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Abstract

This paper investigates numerically the performance of the active sound transmission control into a
rectangular cavity through a flexible panel under the energy density-based error-sensing algorithm. Full
coupling between the sound transmitting panel and the enclosed space is considered. A pure vibration
actuator, a pure acoustic source and a combined control source system are used as the secondary control
source in the active control and their performances are studied. Formulae for the coupled eigenfrequencies
of the cavity and the flexible panel are also derived. The strength of the structural–acoustic coupling, the
ratio between the first eigenfrequencies of the cavity and the panel and the difference between the excitation
frequency and the coupled eigenfrequencies, especially the latter, are found to have crucial impacts on the
performance of the active control regardless the type of control source used.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

Low-frequency sound transmission through thin panels or weak structures, such as windows
and partition walls, is a problem commonly found in buildings. Traditional passive control
methods for sound transmission are to damp and/or stiffen the weak structures, which are only
effective at high frequencies. In the past two decades, some researchers have switched their interest
in controlling this unwanted sound transmission to the rooms by active means [1–10]. They have
proved that the active noise control (ANC) method is effective in controlling low-frequency sound
inside an enclosed space.
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The idea of active sound transmission control was first proposed by Fuller and Jones [1]. They
applied the active structural acoustic control (ASAC), using a force actuator, on a cylindrical
shell, aiming at alleviating the noise transmitted into the fuselage from the jet engines. Since then,
many studies were concentrated on the ASAC [2–10]. Pan et al. [2–4] analyzed the ASAC on a
flexible panel of a rectangular cavity using potential energy control. Two modes of control are
concluded [2–4]. They are the panel-controlled modes, in which the energy transmission is from
one dominating structural mode into several acoustic modes, and cavity-controlled modes in
which the energy transmission is from several structural modes into one dominating acoustic
mode. These two control modes are in general co-existing [5]. Recently, the study of ASAC has
extended to include the use of structural error sensors such as accelerometers [6] and
polyvinylidene fluoride material [7].

ASAC with the potential energy error sensing is effective at some panel-controlled modes and a
few cavity-controlled modes for weak structural–acoustic coupling [8]. However, it has the
disadvantage of producing significant increase of the flexible panel kinetic energy at cavity-
controlled mode frequencies [8]. Also, the force actuators and structural sensors on the weak
structures have limitations in their applications. For example, such sensors mounted on windows
will obstruct the line of sight and thus is undesirable. Acoustic sound transmission control using
secondary acoustic sources inside the cavity can eliminate the large increase of the kinetic energy
of flexible panel [8] and is worthwhile to study due to its effectiveness in controlling the cavity-
controlled modes. Snyder and Hansen [9,10] and Kim and Brennan [8] have considered the
combined control source system (i.e., using force and acoustic actuators simultaneously) in order
to control both the panel-controlled and cavity-controlled modes. Weak structural–acoustic
coupled systems were studied. However, the influence of strong structural–acoustic coupling on
active sound transmission control is not well documented.

For error-sensing control algorithms, the potential energy and squared pressure sensing
techniques have been studied extensively [2–5,8–10]. However, they have their inherited
shortcomings. Potential energy control is the theoretical optimized solution for global control
of an enclosed sound field. However, it is difficult to implement, as a large amount of sound
pressure sensors are practically required. For squared pressure control, global control of an
enclosed sound field is only possible at frequencies far below the first eigenfrequency of the cavity,
while only a confined quiet zone around the error-sensing point can be achieved at other
frequencies [11]. Discrete quiet and amplification zones, as well as highly non-uniform sound
fields, are also observed at high frequencies [11]. Also, two adverse effects of spillovers and
detrimental effects occur, resulting in largely amplified sound pressures throughout the cavity
except the error-sensing points if the error-sensing microphone is not located properly [11].

Sommerfeldt and Nashif [12,13] proposed the energy density control (minimizing acoustic
energy densities at discrete locations) in hope of a system with a more effective global sound field
control and a performance less dependent on error sensor locations. Lau and Tang [11] has shown
the effectiveness of this energy density control inside a slightly damped rectangular cavity with
sound field visualization. Energy density control has the advantages of eliminating the spillovers
and detrimental effects observed under the squared pressure control, as well as producing a more
uniform sound. The performance of the energy density control is much closer to that of the
potential energy control when compared with that obtained under the squared pressure
control.
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This paper documents a study of the effectiveness of controlling sound transmission through a
flexible panel into a rectangular cavity using the energy density-based active control. Full
couplings between the panel vibration and room acoustic modes are considered. Two
dimensionless parameters related to the mechanical properties of the flexible panel and the
cavity are introduced. They are the strength of the structural–acoustic coupling and the ratio
between the first eigenfrequencies of the cavity and the panel. The present investigation includes
frequencies up to five times the first natural frequencies of the cavity. The performance of the
active control under pure vibration, pure acoustic and combined secondary sources are compared.
It is hoped that the advantages and weaknesses of each control source method can be found and
the results can provide useful information on the use of active control in building acoustics,
especially in the low-frequency range.

2. Optimal secondary source strengths

The sound pressure inside an enclosed space and the structural vibration velocity of a flexible
panel can be determined by the summation of infinite sets of acoustic and structural modal
components, respectively. In matrix form, the vector of sound pressures at the points xis inside an
enclosed space, p ¼ ½ pðx1oÞ pðx2oÞ pðx3oÞy �T; can be written simply as the product of the
acoustic mode shape matrix at those points, W; and the complex acoustic pressure modal
amplitude vector, a, due to sources, as

p ¼ WHa; ð1Þ

where each column of W consists of N acoustic mode eigenfunctions, cnðxi;oÞ; at a specified
location, xi; inside the cavity. Similarly, the vector of the structural vibration velocities at the
points yis on the flexible panel, us ¼ ½ usðy1oÞ usðy2oÞ usðy3oÞy �T; can be written as the
product of the structural mode shape matrix for those points, U; and the complex structural
vibration velocity modal amplitude vector, b; as

us ¼ UHb; ð2Þ

where each column of U consists of M structural mode eigenfunctions, fmðyi;oÞ; at a specified
location, yi; on the flexible panel. It can be shown by using the impedance-mobility approach [8]
that

a ¼ AZaðRatc þ CYsgpÞ ð3aÞ

and

b ¼ BYsðRstc þ gpÞ: ð3bÞ

The concept of the impedance-mobility approach is to present the solutions of the coupled
structural–acoustic responses in terms of the compact matrixes for the modal impedance and
mobility of the acoustic and structural systems. Details of such approach can be found in the
works of Kim [14,15] and are briefly summarized in Appendix A. One can rearrange a and b such
that

a ¼ ZcA
#Zað #Ra

#tc þ #C #Ys #gpÞ; ð4aÞ
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b ¼
Sf

