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Abstract

The steady state response of an elastic layered plate (laminate) which is subjected to a moving laser
source illumination is studied. The response of the laminate is obtained using the transfer matrix approach.
The application of the photo-thermal source (laser) to the upper surface of the laminate is formulated as
equivalent stresses applied at the illuminated boundary. The equivalent stresses are derived with the use of
the causality principle. It is shown that the generated displacement field is sensitive to the variations of the
laminate inner structure and also to the variations of the elastic properties of a bonded elastic half-space.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The past two decades have witnessed an intensive research in laser acoustics. This is an
interdisciplinary area which was originated in collaboration between researchers from acoustics,
quantum electronics and integral optics. By bringing lasers into acoustics and non-destructive
material evaluation (NDE), many useful techniques have been designed, e.g., new sound
transducers and receivers and optical data processing [1]. In particular, pulsed laser sources may
generate wide-bandwidth acoustic signals, thus providing a new method for non-destructive, non-
contact material evaluation [2,3].
Many papers are devoted to the analysis of laser-generated ultrasound in a half-space or in thin

plates [4–6]. The majority of the papers are related to pulse propagation, which arises due to a
short laser pulse applied at the same area of a solid. In the present paper, an acoustic field is
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considered which is generated by a laser beam which uniformly scans over the surface of a
laminated solid. The power intensity of the laser beam is assumed to be harmonically modulated.
The ultrasound generation by a moving photothermal source in a fluid has previously been

addressed, see for example an extended review in Ref. [7], or in Ref. [8]. However, for solids
(especially for laminated solids) this problem has not been studied. The major advantage of a
moving photothermal source is that the characteristics of the acoustic field generated by a moving
source can be adjusted either by changing the modulation frequency of the laser beam or by
changing the velocity of the laser spot motion over the specimen surface. The most effective
adjustment of the acoustic field characteristics can be achieved by choosing the proper law of
motion of the photothermal source, since the directivity and the frequency spectrum of the
radiation are defined by the law of source motion.
The response of the laminated solid in the Fourier domain is obtained using the transfer matrix

approach [9,10]. This approach with some modifications depending on the situation appears to be
a standard procedure for such problems.

2. Problem statement

Consider a multi-layered elastic solid, which consists of n planar homogeneous and isotropic
elastic layers, with thickness hj ð j ¼ 1;y; nÞ: The upper surface of the laminate is subjected to
laser pulse illumination, as depicted in Fig. 1.
The origin of the co-ordinate system is placed at the lower boundary of the bottom layer and

the total thickness of the entire laminate is denoted by H: As will be shown later, the laser or
photothermal source may be represented as an equivalent elastic boundary source consisting of
distributed normal and shear loading boundary conditions. Accordingly, only a purely
mechanical load will initially be considered (no thermo-effects).
Consider an elastic layer with number l: In Cartesian co-ordinates and in the absence of body

forces, the displacement vector of the elastic media, u; can be represented in terms of three scalar
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Fig. 1. Model and reference system.
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potentials [11],

u ¼ =fþ =� c1ez þ =� =� c2ez; ð1Þ

where ez is the unit vector in the direction of z-axis, and fðx; y; z; tÞ; c1ðx; y; z; tÞ; c2ðx; y; z; tÞ are
scalar potentials. Then, the equations of elasticity reduce to the following equations for the
potentials:

=2f�
1

a2
@2f
@t2

¼ 0; =2ce �
1

b2
@2ce

@t2
¼ 0; e ¼ 1; 2; ð2Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
; b ¼

ffiffiffiffiffiffiffiffi
m=r

p
are the velocities of the compressional and shear waves

written in terms of the Lam!e constants l and m and the mass density r: Using Eq. (1) and the
following stress–displacement relations

szz ¼ 2m
@uz

@z
þ lr:u; txz ¼ m

@ux

@z
þ
@uz

@x

� �
; tyz ¼ m

@uy

@z
þ

@uz

@y

� �
;

the stresses can be expressed in terms of the potentials as follows:

szz ¼
l
a2

@2f
@t2

þ 2m
@2f
@z2

þ
@3c2

@z3

� �
� 2r

@3c2

@z@t2
;

txz ¼ 2m
@2f
@z@x

þ
@3c2

@x@z2

� �
þ m

@2c1

@z@y
� r

@3c2

@x@t2
;

