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1. Introduction

The proper orthogonal decomposition (POD) is a powerful and elegant method for data
analysis aimed at obtaining low-dimensional approximate descriptions of a high-dimensional
process. It is an important and essential technique for data reduction and feature extraction, and
has been widely used in various disciplines including image processing, signal analysis, data
compression, process identification, adaptive control, and many others. In general, there are two
different interpretations for the POD. The first interpretation regards the POD as the Karhunen–
Lo"eve decomposition (KLD) and the second one considers that the POD consists of three
methods: the KLD, the principal component analysis (PCA), and the singular value
decomposition (SVD) [1]. The first interpretation appears in many engineering literatures related
to the POD. Because of the close connections and the equivalence of the three methods, the
authors prefer the second interpretation for the POD, that is, the POD includes the KLD, PCA
and SVD.
The widespread applications of the POD methods enable the POD to be a popular tool in many

fields. In recent years, there have been many reported applications of the POD methods in
engineering fields. More recently, the POD methods have also been successfully used in structural
vibrations, such as the physical interpretation of the proper orthogonal modes [2–4], applications
of the KLD [3–6], the SVD [2,7] and the PCA [5,8–11] for system identification, dynamic analysis,
and many others. With the increasing applications of the POD methods, it has been found that the
loose description on the connection of the POD methods may confuse the applications. Therefore,
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a summary of the equivalence of the three POD methods has been made and some mathematical
derivations about them have been performed in Ref. [1]. In this paper, on the basis of Ref. [1] from
the authors, the PCA of a random vector is obtained by discretizing the KLD of a continuous
stochastic process, and then the equivalence of the KLD and the PCA is proven. A novel proof on
the proper orthogonal basis vectors of the SVD satisfying the optimality of the POD is presented
and the equivalence of the SVD and the PCA (KLD) is expounded.

2. The equivalence of KLD and PCA

Karhunen and Lo"eve independently developed a theory regarding optimal series expansions of
continuous-time stochastic processes [12]. The theory is called Karhunen–Lo"eve decomposition
and has been used extensively in the fields such as image processing, digital communication, and
many others. Their results extend the PCA to the case of infinite-dimensional spaces, such as the
space of continuous-time functions. Inversely, if discretizing the KLD for the continuous-time
stochastic process and taking the finite discrete time to consider problems we may use the PCA for
processing random vectors.
Let xðtÞAR be a continuous-time stochastic process with a zeromean, where tA½a; b� (a, b finite),

and the autocorrelation function be

rxðt; t0Þ ¼ EfxðtÞxðt0Þg ðapt; t0pbÞ: ð1Þ

From EfxðtÞxðt0Þg ¼ Efxðt0ÞxðtÞg and the continuity of xðtÞ it follows that rxðt; t0Þ is symmetric and
continuous.
For all cð	Þ satisfying Z b

a

c2ðtÞ dtoN; ð2Þ

we have Z b

a

Z b

a

rxðt; t0ÞcðtÞcðt0Þ dt dt0 ¼ E

Z b

a

Z b

a

xðtÞxðt0ÞcðtÞcðt0Þ dt dt0
� �

¼ E

Z b

a

xðtÞcðtÞ dt

� �2
( )

X0: ð3Þ

Therefore, from Mercer’s theorem [13], it follows that the continuous symmetric function rxðt; t0Þ
satisfies the condition for the series expansion, that is, we have

rxðt; t0Þ ¼
XN
i¼1

lieiðtÞeiðt0Þ; ð4Þ

where the functions eiðtÞ are called eigenfunctions of the expansion and the numbers li are called
eigenvalues, which satisfy Z b

a

rxðt; t0Þeiðt0Þ dt0 ¼ lieiðtÞ: ð5Þ

For the eiðtÞ and li ði ¼ 1; 2;yÞ in the expansion, we have the following theorem.
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Theorem 1 (Diamantaras and Kung [12]). Let xðtÞ be a zero-mean continuous-time stochastic
process with correlation rxðt; t0Þ ¼ EfxðtÞxðt0Þg: Then

xðtÞ ¼
XN
i¼1

yieiðtÞ; ð6Þ

where

yi ¼
Z b

a

xðtÞeiðtÞ dt ð7Þ

are uncorrelated random variables with zero mean and variance li; that is,

Efyiyjg ¼
0; iaj;

li i ¼ j:

(
ð8Þ

Eq. (7) in Theorem 1 is called the Karhunen–Lo"eve transform of xðtÞ; and Eq. (6) is called the
Karhunen–Lo"eve decomposition of xðtÞ: In order to extend the continuous-time process into the
discrete-time process and expound the equivalent relationship between the KLD and PCA, we
present the following theorem.

Theorem 2. If the time is taken as finite discrete values and integrals are replaced by sums,
then the KLD of the continuous stochastic process xðtÞ is equivalent to the PCA of the random
vector.