Msosc

B #Ysð #Rs
#tc þ #gpÞ; ð4bÞ

where

Zc ¼
Ka

Msoacosc

ð5Þ

and all variables in Eqs. (4a) and (4b) are dimensionless except a; #tc and #gp; whose units are
Nm�2, and b; Sf ; Ms and osc whose units are m s�1, m2, kg and s�1, respectively. Therefore, #Za

and #Ys are solely related to the modal characteristics of the cavity and flexible panel respectively.
#Ra represents the normalized couplings between the control source locations and acoustic modes.
The acoustic and vibration source strengths are normalized by (oscMs=S2

f ) and Sf in #tc and #gp;
respectively, thus they can be easily compared between various combinations of cavity and flexible
panel. Zc depends on the medium inside the cavity, and the material and dimension of the cavity
and flexible panel (Appendix B). Eqs. (1) and (4a) are the comprehensive equations for acoustic
modes and are also useful in finding out the combined effects of sound transmission through
flexible panel with internal acoustic sources and/or vibration forces on the panel. Eqs. (2) and (4b)
are the comprehensive equations for vibration of flexible panel driven by vibration forces, external
and/or internal acoustic fields with the effects of the structural–acoustic coupling included.

Energy density control is a promising algorithm for both global and local noise control inside a
cavity [11]. Its strategy is to minimize energy densities at discrete locations inside the cavity. The
energy density at a point, xi; inside a cavity is

ED ¼
1

2rac2
pðxi;oÞj j2þ

ra

2
uaðxi;oÞj j2; ð6Þ

which is the sum of both the acoustic potential and kinetic energy densities at the point concerned.
Therefore, the acoustic particle velocities, as well as the acoustic pressures, are also optimized for
minimizing energy densities inside the cavity. Substituting Euler’s equation rpðx;oÞE�
jkracuaðx;oÞ; Eqs. (1) and (4a) into Eq. (6), the sum of the energy densities at discrete locations
inside the cavity, EDsum; can be written in the form of an Hermitian quadratic expression

EDsum ¼
Z2c

2rac2
#t
H

c
#R
H

a
#Z
H

a A
H WeW

H
e þ

1

k2
rWe 
 rWH

e

� �
A #Za
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� �
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þ #g
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p
#Y
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s
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1
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� �
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H
p
#Y
H

s
#C
H #Z
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a A
H WeW

H
e þ

1

k2
rWe 
 rWH

e

� �
A #Za

#C #Ys #gp

� ��
; ð7Þ

where We consists of the acoustic mode shapes for E error-sensing points. Energy densities,
potential energy densities and kinetic energy densities of the acoustic field at any points inside the
cavity, in general, decrease exponentially with Zc in the traditional passive sound transmission
control. The optimized secondary source strengths of energy density control, #tc; can be derived by
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minimizing EDsum (Eq. (7))

#tc ¼ � #R
H #Z

H

a A
H WeW

H
e þ

1

k2
rWe 
 rWH

e

� �
A #Za

#R

� ��1


 RH #Z
H

a A
H WeW

H
e þ

1

k2
rWe 
 rWH

e

� �
A #Za

#C #Ys #gp: ð8Þ

The optimized secondary source strengths of potential energy [14] and squared pressure control
algorithms can be determined by replacing ðWeW

H
e þ ð1=k2ÞrWe 
 rWH

e Þ in Eq. (8) with I and
ðWeW

H
e Þ; respectively.

3. Numerical experiments and control modes

Computer simulations were carried out to evaluate the performance of energy density-based
active sound transmission control using pure vibration, pure acoustic and combined secondary
sources. Fig. 1 shows the rectangular cavity and the co-ordinate system adopted in present study.
The dimensions of the cavity, Lx1 (length)�Lx2 (width)�Lx3 (height), were chosen in a ratio such
that Lx1:Lx2:Lx3 ¼ 1:e=p:1=p in order to reduce the number of degenerated acoustic modes [16].
Table 1 shows the normalized frequencies of the first 35 natural acoustic and panel vibration
modes. The cavity comprises five acoustically rigid walls and a simply supported flexible panel
located at x2 ¼ 0: The (n,n) and (m,m) diagonal elements of #Za and #Ys; respectively, can be
expressed as

#Za;n ¼
j #o

#o2
n � #o2 þ 2jxn #on #o

ð9Þ

and

#Ys;m ¼
j #oj

#o2
m � #o2j2 þ 2jzm #om #oj

; ð10Þ

where

j ¼ oac=osc ð11Þ
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Fig. 1. Schematic diagram for sound transmission and the co-ordinate system adopted.
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The external modal force matrix, gp; on the flexible panel is induced by an external plane wave
Sp: Without loss of generality, the propagation direction of this wave is taken to be at y ¼ p=6 and
a ¼ p=4 in present study. Force control actuator and acoustic control source, when located near
to those nodal lines of structural modes and nodal planes of acoustic modes, respectively, do not
effectively excite the structural and acoustic modes, respectively. An acoustic mode would be said
to be not ‘‘controllable’’ by an acoustic source if the source is placed at a nodal plane of the
acoustic mode. The case for controlling a structural mode with a force actuator is similar. The
force control actuator, Ss;f ; and acoustic control source, Ss;a; are located at (0:495Lx1; 0, 0:481Lx3)
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Table 1