tyz ¼ 2m
@2f
@z@y

þ
@3c2

@y@z2

� �
� m

@2c1

@z@x
� r

@3c2

@y@t2
: ð3Þ

In Eqs. (2) and (3), a; b; m; l and r refer to the particular layer. Inside the laminate the stress
tensor and displacement vector have to be continuous across the boundaries of the layers, so that
the following relations at each layer-to-layer interface are valid:

uð jÞðx; y; z ¼ zj�1; tÞ ¼ uð j�1Þðx; y; z ¼ zj�1; tÞ; j ¼ 1;y; n;

sð jÞ
zz ¼ sð j�1Þ

zz ; tð jÞ
xz ¼ tð j�1Þ

xz ; tð jÞ
yz ¼ tð j�1Þ

yz : ð4Þ

Application of a Fourier transform over the time and plane spatial co-ordinates

*Fðk1; k2; z;oÞ ¼
Z Z Z

Fðx; y; z; tÞeiðot�k1x�k2yÞ dx dy dt; ð5Þ

to Eqs. (2) results in a set of ordinary differential equations with respect to the z-co-ordinate:

@2 *f
@z2

þ a2 *f ¼ 0;
@2 *ce

@z2
þ b2 *ce ¼ 0; e ¼ 1; 2 ð6Þ

with corresponding general solutions in terms of up- and down-going waves inside the layer

*f ¼ A1e
iaðz�zl�1Þ þ A2e

�iaðz�zl�1Þ; zl�1pzpzl ;

*c1 ¼ B1e
ibðz�zl�1Þ þ B2e

�ibðz�zl�1Þ; *c2 ¼ C1e
ibðz�zl�1Þ þ C2e

�ibðz�zl�1Þ; ð7Þ
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where a2 ¼ o2=a2 � k2; b2 ¼ o2=b2 � k2; k2 ¼ k2
1 þ k2

2: The stresses given by Eqs. (3) in a Fourier
domain can be written as follows:

*szz ¼ �
lo2

a2
*fþ 2m

@2 *f
@z2

þ
@3 *c2

@z3

 !
þ 2ro2 @

*c2

@z
;

*txz ¼ 2ik1m
@ *f
@z

þ
@2 *c2

@z2

 !
þ ik2m

@ *c1

@z
þ iro2k1

*c2;

*tyz ¼ 2ik2m
@ *f
@z

þ
@2 *c2

@z2

 !
� ik1m

@ *c1

@z
þ iro2k2

*c2: ð8Þ

Now, the substitution of solutions (7) into Eqs. (8), results in a matrix relation written for the
Fourier transforms of the displacement vector and the stresses evaluated at the top of the layer
z ¼ zl ðzl � zl�1 ¼ hlÞ

*uðlÞ
x ðhlÞ

*uðlÞ
y ðhlÞ

*uðlÞ
z ðhlÞ

*sðlÞzz ðhlÞ

*tðlÞxzðhlÞ

*tðlÞyzðhlÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

g11ðhlÞ y g16ðhlÞ

^ ^ ^

g61ðhlÞ y g66ðhlÞ

0
B@

1
CA

D1

D2

D3

D4

D5

D6

0
BBBBBBBBB@

1
CCCCCCCCCA
;

or in short notation

fVðlÞðhlÞg ¼ ½gðhlÞ�fDg; ð9Þ

with fVðlÞðhlÞg the state vector, D1;2 ¼ A17A2; D3;4 ¼ C17C2; D5;6 ¼ B17B2; respectively. The
matrix ½gðhlÞ� is given in Appendix A. At the bottom of the layer z ¼ zl�1; another relation, similar
to Eq. (9), can be obtained. At the same time, using the boundary conditions (4), one can deduce
that the same relation holds at the upper surface of layer ðl � 1Þ

fVðlÞð0Þg ¼ ½gð0Þ�fDg with fVðl�1Þðhl�1Þg ¼ fVðlÞð0Þg: ð10Þ

Substitution of the solution of system (10) with respect to fDg into Eq. (9) results in the matrix
which connects *uðlÞ

x ;y; *tðlÞyz with *uðl�1Þ
x ;y; *tðl�1Þ

yz throughout the layer with number l

fVðlÞg ¼ ½sðlÞ�fVðl�1Þg; ð11Þ

where

½sðlÞ� ¼ ½gðhlÞ�½gð0Þ��1;

the elements of matrix ½sðlÞ� being given in Appendix A.
Next, the index l in Eq. (11) is set equal to n: Successive application of Eq. (11) in ascending

order then leads to a relation which maps the state vector (which contains the displacement and
the stresses) from the lower surface of the laminate to the top surface

fVðnÞg ¼ ½S�fVð0Þg; ð12Þ
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where S is the total transfer matrix

