error of the reconstruction of the latter is
n
E(@) =Y Il — %[5 = IX = X]|7, (26)
J=1

where X = [&1, %, ..., %,].
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From Theorem 3, if there exists a matrix Ce R™" with rank(C) = s</, then we have
r r
2 : 2 2 2 2 2
IA=Cllp> min IA=BI;=lIA- A= > ;> > ol =IA=Alp (27)
B i=s+1 i=l+1

In fact, since rank(C) =s and min,ums)=s||A — B||125 is the minimum Frobenius norm of the
difference of all matrices that have the same rank s with A, we have that ||A—C||12;>
MiNgnk(B)=s ||A — B||125 holds. Note that

2(Vi) = X = RI} = 10X = R)TI} = X" - %) (28)
and
(@) = X = X|fj = X = Rl = X" = X[ (29)
Replacing A, C and A, in Eq. (27) with, X7, X" and )A(T, respectively, it can be seen that to prove
(D) =& (V)),
we need only to prove that
rank(X')<! (30)
and
AT !
X = Z o,-u,-vl.T. (31
i1

Since X;espan (¢, ¢, ..., ;) (j=1,2,...,n), we have obviously that inequality (30) holds. In
order to prove Eq. (31), using the SVD on the sample matrix X and letting

01202220, > 0,4 ] = " =0y = 0,
we have
U=X"vx (32)
that is,
or!
—1
T 03
U =[x1,X2, ..., X,] [VI, V2, ..., Vi] (33)
o !
Post-multiplying the two sides of Eq. (33) by diag(oy, 0>, ---, g,) gives
x|
T
X
[“10'1,“20'2, "'>ur0r] = : [VI’V25 "':Vr]- (34)
T
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From Egs. (34) and (22) we have oju; = X v; = v/ x; = «;. Using Eq. (21) yields

I ! I /

A A ~ T

X1, X0, -, X,] = E auy;vi, E gim;vi, ..., E o,V | = E g;viu; . (35)
i=1 i=1 i=1 i=1

Transposing Eq. (35) gives Eq. (31).
Summing up the above proof, we have

r
T T2 . T 2 T T2 2
IX* = X'[[p= min [X' =Blz=[X" —X = E o7, (36)
rank(B)=I P

that is
(P =& (V)).
This completes the proof of Theorem 4. [

Using a different approach from that used in Ref. [1] we have made the proof on that the proper
orthogonal basis vectors of the SVD satisfy the optimality of the POD. Combining this with the
relevant results in Ref. [1], it follows that the matrix used to solve the eigenvalue problem is XX T
in the SVD and the correlation matrix used to solve the eigenvalue problem is R, in the PCA
(KLD). In general, R, cannot be determined exactly but we can use the sample matrix to form its
approximation (1/n) XX'. When the number n of the samples increases we have R, =
lim,_, .. (1/n)XX". Note that both the matrices XX and (1/n) XXT possess the same eigenvalues
and eigenvectors. Hence the SVD and PCA (KLD) possess the asymptotic connection. Since the
squares of the singular values are the eigenvalues of the original eigenproblem, it can be seen from
the above proof on the optimality of the SVD that the errors are also identical when both the SVD
and PCA (KLD) take the first / proper orthogonal bases to approximately reconstruct the original
samples. Therefore, the SVD and PCA (KLD) possess the equivalence.

4. Conclusion

In this paper, we discussed two approaches in the study of equivalence on the PCA, KLD, and
SVD. Firstly, proceeding from finitely discretizing the continuous-time variables we prove the
equivalence of the KLD and PCA. Secondly, using the Frobenius norm of a matrix we present a
novel proof showing that the proper orthogonal basis vectors of the SVD satisfy the optimality of
the POD and as well as demonstrating the equivalence of the SVD and PCA (KLD). These
provide different approaches to study the equivalence of the three POD methods.
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