Normalized eigenfrequencies of cavity and panel

Acoustic modes n #on Structural modes m #om

(1,0,0) 1 1.00 (1,1) 1 1.00

(0,1,0) 2 1.16 (2,1) 2 1.28

(1,1,0) 3 1.53 (3,1) 3 1.74

(2,0,0) 4 2.00 (4,1) 4 2.38

(2,1,0) 5 2.31 (5,1) 5 3.21

(0,2,0) 6 2.31 (1,2) 6 3.72

(1,2,0) 7 2.52 (2,2) 7 4.00

(3,0,0) 8 3.00 (6,1) 8 4.22

(2,2,0) 9 3.06 (3,2) 9 4.46

(0,0,1) 10 3.14 (4,2) 10 5.10

(3,1,0) 11 3.21 (7,1) 11 5.42

(1,0,1) 12 3.30 (5,2) 12 5.93

(0,1,1) 13 3.35 (8,1) 13 6.80

(0,3,0) 14 3.47 (6,2) 14 6.94

(1,1,1) 15 3.49 (7,2) 15 8.14

(1,3,0) 16 3.61 (1,3) 16 8.26

(2,0,1) 17 3.72 (9,1) 17 8.36

(3,2,0) 18 3.79 (2,3) 18 8.54

(2,1,1) 19 3.90 (3,3) 19 9.00

(0,2,1) 20 3.90 (8,2) 20 9.52

(4,0,0) 21 4.00 (4,3) 21 9.64

(2,3,0) 22 4.00 (10,1) 22 10.11

(1,2,1) 23 4.03 (5,3) 23 10.47

(4,1,0) 24 4.16 (9,2) 24 11.08

(3,0,1) 25 4.34 (6,3) 25 11.48

(2,2,1) 26 4.38 (11,1) 26 12.04

(3,1,1) 27 4.50 (7,3) 27 12.68

(3,3,0) 28 4.58 (10,2) 28 12.83

(4,2,0) 29 4.62 (8,3) 29 14.06

(0,4,0) 30 4.62 (12,1) 30 14.16

(0,3,1) 31 4.68 (1,4) 31 14.62

(1,4,0) 32 4.73 (11,2) 32 14.76

(1,3,1) 33 4.78 (2,4) 33 14.90

(3,2,1) 34 4.92 (3,4) 34 15.36

(5,0,0) 35 5.00 (9,3) 35 15.62
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and (Lx1; Lx2; Lx3), respectively, in order to avoid the nodal points on the structure and inside the
cavity throughout the frequency range in present study. The normalized acoustic modal
impedance and structural modal mobility in Eqs. (9) and (10) were obtained with acoustic and
structural modal damping coefficients (xn and zm; respectively) of 0.01. One thousand one
hundred and seventy-three acoustic modes and 522 structural modes are included in the foregoing
calculations. The calculations were done using software MATLABt on a DEC workstation
600AU.

Before the analysis of the numerical results, modes for active sound transmission control are
discussed in the following sub-sections. It will be shown that the coupled eigenfrequencies are
different from those of the natural modes of the panel and the cavity. It will also be illustrated
later that their relationships with j and Zc have great implications on the effectiveness of the
active control.

The two parameters, Zc and j; are critical for passive sound transmission controls. Since the
speed of sound and the air density are practically constant, therefore, the traditional measure for
controlling sound transmission is to reduce the stiffness Ka=Ms in Zc; so that both the magnitudes
of A and Zc

#Za
#C #Ys in Eq. (4a) are reduced. This stiffness has been used for describing the

structural–acoustic coupling with fixed cavity dimension (for instance, Ref. [15]). In other words,
Zc indicates primarily the strength of structural–acoustic coupling in non-resonant condition. The
coupling between the panel vibration and the enclosed sound field becomes weaker as Zc gets
smaller. For a very weakly coupled system, Zc is very small, A and B in Eqs. (3) and (4) are
approximately equal to I [14,15]. Some reductions of sound transmission can also be achieved by
adjusting oac and osc (Eq. 4a). j indicates how close is the lower order eigenfrequency matching
between the panel and the cavity. This is of importance to sound transmission as the problem is
more serious in the low-frequency range, especially under damping. Modification of the passive
sound transmission control is possible by adjusting j: j affects also the active control
performance which is expected to be more pronounced at low frequencies. This will be discussed
later.

3.1. Panel-controlled modes

The energy transmission from one dominant structural mode of the flexible panel into several
acoustic modes of the cavity, can be effectively controlled by suspending the dominant structural
mode. Suppose the mth panel vibration mode is the dominant structural mode and the energy is
transmitted from this mode to N acoustic modes of the cavity, the complex structural vibration
velocity modal amplitudes (Eq. (4b)) can be simplified to

bm ¼
Sf

Msosc

ð1þ Zc
#Ys;m

#Zca;mÞ
�1 #Ys;mð #Rs;m#tc þ #gp;mÞ

¼
Sf

Msosc

j #oj
#o2

m � #o2j2 þ 2jzm #om #ojþ jZc
#Zca;m #oj

 !
ð #Rs;m#tc þ #gp;mÞ

¼
Sf

Msosc

#Yes;mð #Rs;m#tc þ #gp;mÞ; ð12Þ
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where

#Rs;m ¼ ½Df ;m �Zc
#C
T

m
#ZaDq �

and

#Yes;m ¼
j #oj

#o2
m � #o2j2 þ 2jzm #om #ojþ jZc

#Zca;m #oj
:

#Zca;m is the normalized coupled acoustic modal impedance due to N acoustic modes of the cavity
coupled with the mth structural mode of the flexible panel. #gp;m is normalized external modal force
for the mth structural mode. The formula for gp;m can be found in Roussos [17] and is given in
Appendix A for convenience. The criteria for weak coupling of panel-controlled modes [15] can be
satisfied when 2zm #ombZcjReð #Zca;mÞj and #o2

m � #o2j2
bZcjImð #Zca;mÞj #oj; so that #Yes;mE #Ys;m:

jReð #Zca;mÞj and jImð #Zca;mÞj are the normalized acoustic resistant and reactance of the normalized
coupled acoustic modal impedance, #Zca;m; respectively. The coupled eigenfrequency of the flexible
panel, oc,m, can be estimated when the real part of the denominator of #Yes;m vanishes and is the
root of the non-linear equation:

j2 #o2 þ Zc Imð #Zca;mÞj #o� #o2
m ¼ 0: ð13Þ

It can be observed from Eq. (12) that the structural vibration velocity amplitudes, and also the
acoustic field inside the cavity, get smaller as Zc; Reð #ZcaÞ; zm, #om; #o and/or j increase. The former
two parameters relate to the strength and mode of the coupling while the rest are passive
parameters.

3.2. Cavity-controlled modes

The cavity-controlled mode refers to the situation where the energy transmission is from several
structural modes of the flexible panel to one dominant acoustic mode of the cavity. Suppose the
latter is the nth acoustic mode of the cavity and M panel vibration modes are involved, the
complex acoustic pressure modal amplitudes can be expressed as

an ¼ Zcð1þ Zc
#Za;n

#Ycs;nÞ
�1 #Za;nð #Ra;n#tc þ #Cn

#Ys #gpÞ

¼ Zc

j #o
#o2

n � #o2 þ 2jxn #on #oþ jZc
#Ycs;n #o

 !
ð #Ra;n#tc þ #Cn

#Ys #gpÞ

¼ Zc
#Zea;nð #Ra;n#tc þ #Cn

#Ys #gpÞ; ð14Þ

where

#Ra;n ¼ ½ #Cn
#YsDf Dq;n � and #Zea;n ¼

j #o
#o2

n � #o2 þ 2jxn #on #oþ jZc
#Ycs;n #o

:

#Ycs is the normalized coupled structural modal mobility due to the M panel modes coupled with
the nth acoustic mode of the cavity. Also, the criteria for weak coupling [15] of cavity-controlled
modes can be satisfied when 2xn #onbZcjReð #Ycs;nÞj and #o2

n � #o2
bZcjImð #Ycs;nÞj #o; so that #Zea;nE #Za;n:

The coupled eigenfrequency of the cavity, oc;n; can then be determined when the real part of the
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denominator of #Zea;n vanishes, that is, when the excitation frequency, #o; satisfy the equation

#o2 þ Zc Imð #Ycs;nÞ #o� #o2
n ¼ 0: ð15Þ

For full coupling condition, the acoustic pressure amplitudes inside the cavity decreases as Zc,
Reð #YcsÞ; xn; #on and/or #oincrease.

