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1. Introduction

In Ref. [1], Cha and Wong developed a new approach for the derivation of the characteristic
equation of a system consisting of a continuous structure to which several spring–mass systems
(say s) are attached. After discretizing the continuous structure (say to n d.o.f) the corresponding
generalized eigenvalue problem of order (n � n) is formulated whose stiffness and mass matrices
consist of diagonal matrices modified by a total of s rank-one matrices. The generalized eigenvalue
problem is manipulated such that the eigenvalues can be obtained by solving a much smaller
characteristic determinant of order (s � s), each element of which involves a sum of n terms,
instead of finding the roots of a much larger determinant of order (n � n).
Cha and Pierre applied the above approach successfully to various vibrational systems in Refs

[2–5], whereas the present author made use of it for obtaining the characteristic equation of
proportionally damped systems subjected to damping modifications [6].
From the mathematical point of view, what is done in Ref. [1] is essentially the derivation of a

formula for the determinant of a matrix which is the sum of a diagonal matrix and several dyadic
products. After noting that the proof of the new form of the characteristic equation is rather
lengthy, its proof is given in the appendix for s ¼ 1; i.e., for the special case of only one spring–
mass system. Then it is stated that the general case of arbitrary s is merely an extension of the
given derivation. The present author has made in Ref. [7] a comment on the formula obtained for
s ¼ 1: The basis of the derivation for s ¼ 1 and then for various s values are elementary
determinant equations like, multiplication of various columns by appropriate factors and then
summation or subtraction from each other.
In the next section, the proof of a more general formula will be given which enables one to

establish a simple formula for the determinant of the sum of a regular square matrix (not
necessarily diagonal) and several dyadic products.
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2. Theory

Start with the well-known determinant formula [8,9]

det
A B

C D

" #
¼ detA detðD2CA21BÞ; ð1Þ

where it is assumed that A is regular, i.e., detA not equal to zero. The matrix (D�CA�1
B) is

referred to as the Schur complement of A in the block matrix at the left side of Eq. (1), [9].
Here, the dimensions of the submatrices are as follows: A (n � n), B (n � m), C (m � n)
and D (m � m).
In case of regular D, the determinant of the block matrix can also be expressed as

det
A B

C D

" #
¼ detD detðA� BD�1CÞ: ð2Þ

Now substitute

A ¼ A; B ¼ 2X; C ¼ YT; D ¼ Im; ð3Þ

where Im denotes the m-dimensional unit matrix and X and Y are new n � m matrices. Then,
making use of Eqs (1) and (2)

det
A 2X

YT Im

" #
¼ detA detðIm þ YTA�1XÞ ¼ det Im detðAþ XYTÞ ð4Þ

can be written. Hence, the formula

detðAþ XYTÞ ¼ detA detðIm þ YTA�1XÞ ð5Þ

is obtained. The special case X=x, YT
=y

T where x and y denote (n � 1) matrices, i.e., column
vectors, yields

detðAþ xyTÞ ¼ detA detð1þ yTA�1xÞ; ð6Þ

which is a well-known formula for the determinant of a regular square matrix modified by a rank-
one matrix. This formula is often used in control theory in the context of multivariable feedback
and pole location [10].
Let

X ¼ x1; :::;xm½ �; Y ¼ ½y1; :::; ym�: ð7Þ

Then it can be shown that Xm

i¼1

xiy
T
i ¼ XYT: ð8Þ
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On the other hand, via the definitions in Eq. (7), the triple matrix product on the right side of
formula (5) can be written as

%G ¼ YTA21X ¼

yT1A
�1x1 ? yT1A

�1xj ? yT1A
�1xm

^ ^ ^

yTi A
�1x1 ? yTi A

�1xj ? yTi A
�1xm

^ ^ ^

yTmA
�1x1 ? yTmA

�1xj ? yTmA
�1xm

2
66666664

3
77777775
: ð9Þ

Finally, the following formula is obtained:

det Aþ
Xm

i¼1

xiy
T
i

 !
¼ detA detðIm þ %GÞ; ð10Þ

where the matrix %G is defined in Eq. (9) in terms of the column vectors xi; yi and the inverse of the
matrix A.
The above formula enables one to express the determinant of a regular square matrix modified

by a total of m rank-one matrices in terms of the sum of a special ðm � mÞ matrix %G and the m-
dimensional unit matrix.
In order to compare the formula developed in this study with Eq. (9) in Ref. [1], let it be

assumed

A ¼ ðKd � o2MdÞ; xi ¼ siUi; yi ¼ Ui;

Ui ¼ f1ðxÞ;y;fnðxÞ
� 
T���

x¼xi

; s ¼ m; ð11Þ

where Kd andMd denote the diagonal stiffness, and mass matrices and o is the eigenfrequency of
the combined system resulting from the discretized continuous structure to which m spring–mass
systems are attached. UðxÞ represents the ðn � 1Þ vector whose elements fjðxÞ (j ¼ 1;2,y,n) are
the corresponding eigenfunctions of the unconstrained structure, used for the discretization
procedure.
With the definitions in Eq. (11), Eq. (10) gives

det Kd � o2Md þ
Xm

i¼1

siUiU
T
i

 !
¼ detðKd � o2MdÞdetG; ð12Þ

where the matrix G ¼ Im þ %G is defined using Eqs. (9) and (11) as

G ¼ ½gij� ¼ ½dj
i þ UT

i ðK
d � o2MdÞ�1sjUj� ð13Þ

dj
i being the the Kronecker delta.
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The ði; jÞth element of G, i.e., gij can be written as

gij ¼ dj
i þ sj

Xn

r¼1

frðxiÞfrðxjÞ
ðKr � o2MrÞ

ði; j ¼ 1;y;mÞ; ð14Þ

noting that the ðr; rÞth elements of the diagonal matrices Kd and Md are denoted in Ref. [1] as Kr

and Mr; respectively.
The matrix element gij above differs from bij in Ref. [1] by the factor sj .The reason is explained

below.
In order to obtain the frequency equation of the combined structure made up of the continuous

structure and the m spring–mass systems attached to it, one has to equate the right side of Eq. (12)
to zero which yields

det½gij� ¼ 0: ð15Þ

The validity of this equation holds further if the first column of the determinant is divided by s1;
the second by s2 and finally, the last column by sm; which leads to

det½g0ij� ¼ 0; ð16Þ

where

g0ij ¼
1

sj

dj
i þ
Xn

r¼1

frðxiÞfrðxjÞ
ðKr � o2MrÞ

; ði; j ¼ 1;y;mÞ: ð17Þ

Comparison of expression (17) with expression (9) in Ref. [1] reveals that, actually

g0
ij ¼ bij : ð18Þ

3. Conclusions

This study is concerned with the derivation of a formula which enables one to obtain the
determinant of the sum of a regular square matrix and several dyadic products. The present
formula is much easier to prove although it is more general than the recently developed one which
can be employed only for a diagonal matrix A, rather than a general square and regular matrix.
Both forms of the formula can be used successfully for obtaining the characteristic equations of
continuous structures to which several spring–mass systems are attached.
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