½S� ¼ ½sðnÞ�½sðn�1Þ�y½sð1Þ�:

It should be noted here that the transfer matrix method, as indicated by some authors [12], can
be prone to numerical instability especially in the case of a large number of layers. This problem,
which is clearly due to finite precision of computations, can effectively be resolved using numerical
libraries with arbitrary precision (such as the CLN library).
The transfer matrix will now be verified for two test cases. For the first test case an aluminum

layer is considered which is stress-free at the top and which is in welded contact with an
aluminum half-space (material properties are given in Appendix B). This implies that at the top of
the layer

*sð1Þzz ¼ *tð1Þxz ¼ *tð1Þyz ¼ 0 ð13Þ

and that at the bottom the displacement and stresses have to be continuous, so that the state
vector fVð0Þg is defined as

fVð0Þg ¼ ½H�fA1;A2;A3g
T; ð14Þ

where matrix ½H� describes the half-space response (the matrix is elaborated in Appendix C).
Substitution of Eqs. (13) and (14) into system (12) with subsequent rearrangement of the terms
together with the condition of non-zero solutions results in an algebraic system with respect to
A1;A2;A3: The determinant of this system yields an implicit relation Dðo; kÞ ¼ 0 for the
determination of ðo; kÞ-pairs for the free waves propagating in the structure. In the present case, it
is known that a free-wave solution exists in the form of surface or Rayleigh waves, which are non-
dispersive, see the straight (dashed) line in Fig. 2. It is important to note that the graphs in Fig. 2
(and in the subsequent figures) plotted in the dimensionless co-ordinates: frequency O ¼ o=on

and wave vector K ¼ k=kn; where on ¼ c0=H0; k
*
¼ 1=H0 and c0 ¼ 1000 m=s; H0 ¼ 10�4 m are

the scaling velocity and thickness, respectively.
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Fig. 2. Dispersion relations for the lowest modes in the aluminum layer and for Rayleigh waves in the aluminum half-

space (dashed line).

A. Kononov, R. de Borst / Journal of Sound and Vibration 266 (2003) 171–187 175



For the second case, an aluminum layer in a vacuum is considered, i.e., the boundaries of the
layer are stress-free. So, according to system (12)

s11 *u
ð0Þ
x þ s12 *u

ð0Þ
y þ s13 *u

ð0Þ
z ¼ *uð1Þx ;

s21 *u
ð0Þ
x þ s22 *u

ð0Þ
y þ s23 *u

ð0Þ
z ¼ *uð1Þy ;

s31 *u
ð0Þ
x þ s32 *u

ð0Þ
y þ s33 *u

ð0Þ
z ¼ *uð1Þz ;

s41 *u
ð0Þ
x þ s42 *u

ð0Þ
y þ s43 *u

ð0Þ
z ¼ 0;

s51 *u
ð0Þ
x þ s52 *u

ð0Þ
y þ s53 *u

ð0Þ
z ¼ 0;

s61 *u
ð0Þ
x þ s62 *u

ð0Þ
y þ s63 *u

ð0Þ
z ¼ 0: ð15Þ

As in the previous example, the determinant of the last three equations results in an implicit
dispersion relation for the wave modes propagating in the layer. Moreover, using the first three
equations one can obtain the separate dispersion relations for the symmetric and antisymmetric
modes. In doing so, it was assumed that a plane wave propagates along the x-co-ordinate, so that
*uy ¼ 0: Further, for the symmetric modes one may set that *uð1Þx ¼ *uð0Þx ; *uð1Þ

z ¼ � *uð0Þ
z and for

asymmetric modes *uð1Þx ¼ � *uð0Þ
x ; *uð1Þz ¼ *uð0Þz ; respectively. Fig. 2 represents the results of the

numerical elaboration of the dispersion relation (only the lowest modest are shown).