3.3. Combined panel- and cavity-controlled modes

Active sound transmission control under combined panel- and cavity-controlled modes will
occur at #o ¼ #on ¼ #om (i.e., on ¼ jom). Energy transmission is then from one dominant natural
structural mode of the flexible panel to one dominant natural acoustic mode of the cavity.
Suppose the dominating modes are the mth flexible panel mode and the nth acoustic cavity mode
of the cavity, the complex structural vibration velocity and the complex acoustic pressure modal
amplitudes can be written as

am;n ¼ Zc
#Zea;nð #Ra;m;n#tc þ #Cm;n

#Ys;m #gp;mÞ ð16Þ

and

bm;n ¼
Sf

Msosc

#Yes;mð #Rs;m;n#tc þ #gp;mÞ; ð17Þ

respectively, where

#Ra;m;n ¼ ½ #Cm;n
#Ys;mDf ;m Dq;n � and #Rs;m;n ¼ ½Df ;m �Zc

#Cm;n
#Za;nDq;n �:

Weakly coupled acoustic pressure and structural vibration velocity amplitudes can be found with
#Zea;nE #Za;n and #Yes;mE #Ys;m; where Zc and the mode shape coupling coefficient #Cm;n are small
enough to give 2zm #ombZcjReð #Zca;mÞj; #o2

m � #o2j2
bZcjImð #Zca;mÞj #oj; 2xn #onbZcjReð #Ycs;nÞj and

#o2
n � #o2

bZcjImð #Ycs;nÞj #o (Appendix A). The coupled eigenfrequencies of the flexible panel and the
cavity can be estimated by using Eqs. (13) and (15), respectively.

4. Total acoustic potential energy attenuation inside cavity

For orthogonal modal characteristic functions, the overall total acoustic potential energy, PE;
inside a cavity of volume V ; is defined as [18]

PE ¼
V

4rac2
aHa; ð18Þ

where a can be found by Eq. (3). One can notice immediately that for the present rectangular
enclosure, the total energy obtained by integrating the energy density (Eq. 6) over the volume V is
proportional to the PE given by Eq. (18). The attenuation of PE inside the cavity under active
control of sound transmission is determined by the difference of PE before and after activating
the control. High global control of enclosed sound field possibly exists for high attenuation of PE:
Also, PE attenuation is a good indicator for the dominance of quiet zones and amplification zones
[11]. In the present study, the performance of active sound transmission control is described by the
attenuation of PE under various combinations of the two dimensionless parameters Zc and j: One
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can immediately observe that these two parameters are not independent of each other. Details on
how to vary one of them with another fixed are given in Appendix B. Both Zc and j are
logarithmically distributed into 50 intervals in the range 0.01pZcp1 and 0.1pjp10; giving 2500
different combinations. The frequency concerned is up to 5oac: The calculations were done at
0:1oac intervals. The energy density error sensor is located at (0:7Lx1; 0:7Lx2; 0:9Lx3). Energy
density control is ineffective when the error sensors are located near to the nodal planes of the
total energy density field, though the nodal volume of the total energy density field is much less
that of the sound field [19]. Also this control algorithm is more effective when the separation
between the error sensor and the secondary acoustic source increases, so that the error sensor can
obtain the energy density in a relatively uniform and representative region. A detailed
investigation of the error sensor location can be found in Lau and Tang [11]. Similar to the
results of Lau and Tang [11], the energy density-based control can produce a performance much
closer to that under the potential energy control than the squared pressure control in the present
study. Therefore, the results obtained using the potential energy and squared pressure control
schemes are not presented.

4.1. Pure vibration control

Fig. 2 illustrates the PE attenuation maps under the energy density-based active control with
pure vibration control source at different values of Zc and j across the frequency range concerned.
These PE attenuation maps show a gradual pattern variation with the strength of the structural–
acoustic coupling. It can be observed that this control scheme can produce high sound attenuation
at frequencies below oac for jp1 regardless the strength of structural–acoustic coupling Zc: Also,
Zc basically has negligible effects on the PE attenuation at high frequency with j > 2; though

ARTICLE IN PRESS

Fig. 2. Maps of overall total acoustic potential energy attenuation under the action of a pure vibration control source

at fixed Zc: (a) Zc ¼ 0:01; (b) Zc ¼ 0:026; (c) Zc ¼ 0:089; (d) Zc ¼ 0:162; (e) Zc ¼ 0:298; (f) Zc ¼ 1:0: Error sensor at

(0:7Lx1; 0:7Lx2; 0:9Lx3); force actuator at (0:495Lx1; 0, 0:481Lx3).
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some of the localized attenuation at discrete frequencies are meshed out as Zc increases. Besides, it
is noticed that the spurious distribution of PE attenuation at o > oac and small j becomes more
uniform as Zc increases. High PE attenuation is usually found around frequencies of modal
overlapping (for instance, at 1:16oac; 2:31oac; 3:47oac and 4oac). One can find from Eq. (14) that
under the cavity-controlled mode, the value of an depends critically on the difference between the
excitation frequency and natural acoustic mode frequencies of the cavity on at weak structural–
acoustic coupling (small Zc). Large an will result when the excitation frequency is closed to on: As
Zc increases, such effect is reduced, resulting in a more uniform distribution of an over the
frequency range concerned.

One can again observe from Fig. 2 that all the maps can basically be divided into four zones. A
schematic for such division at small Zc is given in Fig. 3a and it can be shown that the zone
boundaries are related to the solutions of Eqs. (13) and (15). The nominally vertical dotted lines
are some examples of the lines of the coupled cavity eigenfrequencies oc;n; while the curved solid
lines are those for the coupled panel eigenfrequencies oc;m: The first zone, Zone I, refers to the
situation where the excitation frequency o is less than both oc;n¼1 and oc;m¼1: Very high PE
attenuation can be found in this region regardless of the values of Zc and j: Zone II is the region
where o is greater than both oc;n¼1 and oc;m¼1: Again, the PE attenuation in this region is not
affected by the strength of structural–acoustic coupling very much, though the attenuation map
gets a bit more uniform as Zc increases. Also, there are localized high attenuation points at
particular eigenfrequencies of the cavity or along the lines of the coupled panel eigenfrequencies.
PE attenuation is effective at some panel-controlled modes, a few cavity-controlled modes as well
as at the combined panel- and cavity-controlled modes. Zone III corresponds to the area where
oc;m¼1ooooc;n¼1 and significant PE attenuation can be found at the panel-controlled mode
frequencies. Zone IV refers to the region where oc;n¼1ooooc;m¼1 and the control is found to be
effective at the cavity-controlled mode frequencies only.