Proof. Let xðtÞ be a given continuous stochastic process. Discretizing the time in ½a; b�
infinitely, denoting the discrete-time points in order from left to right as t1; t2;y and
denoting xk ¼ xðtkÞ ðk ¼ 1; 2;yÞ; then we have that x1; x2;y is a discrete stochastic process
satisfying

Efxkg ¼ 0; rðk;lÞx 
 rxðxk;xlÞ ¼ Efxkxlg:

From Eq. (6), which is used to perform the KLD for the original continuous stochastic process,
we have

xk ¼
XN
i¼1

yie
k
i ; ð9Þ

where

yi ¼
XN
k¼1

xkek
i ð10Þ

and ek
i ¼ eiðtkÞ ðk ¼ 1; 2;y; Þ is the kth component of the infinitely dimensional eigenvector ei of

rðk;lÞx ; which satisfies that

XN
l¼1

rðk;lÞx el
i ¼ lie

k
i : ð11Þ
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If we take the time as finite discrete values xk ¼ xðtkÞ ðk ¼ 1; 2;y;mÞ and denote that

x ¼ ðx1; x2;y; xmÞ
T; ð12Þ

Rx ¼

rð1;1Þx rð1;2Þx ? rð1;mÞ
x

rð2;1Þx rð2;2Þx ? rð2;mÞ
x

^ ^ &

rðm;1Þ
x rðm;2Þ

x ? rðm;mÞ
x

0
BBBB@

1
CCCCA; ð13Þ

ei ¼ ðe1i ; e
2
i ;y; em

i Þ
T; ð14Þ

y ¼ ðy1; y2;y; ymÞ
T; ð15Þ

then Eqs. (9), (10) and (11) can be written in matrix forms, respectively, as

x ¼
Xm

i¼1

yiei; ð16Þ

yi ¼ eTi x; ði ¼ 1; 2;y;mÞ; ð17Þ

Rxei ¼ liei; ði ¼ 1; 2;y;mÞ: ð18Þ

It can be seen that Eqs. (16)–(18) have the identical forms with Eqs. (24), (23) and (18) in Ref. [1].
Therefore, it is the principal component analysis of a random vector to perform KLD for a
continuous stochastic process and to take finite discrete values. This completes the proof of the
equivalence of the KLD and PCA. &

3. The equivalence of SVD and PCA (KLD)

The SVD was established for real square matrices at first, and was thereafter extended for
complex square matrices and general rectangular matrices. Similar to the eigenvalue decomposi-
tion the SVD is a very important and fundamental working tool in matrix analysis. Because the
SVD intimately relates to the matrix rank and reduced-rank least-squares approximation, it has
been extensively applied to many areas such as matrix theory, statistics, and signal analysis [12].
Suppose that n samples fxig

n
i¼1 are given where xiARm: Let the sample matrix be X ðX ¼

½x1;x2;y;xn�Þ: The equivalence of the SVD and PCA (KLD) has been demonstrated and proven in
Ref. [1] by using eigenvalue problems of matrices and the asymptotic connection of the samples. It
has also been proven that the proper orthogonal basis vectors of the SVD satisfy the optimality of
the POD in terms of Lagrangian function. In this paper, we present a novel proof on the optimality
of the proper orthogonal basis vectors of the SVD by using the Frobenius norm of the matrix. In the
following theorems jj�jj2 represents the Euclidian norm and jj�jjF the Frobenius norm.

Theorem 3 (Diamantaras and Kung [12]). Let U
P

VT be the SVD of an n 
 m matrix A with rank
r. Assume that the singular values are arranged in decreasing order s1Xs2X?Xsr > srþ1 ¼ ? ¼
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sm ¼ 0; then for any lpr;

min
rankðBÞ¼l

jjA� Bjj2F ¼ jjA� Al jj
2
F ¼

Xr

i¼lþ1

s2i ; ð19Þ

where

Al ¼
Xl

i¼1

siuiv
T
i :

Next, we present a theorem and its proof on that the proper orthogonal basis vectors of the
SVD satisfy the optimality of the POD.

Theorem 4. Let the sample matrix be X, the matrix formed by the proper orthogonal basis vectors
obtained from the SVD be V and the matrix formed by any other set of orthogonal basis vectors be

F. If the first l basis vectors of V and F are taken to perform the reconstruction for the sample
matrix, respectively, and the errors of the reconstruction are denoted as e2ðVlÞ for the former and
e2ðFlÞ for the latter, then we have

e2ðFlÞXe2ðVlÞ: ð20Þ

Proof. Let #xj ðj ¼ 1; 2;y; nÞ represent the reconstruction for the original samples using the first l
basis vectors of V.