3. Solution of the thermo-elastic problem

Now turn to the problem of determining the equivalent elastic boundary conditions when the
photo-thermal source is applied. Consider an isotropic elastic half-space with zo0: A laser beam
incidents normally on the stress-free surface of the half-space. Further, it is assumed that the
absorbed laser energy density is smaller than the specific heat of vaporization of the half-space
material, and the thermal mechanism of sound generation is considered. The heat source is
generated in the solid due to adsorbtion of the energy of the laser beam. Within the frame of the
theory of thermoelastic stresses, the problem can be stated as follows [13]:

=2f�
1

a2

@2f
@t2

¼ my; =2ce �
1

b2

@2ce

@t2
¼ 0; e ¼ 1; 2;

=2y�
1

g
@y
@t

¼ �
1

k
Q; Q ¼ Q0x ezxf ðr; tÞ; ð16Þ

where the half-space surface at z ¼ 0 is stress-free and the heat flux across the solid surface is
neglected:

szz ¼ txz ¼ tyz ¼ 0;
@y
@z
ðr; z ¼ 0; tÞ ¼ 0; ð17Þ

where m ¼ Zðlþ 2m=3Þ=ðlþ 2mÞ ¼ Zð3� 4b2=a2Þ=3 and Z is the volumetric thermal expansion
coefficient, r is the density, cE is the specific heat constant at constant strain, k is the thermal
conductivity, g ¼ k=ðrcEÞ is the thermal diffusivity, y ¼ T � T0; T0 is the reference temperature, Q
describes the power absorbed per unit volume, x is the constant which is inversely proportional to
the so-called skin thickness, f ðr; tÞ defines the transverse and temporal distribution of the power
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density in the laser beam. In the thermoelastic case the stresses in terms of the displacement
components are defined as follows:

syzz ¼ 2 m
@uz

@z
þ ðl=:u� ðlþ 2mÞmyÞ;

tyxz ¼ m
@ux

@z
þ

@uz

@x

� �
; tyyz ¼ m

@uy

@z
þ

@uz

@y

� �
:

These expression can be rewritten in terms of scalar potentials f; c1; c2:

syzz ¼ r
@2f
@t2

� 2
@3c2

@z@t2

� �
� 2m

@2f
@x2

þ
@2f
@y2

�
@3c2

@z3

� �
;

tyxz ¼ 2m
@2f
@z@x

þ
@3c2

@x@z2

� �
þ m

@2c1

@z@y
� r

@3c2

@x@t2
;

tyyz ¼ 2m
@2f
@z@y

þ
@3c2

@y@z2

� �
� m

@2c1

@z@x
� r

@3c2

@y@t2
; ð18Þ

where the temperature y has been eliminated from szz using the first equation of Eqs. (16) for the
potential f: In the Fourier domain (after application of Eq. (5)), Eqs. (16) and (17) yield

@2 *f
@z2

þ a2 *f ¼ m *y;
@2 *ce

@z2
þ b2 *ce ¼ 0; e ¼ 1; 2; ð19Þ

@2 *y
@z2

� w2 *y ¼ �
Q0xezx

k
*fðk1; k2;oÞ;

@*y
@z
ðk1; k2; z ¼ 0;oÞ ¼ 0; ð20Þ

where w2 ¼ k2 � io=g: The solution of Eqs. (20) is given by

*y ¼ �K0 exz �
x
w
ewz

� �
with K0 ¼

Q0x *fðk1; k2;oÞ

kðx2 � w2Þ
:

Accordingly, the solutions of Eqs. (19) read

*f ¼ �
mK0

ðx2 þ a2Þ
exz þ

mxK0

wðw2 þ a2Þ
ewz þ Aðk1; k2;oÞ e�iaz;

*c1 ¼ Bðk1; k2;oÞ e�ibz; *c2 ¼ Cðk1; k2;oÞ e�ibz; ð21Þ

where the branches of radicals are fixed as follows RðwÞ > 0; IðaÞ > 0; IðbÞ > 0: Substitution of
these expressions into the Fourier-transformed stress conditions at the boundary z ¼ 0 results in a
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linear algebraic system with respect to the unknowns A; B; C:

� mðb2 � k2ÞA � 2 i m bk2C þ rmK0o2 1

ða2 þ x2Þ
�

x
wða2 þ w2Þ

� �

� 2mmK0
k2
1

ða2 þ x2Þ
�

xk2
1

wða2 þ w2Þ
þ

k2
2

ða2 þ x2Þ
�

xk2
2

wða2 þ w2Þ

� �
¼ 0;

2mk1aA þ mbk2B � imk1ðb
2 � k2ÞC þ 2mmK0x

ik1

ða2 þ w2Þ
�

ik1

ða2 þ x2Þ

� �
¼ 0;

2mk2aA � mbk1B � imk2ðb
2 � k2ÞC þ 2mmK0x

ik2

ða2 þ w2Þ
�

ik2

ða2 þ x2Þ

� �
¼ 0:

Now one has to take into account that xB109 m�1; so that terms with order 1=x2 can be
neglected. Thus, one arrives at the system