It can be observed that there are some singularities on the lines shown in Fig. 3a. They are the
results of the relatively stronger structural–acoustic mode shape coupling between the panel and
the enclosed space at those locations (large value of Cn;m in Appendix A). At larger n and m; such
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Fig. 3. Schematic diagram of control zones: (a) weak structural–acoustic coupling, Zc ¼ 0:01; (b) strong structural–

acoustic coupling, Zc ¼ 0:30: ——: line of coupled panel mode frequency; 
 
 
 
 
 
 : line of coupled cavity mode

frequency.

S.K. Lau, S.K. Tang / Journal of Sound and Vibration 266 (2003) 147–170 157



coupling becomes less easy and the lines become smooth (for instance, the line for #oc;m¼30 and that
for #oc;n¼30).

Fig. 3b shows that the division of the PE attenuation map is more complicated at higher value
of Zc: The lines of coupled panel eigenfrequencies become very rough for small m: Substantial
singularities appear at the frequencies of the cavity modes having nodal plane parallel to the
flexible panel when m ¼ 1: This is due to the large structural–acoustic mode shape modal coupling
factor Cn;m between the panel vibration and the cavity resonance. Also, the lines of the coupled
cavity eigenfrequencies (Eq. (15)) are significantly curved and some of them consist of two widely
separated portions (for example, the lines for #oc;n¼1 and #oc;n¼30). The four regions of PE
attenuation found at small Zc; except Zone I, can hardly be identified (Figs. 2e, f and 3b). It is due
to the more uniform distribution of an across the frequency range concerned, the chaotic
variations of the coupled-controlled mode frequency lines and the effect of the relatively large j
region in Zone IV which eventually make the boundary between Zones II and IV
indistinguishable at large Zc:

Two other points can be noticed from Fig. 3. First at large Zc; the lines for #oc;n¼2 appear closer
to the j axis than those for n ¼ 1: It is due to the much larger amplitude of the reactance of #Ycs;n¼2

than those for n ¼ 1 in the present example. Second, it is observed that the line for #oc;n¼15 in Fig.
3b consists of an initial straight vertical portion similar to the lines of coupled cavity
eigenfrequencies shown in Fig. 3a. In fact, such phenomenon appears whenever the value of n is
just higher than the one with a large structural–acoustic mode shape coupling with the m ¼ 1
panel mode and the structural–acoustic mode shape coupling of the nth acoustic mode is weak for
nearly all panel modes. There are many lines like this and the line for #oc;n¼15 in Fig. 3b is just an
example. The strong singularity along this line is due to the large value of C15;7 (large structural–
acoustic mode shape coupling). In general, all the singularities and discontinuities of the lines of
coupled mode frequencies are due to large structural–acoustic mode shape coupling between the
panel and the enclosed cavity.

Fig. 4 illustrates the effects of Zc and the excitation frequency on PE attenuation at fixed values
of j: It suggests that the PE attenuation does not depend much on the strength of the structural–
acoustic coupling for small or large j (Figs. 4a and f, respectively). Some effects of the coupling
are observed in the range 0:2ojo1; but their occurrence is usually restricted to the higher Zc side.
Fig. 4 re-iterates the effectiveness of the active control at low frequencies. It should be noticed that
strong structural–acoustic coupling (that is, large Zc) will amplify the importance of cavity and/or
panel damping effects in the sound transmission process. It can be observed from Eqs. (12) and
(14) that the increase in Zc at fixed cavity/panel damping ( #Zca;m and #Ycs;n; respectively) reduces the
values of bm and an; respectively. The effectiveness of the active control will then be reduced as the
sound transmission is already effectively controlled by passive means.

4.2. Pure acoustic control

In general, the application of a pure acoustic secondary source in the active control can produce
a more uniform PE attenuation over the range of j and frequency at small Zc as shown in Fig. 5a.
However, its performance within Zones I, III and IV is worse than that achieved under the pure
vibration control, but some improvements can be found at frequencies closed to the cavity
eigenfrequencies in Zone II. The four zones of control are less distinctive, especially Zones II and
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IV at high frequencies. As the strength of the structural–acoustic coupling increases, PE

amplification gradually appears at lower frequencies and at regions between Zones II and IV. The
magnitude of this amplification increases as Zc increases. The active control becomes ineffective in
Zone IV when Zc ¼ 1:

Similar to the case of pure vibration control source, the performance of the active control at
small or high j is again not really affected by Zc except when Zc is closed to unity (Figs. 6a and f).
One can observe from Fig. 6c that the pattern is rough at higher values of Zc when j is closed to
unity. This region corresponds to the interface between Zones II and IV in Figs. 5e and f. The
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Fig. 5. Maps of overall total acoustic potential energy attenuation under the action of a pure acoustic control source at

fixed Zc: Acoustic source at (Lx1; Lx2; Lx3). Other legends: same as those for Fig. 2.

Fig. 4. Maps of overall total acoustic potential energy attenuation under the action of a pure vibration control source

at fixed j: (a) j ¼ 0:1; (b) j ¼ 0:264; (c) j ¼ 0:886; (d) j ¼ 1:62; (e) j ¼ 2:976; (f) j ¼ 10: Error sensor at (0.7Lx1;
0:7Lx2; 0:9Lx3); force actuator at (0:495Lx1; 0, 0:481Lx3).
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pattern in this case is less organized than that in the pure vibration control case, but the localized
PE amplification at the frequency 2:17oac under the pure vibration case (Fig. 4c) is eliminated.
One can also find from Fig. 6 that the performance of the active control does not depend much on
j and Zc close to the high end of the frequency range.

In general, the performance of active sound transmission control using a pure acoustic
secondary control source is worse than that using the pure vibration control source, especially at
low frequencies. The acoustic source tends to increase the chance of having PE amplification in
the ranges of j and Zc studied.