#xj ¼
Xl

i¼1

aijvi ðj ¼ 1; 2;y; nÞ; ð21Þ

where

aij ¼ vTi xj: ð22Þ

Let *xj ðj ¼ 1; 2;y; nÞ represent the reconstruction for the original samples using the first l basis
vectors of F

*xj ¼
Xl

i¼1

bijji ðj ¼ 1; 2;y; nÞ; ð23Þ

where

bij ¼ jT
i xj: ð24Þ

The error of the reconstruction of the former is

e2ðVlÞ ¼
Xn

j¼1

jjxj � #xj jj22 ¼ jjX� #Xjj2F ; ð25Þ

where #X ¼ ½ #x1; #x2;y; #xn�: The error of the reconstruction of the latter is

e2ðFlÞ ¼
Xn

j¼1

jjxj � *xj jj
2
2 ¼ jjX� *Xjj2F ; ð26Þ

where *X ¼ ½ *x1; *x2;y; *xn�:

ARTICLE IN PRESS

C.G. Wu et al. / Journal of Sound and Vibration 265 (2003) 1103–1110 1107



From Theorem 3, if there exists a matrix CARn
m with rankðCÞ ¼ spl; then we have

jjA� Cjj2FX min
rankðBÞ¼s

jjA� Bjj2F ¼ jjA� Asjj2F ¼
Xr

i¼sþ1

s2i X
Xr

i¼lþ1

s2i ¼ jjA� Al jj2F : ð27Þ

In fact, since rankðCÞ ¼ s and minrankðBÞ¼s jjA� Bjj2F is the minimum Frobenius norm of the
difference of all matrices that have the same rank s with A, we have that jjA� Cjj2FX
minrankðBÞ¼s jjA� Bjj2F holds. Note that

e2ðVlÞ ¼ jjX� #Xjj2F ¼ jjðX� #XÞTjj2F ¼ jjXT � #X
T
jj2F ð28Þ

and

e2ðFlÞ ¼ jjX� *Xjj2F ¼ jjðX� *XÞTjj2F ¼ jjXT � *X
T
jj2F : ð29Þ

Replacing A, C and Al in Eq. (27) with, XT; *X
T
and #X

T
; respectively, it can be seen that to prove

e2ðFlÞXe2ðVlÞ;

we need only to prove that

rankð *X
T
Þpl ð30Þ

and

#X
T
¼

Xl

i¼1

siuiv
T
i : ð31Þ

Since *xjAspan ðj1;j2;y;jlÞ ðj ¼ 1; 2;y; nÞ; we have obviously that inequality (30) holds. In
order to prove Eq. (31), using the SVD on the sample matrix X and letting

s1Xs2X?Xsr > srþ1 ¼ ? ¼ sm ¼ 0;

we have

U ¼ XTVS�1
r ; ð32Þ

that is,

U ¼ ½x1; x2;y; xn�T½v1; v2;y; vr�

s�11
s�12

&

s�1r

0
BBB@

1
CCCA: ð33Þ

Post-multiplying the two sides of Eq. (33) by diagðs1; s2;?; srÞ gives

u1s1; u2s2;?; ursr½ � ¼

xT1

xT2

^

xTn

2
6664

3
7775½v1; v2;?; vr�: ð34Þ
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From Eqs. (34) and (22) we have siuji ¼ xTj vi ¼ vTi xj ¼ aij: Using Eq. (21) yields

½ #x1; #x2;?; #xn� ¼
Xl

i¼1

siu1ivi;
Xl

i¼1

siu2ivi;y;
Xl

i¼1

siunivi

" #
¼

Xl

i¼1

siviu
T
i : ð35Þ

Transposing Eq. (35) gives Eq. (31).
Summing up the above proof, we have

jjXT � *X
T
jj2FX min

rankðBÞ¼l
jjXT � Bjj2F ¼ jjXT � #X

T
jj2F ¼

Xr

i¼lþ1

s2i ; ð36Þ

that is

e2ðFlÞXe2ðVlÞ:

This completes the proof of Theorem 4. &

Using a different approach from that used in Ref. [1] we have made the proof on that the proper
orthogonal basis vectors of the SVD satisfy the optimality of the POD. Combining this with the
relevant results in Ref. [1], it follows that the matrix used to solve the eigenvalue problem is XXT

in the SVD and the correlation matrix used to solve the eigenvalue problem is Rx in the PCA
(KLD). In general, Rx cannot be determined exactly but we can use the sample matrix to form its
approximation ð1=nÞ XXT: When the number n of the samples increases we have Rx ¼
limn-Nð1=nÞXXT: Note that both the matrices XXT and ð1=nÞ XXT possess the same eigenvalues
and eigenvectors. Hence the SVD and PCA (KLD) possess the asymptotic connection. Since the
squares of the singular values are the eigenvalues of the original eigenproblem, it can be seen from
the above proof on the optimality of the SVD that the errors are also identical when both the SVD
and PCA (KLD) take the first l proper orthogonal bases to approximately reconstruct the original
samples. Therefore, the SVD and PCA (KLD) possess the equivalence.

4. Conclusion

In this paper, we discussed two approaches in the study of equivalence on the PCA, KLD, and
SVD. Firstly, proceeding from finitely discretizing the continuous-time variables we prove the
equivalence of the KLD and PCA. Secondly, using the Frobenius norm of a matrix we present a
novel proof showing that the proper orthogonal basis vectors of the SVD satisfy the optimality of
the POD and as well as demonstrating the equivalence of the SVD and PCA (KLD). These
provide different approaches to study the equivalence of the three POD methods.
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