� ðb2 � k2ÞA � 2ibk2C ¼ mQ0
*fðk1; k2;oÞ

ðb2 � k2Þ
kwða2 þ w2Þ

;

2k1aA þ bk2B � ik1ðb
2 � k2ÞC ¼ �2mQ0

*fðk1; k2;oÞ
ik1

kða2 þ w2Þ
;

2k2aA � bk1B � ik2ðb
2 � k2ÞC ¼ �2mQ0

*fðk1; k2;oÞ
ik2

kða2 þ w2Þ
: ð22Þ

An analogous system of equations can be written for the following classical elasticity problem
(with stresses written in a classical form):

=2f�
1

a2

@2f
@t2

¼ 0; =2ce �
1

b2

@2ce

@t2
¼ 0; e ¼ 1; 2;

at z ¼ 0: szz ¼ Zðx; y; tÞ; txz ¼ X ðx; y; tÞ; tyz ¼ Y ðx; y; tÞ: ð23Þ

In the Fourier domain the problem described by Eqs. (23) leads to the following algebraic system:

� ðb2 � k2ÞA � 2ik2bC ¼ *Zðk1; k2;oÞ=m;

2k1aA þ bk2B � ik1ðb
2 � k2ÞC ¼ *Xðk1; k2;oÞ=m;

2k2aA � bk1B � ik2ðb
2 � k2ÞC ¼ *Yðk1; k2;oÞ=m: ð24Þ

Clearly, the left-hand of Eqs. (22) and (24) are identical. Thus, the right-hand of Eqs. (22) can be
interpreted as a Fourier image of the equivalent stresses applied at the boundary. So, under the
following assumptions which were made implicitly: (a) the heating is localized within a very thin
layer of the top layer of the laminate, (b) the thermo-diffusion depth is small compared to the
thickness of layer (i.e., half-space space can be used instead of layer, (c) the exposition time of the
laser is relatively short and (d) thermal radiation losses from the surface can be neglected, the laser
or photothermal source may be represented as an equivalent elastic boundary source consisting of
distributed normal and shear loading boundary conditions. Similar boundary equivalent
conditions were found by Spicer [14] and they were also used in Ref. [6]. It should be noted
that the same boundary conditions can be obtained if one specifies the heat flux at the boundary
instead of the heat source.
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From Eqs. (22) it can be concluded that equivalent boundary conditions in the space–time
domain are presented by the convolution integral

sjzðx; y; tÞ ¼
Z Z Z

Kjðr� %r; t � tÞf ð%r; tÞ d%r dt; j ¼ z;x; y: ð25Þ

The kernels Kjðr; tÞ are functions of time and the co-ordinates depend on the properties of the
body. They can be found by the substitution f ð%r; tÞ ¼ dðtÞdð%rÞ: In doing so, one arrives at the
following expressions for Kx and Ky:

Kx ¼ �2G0
@

@x
dðrÞWðtÞ; Ky ¼ �2G0

@

@y
dðrÞWðtÞ; ð26Þ

where

WðtÞ ¼
ea2t=g; to0;

1; t > 0;

(

and G0 ¼ Q0b
2m=cE: As can be understood from general considerations, the value of the

equivalent stresses can depend only on the values of the ‘‘thermo-force’’ f at previous times and
not at subsequent times (the causality principle), so that Eq. (25) must be rewritten in the form

sjzðx; y; tÞ ¼
Z t

�N

Z Z
Kjðr� %r; t � tÞ f ð%r; tÞ d%r dt; j ¼ z; x; y: ð27Þ

However, Eq. (26) still violates the causality principle, since the stresses (effect) appear for
negative t; i.e., before the cause—a laser impulse. This appears as a consequence of the non-
limited speed of the heat propagation. The problem can be solved by letting WðtÞ ¼ hðtÞ; where hðtÞ
is the Heaviside step-function. This leads to the following Fourier images of the kernels:

*Kz ¼ i G0
ðb2 � k2Þ

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � io=g

p ; *Kx ¼ 2G0
k1

o
; *Ky ¼ 2G0

k2

o
; ð28Þ

which subsequently results in the following expressions in time–space domain (for details see
Appendix D):

Kz ¼ �G0hðtÞ
1

b2

@2

@t2
� 2D>

� �
1

2pr
1� F

r

2
ffiffiffiffi
gt

p
 ! ! !