4.3. Combined control sources

The combined vibration and acoustic control source system inherits only some of the
advantages from the individual control sources. This system enhances the PE attenuation at low
frequencies significantly (Zone I and some regions in Zone IV) as shown in Fig. 7. However,
considerable deterioration of PE attenuation can be found at j > 1 and #o > 1:5; which is a region
in Zone II, in the range of Zc studied though some spots of high PE attenuation can be found
occasionally. Also, some PE amplification can be found in Zone III though the control is, in
general, enhanced by the combined secondary source system in this control zone. These
phenomena are due to the effects of the secondary acoustic source.

The appearance of spots of PE attenuation in Zones II and III suggests that this active control
is effective at some panel- and cavity-controlled modes. The improvement in the low-frequency
range achieved by this combined source control appears to degrade as the strength of the
structural–acoustic coupling increases. At small or large j; the variation of PE attenuation with Zc

and frequency shows a pattern similar to that obtained under pure vibration control, except that
wider attenuation regions (Fig. 8). However, the pattern becomes much less organized when j is
closed to unity as shown in Fig. 8c. One can also observed that the improvement of performance
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Fig. 6. Maps of overall total acoustic potential energy attenuation under the action of a pure acoustic control source at

fixed j: Acoustic source at (Lx1; Lx2; Lx3). Other legends: same as those for Fig. 4.
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at low frequencies by the present combined source control is not significant when j > 1: However,
the range j > 1 is practically insignificant as it is seldom to have oac > osc in ordinary buildings.

5. Conclusions

The effects of structural–acoustic coupling on the performance of energy density-based active
sound transmission control in a slightly damped rectangular enclosed space is investigated
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Fig. 7. Maps of overall total acoustic potential energy attenuation under the action of combined acoustic and vibration

control sources at fixed Zc: Acoustic source at (Lx1; Lx2; Lx3); force actuator at (0:495Lx1; 0, 0:481Lx3). Other legends:

same as those for Fig. 2.

Fig. 8. Maps of overall total acoustic potential energy attenuation under the action of combined acoustic and vibration

control sources at fixed j: Acoustic source at (Lx1; Lx2; Lx3); force actuator at (0:495Lx1; 0, 0:481Lx3). Other legends:

same as those for Fig. 4.
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numerically. The performance of energy density control algorithm is described in terms of the
overall total acoustic potential energy attenuation resulted from the active control. The frequency
range in the present study extends to five times the first eigenfrequency of the cavity. Effects of
two dimensionless parameters, namely the strength of structural–acoustic coupling and the ratio
between the first eigenfrequencies of the cavity and the panel, are studied. A compact matrix
formulation of the steady state optimized secondary source strength for a fully structural–acoustic
coupled system under energy density control is derived based on the impedance-mobility
approach. Formulae for the coupled panel and cavity eigenfrequencies are derived. The effects of
panel impedance and cavity impedance, which are important for passive sound transmission
control, are also examined.

The results show that there are four distinct control zones when the structural–acoustic
coupling is weak. These regions are separated by the line of first coupled panel eigenfrequency and
the line of first coupled cavity eigenfrequency. In the first zone where the excitation frequency is
below both the first coupled panel and cavity eigenfrequencies, system with a pure vibration
secondary source is very effective in attenuating the overall total acoustic potential energy inside
the cavity. The second zone is the region where the excitation frequency is above both the two
mentioned coupled eigenfrequencies. Pure vibration source is effective for attenuating some
structural modes and a few acoustic modes in this zone but the performance of the active control
does not depend much on the strength of the structural–acoustic coupling. When the excitation
frequency is between the two mentioned coupled eigenfrequencies, the active control is effective at
the panel-controlled modes if the first coupled panel eigenfrequency is lower than the first coupled
cavity eigenfrequency. The control becomes effective at the cavity-controlled mode frequencies on
the contrary. As the strength of the structural–acoustic coupling increases, these four zones,
except those with frequency less than the first coupled cavity eigenfrequency, become less
distinguishable.

Active control system with a pure acoustic secondary source produces most uniform
performance than that with a pure vibration source over the range of frequency studied.
However, the sound attenuation produced by this method is much worse than the vibration
source case, especially at low frequencies regardless the strength of the structural–acoustic
coupling. Combined vibration and acoustic control source system improves the performance of
the active control significantly at low frequency, but tends to deteriorate the performance at high
frequencies especially when the excitation frequency is above the first coupled panel
eigenfrequency. It is probably due to the acoustic secondary source in the cavity.

In general, the effectiveness of the energy density-based active sound transmission control
decreases as the strength of the structural–acoustic coupling increases, due to the increasing
damping on the acoustic field inside the cavity and on the vibration of the flexible panel. It also
decreases as the ratio between the first eigenfrequencies of the cavity and the flexible panel
increases.
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Appendix A. Mode shape coupling coefficient and modal decomposition of external force matrix

Sound pressures inside a cavity and structural vibration velocity on the flexible panel can be
expressed as Eqs. (1) and (2), respectively, where the complex modal amplitude vectors, a and b,
are given by Eqs. (3) and (4), respectively. They can also be described by the summation of N
acoustic and M structural modes, respectively. The acoustic pressure, p; at any point x inside
the cavity and the structural vibration velocity, us; at any point y on the flexible panel can be
written as

pðx;oÞ ¼
XN

n¼1

cnðxÞanðoÞ ¼ WHa ðA:1Þ

and

usðy;oÞ ¼
XM
m¼1

fmðyÞbmðoÞ ¼ UHb: ðA:2Þ

For Q number of acoustic source, the complex amplitude of the nth acoustic mode under
structural and acoustic excitation is given by [23]

anðoÞ ¼ Za;n

XQ

q¼1

Z
V

cnðxÞwaðxqÞ dV 
 qc;q þ
Z

Sf

cnðxÞusðy;oÞ dSf

 !
; ðA:3Þ

where waðxqÞ is the acoustic source strength distribution function at xq inside the cavity, which is
normalized by qc;q: For a point acoustic source, waðxqÞ ¼ dðxqÞ: The uncoupled acoustic modal
impedance, Za;n; is give by

Za;n ¼
rac

V

jo
o2

n � o2 þ 2jxnono

� �
: ðA:4Þ

Substituting Eq. (A.2) into Eq. (A.3) gives

anðoÞ ¼ Za;n

XQ

q¼1

Dqðn; qÞ 
 qc;q þ
XM
m¼1

Cn;m 
 bm

 !
; ðA:5Þ

where

Dqðn; qÞ ¼
Z

V

cnðxÞwaðxqÞ dV ; ðA:6Þ

Cn,m represents the geometric coupling relationship between the uncoupled eigenfunctions of the
acoustic modal pressure distribution and the structural modal velocity distribution on the surface
of the vibration panel, Sf ; and is given by

Cn;m ¼
Z

Sf

cnðxÞfmðyÞ dSf ; ðA:7Þ
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where

V ¼
Z

V

c2
nðxÞ dV and Sf ¼

Z
Sf

f2
mðyÞ dSf ; ðA:8;A:9Þ

respectively, due to the orthogonal properties of the acoustic and structural mode functions. Thus,
the modal acoustic pressure vector, a, can be expressed as

a ¼ ZaðDqqc þ qsÞ; ðA:10Þ

where qsð¼ CbÞ is the modal acoustic source strength vector due to vibration of the structure,
which acts as a set of acoustic sources on the flexible panel. Dq is the N � Q matrix and denotes
the couplings between N number of acoustic modes and Q number of acoustic source locations. C
represents the structural–acoustic mode shape coupling relationship between the uncoupled
structural and acoustic modes over the surface of the flexible panel. The (n;m) elements of C is
given by Eq. (A.7). Za is an N � N diagonal matrix defined as the uncoupled acoustic modal
impedance matrix. The (n; n) element of Za can be determined by Eq. (A.4).