;

Kx ¼ �2G0hðtÞ
@

@x
dðrÞ; Ky ¼ �2G0 hðtÞ

@

@y
dðrÞ; ð29Þ

where D> ¼ @2x þ @2y and Fð::Þ is the error function. It should be noted that Eqs. (29) have to be
understood in the sense of distributions [15]. The obtained results for Kðx;yÞ are similar to those
derived by Rose [16]. However, using the dipole approach that was used in Ref. [16], one obtains
that Kz ¼ 0; which is apparently due to the limitations of the method. A more rigorous derivation
of the corrected stress expressions with respect to non-causality problem can be done using
relations similar to the Kramer–Kronig relations that express the relations between real and
imaginary parts of the susceptibility function [17].
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4. Moving photo-thermal source

Consider a laser beam, which is scanning uniformly with a constant speed V along the surface
of the laminate. The power intensity of the beam is monochromatically modulated with the
modulation frequency O0: Then, the heat source generated in the top layer can written as

Q ¼ 0:5I0ð1þ expð�iO0tÞÞxezx 1

pl2
e�

ðx�VtÞ2þy2

l2 ; ð30Þ

where it was assumed that the laser beam has a total power intensity I0 and that the spot radius l
has a Gaussian spatial distribution of power intensity. According to the previous subsection, in
the Fourier-domain this heat source is equivalent to the following distributed stresses applied at
the surface (the superscript y indicates that these stresses are thermal stresses):

*syzz ¼ D
iðb2 � k2Þ

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � io=Z

p ; *tyxz ¼ 2D
k1

o
; *tyyz ¼ 2D

k1

o
; ð31Þ

where

D ¼
pb2mI0

ce
e�

k2l2

4 ðdðo� k1V Þ þ dðo� k1V � O0ÞÞ:

Also assume that the lower boundary of the laminate is in stiff contact with an elastic substrate
which occupies the lower half-space. The goal is to find the z-component of the top layer
displacement, which can be measured in principle and used further by, for instance, the Fabry-
Perot interferometer [18].
The laminate response is described by matrix (12) which has to be supplied with proper

boundary conditions at the half-space interface

½S�fVð0Þg ¼ fVðnÞg with fVð0Þg ¼ ½H�fA1;A2;A3g
T; ð32Þ

where the stresses in the state vector fVðnÞg are given by Eq. (31) and the matrix ½H� is given in
Appendix C. So one arrives at the system

*uðnÞx

*uðnÞy

*uðnÞz

*syzz

*tyxz

*tyyz

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

k11 k12 k13

k21 k22 k23

k31 k32 k33

k41 k42 k43

k51 k52 k53

k61 k62 k63

0
BBBBBBBBB@

1
CCCCCCCCCA

A1

A2

A3

0
B@

1
CA;

where kij ¼ sikhkj: The last three equations can be solved with respect to the unknowns A1;A2;A3;
which, in turn, can be used for the determination of the unknown *u

ðnÞ
i : Finally, the z-component of
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the top layer displacement can be written using the following inverse Fourier form:

uzðx � Vt; y; tÞ ¼
Z Z

Fðk1; k2;o ¼ k1V Þeiðk1ðx�VtÞþk2yÞ dk1 dk2

þ
Z Z

F ðk1; k2;o ¼ k1V þ O0Þeiðk1ðx�VtÞþk2y�i O0 tÞ dk1 dk2: ð33Þ

The results of the numerical evaluation of the integral in Eq. (33) for the different problem
parameters are shown in Fig. 3.
As seen in Fig. 3(a), the laser spot excites the steady state displacement field in the laminate.

These displacements appear as a result of the thermal expansion of the laminate material which is
heated by the laser. Also, it is seen that no waves are generated. When the structure becomes more
complex (5 layers), the laser spot when moving at the same speed, generates waves in the laminate,
see Fig. 3(b). Note that the graphs have been plotted in the dimensionless co-ordinates: z ¼
ðx � VtÞ=H0; Z ¼ y=H0: These results can be understood qualitatively using the following
arguments. The zeros of the denominator of the integrand of Eq. (33) that correspond to the wave
dispersion of the system, can be found from the system

o ¼ k .Vþ O0;

Dðk1; k2;oÞ ¼ 0;

where the first equation is the so-called kinematic invariant and the second is the implicit
dispersion relation of the system, i.e., the denominator of the integrand in Eq. (33). A graphical
solution of the system is shown in Fig. 4.
Fig. 4(a) shows that in this case there are no crossing points between the kinematic invariant

and the dispersion curves (except for o ¼ 0; k ¼ 0) and thus no waves are generated in the system.
In contrast, Fig. 4(b) shows that there are crossing points and therefore waves are generated by
the moving laser spot.
It is clear that the dispersion properties of the combined system strongly depend on the

properties of the bounded half-space. This can be confirmed by the graphs shown in Fig. 5, where
a polyester resin half-space was used instead of a steel half-space. As shown in Fig. 5, in this case