Similarly, the complex vibration amplitude of the mth structural mode of the flexible panel in
Fig. 1 for an isotropic thin plate due to F number of vibration sources and exterior pressure
fluctuation on the panel can be expressed as [23]

bmðoÞ ¼ Ys;m

PF
f¼1

R
Sf
fmðyÞwf ðyf ;oÞ dSf 
 fc;f

þ
R

Sf
fmðyÞpiðy;oÞ dSf

�
R

Sf
fmðyÞpðx;oÞ dSf

0
BB@

1
CCA; ðA:11Þ

where wf ðyf Þ is the vibration source strength distribution function at yf on the flexible panel,
which is normalized by fc;f : For a point force actuator, wf ðyf Þ ¼ dðyf Þ: piðy;oÞ is the exterior
acoustic pressure distributions on the surface of the panel. Since the directions of the external
force and acoustic pressure are defined to be opposite, there is a minus sign in front of the third
integral term in the bracket. The uncoupled structural modal mobility, Ys;m; can be expressed as

Ys;m ¼
1

rshSf

jo
o2

m � o2 þ 2jzmomo

� �
: ðA:12Þ

Substituting Eq. (A.1) into Eq. (A.11) gives

bmðoÞ ¼ Ys;mðoÞ
XF

f¼1

Df ;mfc;f þ gp;m �
XN

n¼1

CT
n;m 
 anðoÞ

 !
; ðA:13Þ

where

Df ;m ¼
Z

V

fmðyÞwf ðyf ;oÞ dV ; ðA:14Þ

and

gp ¼
Z

Sf

fmðyÞpiðy;oÞ dSf : ðA:16Þ
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Thus the modal vibration amplitude vector, b, can be expressed as

b ¼ YsðDf fc þ gp � gaÞ; ðA:17Þ

ga ¼ C
Ta is the modal force vector acting on the acoustic system, which is the reaction force due

to the acoustic pressure fluctuation. Df is the M � F matrix and denotes the couplings between M

number of structural modes and F number of vibration source locations. Ys is the M � M
diagonal matrix defined as the uncoupled structural modal-mobility matrix. The (m,m) element of
Ys can be determined by Eq. (A.12). The M length vector gp is the generalized modal force vector
due to the external force distribution piðy;oÞ: Combining Eqs. (A.10) and (A.17), the acoustic and
structural modal amplitude vectors a and b can be expressed in terms of the modal excitation
vectors Dqqc, Dffc and gp:

a ¼ ðIþ ZaCYsC
TÞ�1ZaðCYsDf fc þDqqc þ CYsgpÞ; ðA:18Þ

b ¼ ðIþ YsC
TZaCÞ

�1YsðDf fc � C
TZaDqqc þ gpÞ; ðA:19Þ

respectively. Eqs. (A.18) and (A.19) can be re-written as Eqs. (3) and (4), respectively. More
details of the derivation can be found in Ref. [14].

In present study of sound transmission problem, an incident plane wave is considered as the
primary external source and it excites the structural vibration of the flexible panel. The incident
plane wave on the flexible panel outside the cavity at time, t; can be expressed as

piðr; tÞ ¼ Pie
joðt�r=cÞ; ðA:20Þ

where r and Pi are the location vector of the observation point and the complex amplitude of the
incident plane wave, respectively.

The harmonic incident plane wave on a simply supported plane is considered. Assuming weak
coupling between the flexible panel and the external sound field, the mth structural mode of
external modal force matrix, gp, can be written as, according to Roussos [17]

gp;m ¼ 4 Sf PiIm1Im2; ðA:21Þ

where Im1 and Im2 are resulted from the geometric coupling between the external plane wave and
the mth structural mode of flexible plane of dimension Ly1 � Ly2; and

Im1 ¼

j

2
sgnðsin y cos aÞ for m1p ¼ 7

oLy1

c
sin y cos a;

m1p½1� ð�1Þm1e�jðoLy1=cÞsin y cos a�

½m1p�2 � ½ðoLy1=cÞsin y cos a�2
otherwise;

8>><
>>: ðA:22Þ

and

Im2 ¼

j

2
sgnðsin y sin aÞ for m2p ¼ 7

oLy2

c
sin y sin a;

m2p½1� ð�1Þm2e�jðoLy2=cÞsin y sin a�

½m2p�2 � ½ðoLy2=cÞsin y sin a�2
otherwise:

8>><
>>: ðA:23Þ
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Appendix B. Control of Zc and j

The two dimensionless parameters, Zc and j; have significant effects on the performance of the
active sound transmission control. However, they are not independent of each other. The Zc and j
can be expressed, for the case of rectangular cavity (Lx1 � Lx2 � Lx3) with a flexible panel
(Ly1 � Ly2), as

Zc ¼
cffiffiffiffi
D

p S2
f

L2
y1 þ L2

y2

 !
1ffiffiffiffiffiffiffi
rsh

p
 !

raSf

Lx2Lx3

� �
¼

cffiffiffiffi
D

p L2
x1L2

x3

L2
x1 þ L2

x3

Lx1ffiffiffiffiffiffiffi
rsh

p ra

Lx2p3
; ðB:1Þ

and

j ¼
cffiffiffiffi
D

p S2
f

L2
y1 þ L2

y2

 !
ð
ffiffiffiffiffiffiffi
rsh

p
Þ

1

Lx1

� �
¼

cffiffiffiffi
D

p L2
x1L2

x3

L2
x1 þ L2

x3

ffiffiffiffiffiffiffi
rsh

p
Lx1

1

p
; ðB:2Þ

where h is the thickness of the flexible panel since Ly1 ¼ Lx1; Ly2 ¼ Lx3 and Lx1 > Lx2:Lx1 is the
maximum perpendicular separation between two parallel walls inside the rectangular cavity. The
bending stiffness, D; is given by