ARTICLE IN PRESS

Fig. 3. Normal displacements of the laminate bonded to a steel half-space due to uniformly moving laser V ¼
2:7;O0 ¼ 0:0; the laminate consist of (a) 1 aluminum layer. (b) 5 alternating layers aluminum+resin.
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each mode can be excited separately, which can be useful in NDE applications. The corresponding
spatial displacement fields are shown in Fig. 6.
The displacement field shown in Fig. 6 appears to be quite complicated and also it differs

substantially from the fields generated, for instance, by moving mechanical loads [19]. In
particular, the displacement field generated by a moving mechanical load is localized in the

ARTICLE IN PRESS

0 0.05 0.1 0.15 0.2

K

0

0.05

0.1

0.15

0.2

0.25

 Ω

(a)
0 0.05 0.1 0.15

K

0

0.1

0.2

Ω
 

(b)

Fig. 5. Dispersion curves of laminated structure bonded to a polyester resin half-space with kinematic invariant, the

structure consist of (a) 1 aluminum layer V ¼ 1:1;O0 ¼ 0:02; (b) 5 alternating layers aluminum+prepreg V ¼ 0:6;O0 ¼
0:17 (- - - kinematic invariant).
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Fig. 4. Dispersion curves of laminated structure bonded to a steel half-space with kinematic invariant V ¼ 2:7;O0 ¼ 0:;
the structure consist of (a) 1 aluminum layer, (b) 5 alternating layers aluminum+prepreg (- - - kinematic invariant).

Fig. 6. Normal displacements of the laminate bonded to a polyester resin half-space due to uniformly moving laser, the

laminate consist of (a) 1 aluminum layer V ¼ 1:1;O0 ¼ 0:02; (b) 5 alternating layers aluminum+resin V ¼ 0:6;O0 ¼
0:17:

A. Kononov, R. de Borst / Journal of Sound and Vibration 266 (2003) 171–187182



vicinity of the load (sub-critical case). In the thermoelastic case, the field extends over some
distance away from the laser spot, because of the temperature relaxation processes.

5. Conclusions

In the present paper, the steady state response of an elastic isotropic layered plate subjected to a
moving laser source illumination has been studied. The response of the layered plate in Fourier
domain has been formulated using the transfer matrix approach. The application of the photo-
thermal source (laser) to the upper surface of the laminate, has been reformulated as equivalent
stresses applied at the illuminated boundary with the use of the so-called thermal stresses

approximation. For the analysis a laminated structure has been used which consists of alternating
layers of aluminum and so-called prepreg (usually, fiber-reinforced resin or epoxy) which is used
in the aerospace industry. The sensitivity of the generated displacement field to the variations of
the laminate inner structure has been demonstrated. The model provides a useful tool for the
determination of which modes are generated by a laser source in a layered system. It can also be
used to determine how sensitive the generated modes are to changes in density, thickness, or
elastic properties of the layers. Future work will focus on the analysis of different laws of motion
of the laser spot in order to obtain an optimal radiation pattern which can be used further to
determine the properties of layered structures using an inverse method.

Appendix A

The matrix ½gðhlÞ� is given by

ik1ca �k1sa ik2cb �k2sb �ik1bsb �k1bcb

ik2ca �k2sa �ik1cb k1sb �ik2bsb �k2bcb

�asa iaca 0 0 k2cb ik2sb

�md2ca �imd2sa 0 0 �2mbk2sb 2imbk2cb

�2imk1asa �2mk1aca �imk2bsb �mk2bcb �im k1d
2cb mk1d

2sb

�2imk2asa �2mk2aca imk1bsb mk1bcb �imk2d
2cb mk2d

2sb

0
BBBBBBBBB@

1
CCCCCCCCCA
;

where ca ¼ cos ðahlÞ; cb ¼ cos ðbhlÞ; sa ¼ sin ðahlÞ; sb ¼ sin ðbhlÞ; d
2 ¼ b2 � k2; k2 ¼ k2