D ¼
Eh3

12ð1� n2Þ
;

where E and n are Young’s modulus and the Poisson ratio of the flexible panel. Since the density
of media inside the cavity, ra; and the speed of sound is practically fixed. In the present study, the
ratios Lx2=Lx1ð¼ e=pÞ and Lx3=Lx1ð¼ 1=pÞ are kept constant. Then

Zc

j
¼

Lx1

rsh

ra

ep
:

One should note that Lx1 is allowed to vary and such variation does not affect the results
presented in our paper as all length scales in our study are normalized by Lx1: For this kind of
cavity, since D is proportional to h3=2; one finds

Zc ¼
L2

x1K1

h2
ffiffiffiffiffiffiffiffiffi
D0rs

p and j ¼ K2

Lx1

ffiffiffiffiffi
rs

p
h
ffiffiffiffiffi
D0

p ; ðB:3Þ

where D0 ¼ E=12ð1� n2Þ; K1 and K2 are constants defined by the aspect ratios of the cavity.
The criterion for cavity i and j of the same aspect ratios to have the same j is

Lx1;i

hi

ffiffiffiffiffiffi
rs;i

D0
i

r
¼

Lx1;j

hj

ffiffiffiffiffiffiffi
rs;j

D0
j

s
; ðB:4Þ

then

Zc;j ¼ Zc;i

rs;i

rs;j

 !3=2
ffiffiffiffiffiffiffi
D0

j

D0
i

:

s
ðB:5Þ

In general at a fixed j; one can reduce Zc by choosing wall material of high density but low
Young’s modulus. One can also increase Zc by choosing wall material of low density but high
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Young’s modulus. The criterion for cavity i and j of the same aspect ratios to have the same Zc is

Lx1;i

hi

¼
Lx1;j

hj

D0
i

D0
j

rs;i

rs;j

 !1=4

; ðB:6Þ

then

ji ¼ jj

rs;i

rs;j

 !3=4
D0

j

D0
i

� �1=4

: ðB:7Þ

Figs. B1a and b illustrate the ranges of Zc and j pairs for common engineering materials whose
properties are readily found in handbooks and international standards [20–22]. For all the cases
presented, Lx1=h > 100: Though a material cannot be found to fill up region A in Fig. B1a at the
time being, the corresponding results are discussed in the present paper for completeness and a
believe that such material may currently exist or may be synthesized in the future.

Appendix C. Nomenclature

A structural–acoustic coupling transfer function, ðIþ ZaYcsÞ
�1 or ðIþ Zc

#Za
#YcsÞ

�1

B acoustic–structural coupling transfer function, ðIþ YsZcaÞ
�1 or ðIþ Zc

#Ys
#ZcaÞ

�1
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Fig. B1. Regions of j and Zc for common engineering materials. (a) ———: Boundary for glass; ——: boundary for

engineering composites; (b) ———: boundary for engineering alloys; ——: boundary for wood.
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an complex acoustic pressure modal amplitude of nth acoustic mode of the enclosure
a complex acoustic pressure modal amplitude vector, (N � 1)
bm complex structural vibration velocity modal amplitude of mth structural mode of the

flexible panel
b complex structural vibration velocity modal amplitude vector, (M � 1)
c speed of sound
C matrix of structural–acoustic mode shape coupling coefficient, (N � M), #C ¼ C=Sf

Df couplings between control force actuator locations and structural modes
Dq couplings between acoustic control source locations and acoustic modes
fc vector of vibration control force strengths, ½fc;1 fc;2 y�T

gp external modal force matrix, (M � 1), #gp ¼ gp=Sf

I unit matrix
j

ffiffiffiffiffiffiffi
�1

p
k wave number
Ka acoustic bulk stiffness, rac2S2

f =V

Ms mass of the flexible panel
M;N number of structural and acoustic modes respectively
pðx;oÞ acoustic pressure at x inside the cavity
p acoustic pressure vector representing acoustic pressures at discrete points inside the

cavity
qc vector of acoustic control source strengths, ½qc;1 qc;2 y�T

Ra couplings between the control source locations and acoustic modes, ½CYsDf Dq �: #Ra ¼
½ #C #YsDf Dq �

Rs couplings between the control source locations and structural modes, [Df �CTZaDq ].
#Rs ¼ ½Df �Zc

#C
T #ZaDq �

Sf area of flexible panel
tc control source strengths vector, ½fTc qTc �

T: #tc ¼ ½fTc =Sf q
T
c ðoscMs=S2

f Þ�
T

uaðx;oÞ acoustic particle velocity at x inside the cavity at frequency o
usðy;oÞ structural vibration velocity at y on the flexible panel
us structural vibration velocity vector representing structural vibration velocity at discrete

points on the flexible panel
V volume of the cavity
x position vector in the acoustic field inside the cavity, x ¼ ðx1;x2; x3Þ
y position vector on the flexible panel
Ys uncoupled structural modal-mobility matrix, (M � M) diagonal, #Ys ¼ ðoscMsÞYs

Ycs coupled structural modal-mobility matrix, Ycs=CYsC
T, #Ycs ¼ #C #Ys

#C
T

Za uncoupled acoustic modal impedance matrix, (N�N) diagonal, #Za ¼ ZaoacV=ðrac2Þ
Zca coupled acoustic modal impedance matrix, CT

ZaC. #Zca ¼ #C
T #Za

#C

a azimuth angle between the projected plane of the line normal to the external plane wave
on the panel and the x1-axis

y incidence angle between the lines normal to the external plane wave and the flexible
panel

ra density of media inside the cavity
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rs density of flexible panel
o driving frequency. #o ¼ o=oac

om mth eigenfrequency of the flexible panel. #om ¼ om=osc

on nth eigenfrequency of the acoustic cavity. #on ¼ on=oac

oac first eigenfrequency of acoustic cavity
osc first eigenfrequency of flexible panel
oc;m mth coupled panel eigenfrequency. #oc;m ¼ oc;m=osc

oc;n nth coupled cavity eigenfrequency. #oc;n ¼ oc;n=oac

cnðxÞ eigenfunction of the acoustic modal pressure distribution inside cavity
W acoustic mode shape matrix (N � d) for d number of specified points inside cavity
fmðyÞ eigenfunction of the structural modal velocity distribution on the flexible panel
U structural mode shape matrix (M � d) for d number of specified points on the flexible

panel
xn damping coefficient of nth acoustic mode
zm damping coefficient of mth structural mode

Superscript

^ normalized variable
T transpose
H hermitian transpose

Subscript
c coupled eigenfrequency
m mth structural mode of the flexible panel
n nth acoustic mode of the cavity
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