1 þ k2
2: The

matrix ½gð0Þ� can be obtained by letting hl ¼ 0 in matrix ½gðhlÞ�; so that

½gð0Þ� ¼

ik1 0 ik2 0 0 �k1b

ik2 0 �ik1 0 0 �k2b

0 ia 0 0 k2 0

�md2 0 0 0 0 2imbk2

0 �2mk1a 0 �mk2b �imk1d
2 0

0 �2mk2a 0 mk1b �imk2d
2 0

0
BBBBBBBBB@

1
CCCCCCCCCA
:
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The inversion of this matrix results in the following matrix:

½gð0Þ��1 ¼

�2ik1

W
�2ik2

W
0 � 1

mW
0 0

0 0 �id2
Wa 0 � k1

maW
� k2

maW

�ik2

k2
ik1

k2 0 0 0 0

0 0 0 0 � k2

mbk2
k1

mbk2

0 0 2
W

0 ik1

mWk2
ik2

mWk2

�k1d2

bk2W
�k2d2

bk2W
0 �i

mbW
0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

where W ¼ o2=b2: According to the definition

½sðlÞ� ¼ ½gðhlÞ�½gð0Þ��1:

This, after elaboration, results in the following relation:

½sðlÞ� ¼
1

W
½qðlÞ�;

where the elements of the auxiliary matrix ½qðlÞ� are (index l omitted)

q11 ¼ Wcb þ 2k2
1ðca � cbÞ; q12 ¼ 2k1k2ðca � cbÞ; q13 ¼ ik1 d2

sa

a
� 2 bsb

� �
;

q14 ¼ �i
k1

m
ðca � cbÞ; q15 ¼ W

sb

mb
þ

k2
1

m
sa

a
�

sb

b

� �
; q16 ¼

k1k2

m
sa

a
�

sb

b

� �
;

q21 ¼ q12; q22 ¼ Wcb þ 2k2
2ðca � cbÞ; q23 ¼ ik2 d2

sa

a
� 2 bsb

� �
;

q24 ¼ �i
k2

m
ðca � cbÞ; q25 ¼ q16; q26 ¼ W

sb

mb
þ

k2
2

m
sa

a
�

sb

b

� �
;

q31 ¼ ik1 2asa � d2
sb

b

� �
; q32 ¼ ik2 2 asa � d2

sb

b

� �
;

q33 ¼ Wca þ 2k2ðcb � caÞ; q34 ¼
1

m
k2sb

b
þ asa

� �
; q35 ¼ q14; q36 ¼ q24;

q41 ¼ 2imk1d
2ðca � cbÞ; q42 ¼ 2imk2d

2ðca � cbÞ;

q43 ¼ �m 4bk2sb þ d4
sa

a

� �
; q44 ¼ q33; q45 ¼ q13; q46 ¼ q23;

q51 ¼ �m ððb2 � k2
1Þ

2 þ k2
2ðb

2 þ k2
1ÞÞ

sb

b
þ 4k2

1asa

� �
;

q52 ¼ �mk1k2 ðk2 � 3b2Þ
sb

b
þ 4asa

� �
; q53 ¼ q41; q54 ¼ q31; q55 ¼ q11; q56 ¼ q12;

q61 ¼ q52; q62 ¼ �m ððb2 � k2
2Þ

2 þ k2
1ðb

2 þ k2
2ÞÞ

sb

b
þ 4k2

2asa

� �
; q63 ¼ q42;

q64 ¼ q32; q65 ¼ q12; q66 ¼ q22:

ARTICLE IN PRESS

A. Kononov, R. de Borst / Journal of Sound and Vibration 266 (2003) 171–187184



It must be emphasized that in all the final results such as expressions for the displacement
components or dispersion relations, W is not included (since it mutually cancelled), hence it was
assumed that

½sðlÞ� � ½qðlÞ�:

Appendix B

The following material constants were used in the paper:

Material Density ðkg
m3Þ Long. vel. ðm

s
Þ Shear vel. m

s
Layer thick. ðm:Þ

Aluminum 2790 6380 3130 4� 10�4

Steel 7700 5760 3120 N

Prepreg 1400 2730 1300 3� 10�4

Polyester resin 800 2550 1280 N

Thermal diffusivity g for aluminum is taken as gE1:0� 10�5 ðm
2

s
Þ:

Appendix C

In the half-space zo0 the scalar potentials can be written in the down-going wave form

*f ¼ A1e
�iaz; *c1 ¼ A2e

�ibz *c2 ¼ A3e
�ibz:

Consequently, these potentials lead to the following form of the state vector evaluated at z ¼ 0:

fVð0Þg ¼

ik1 ik2 k1b

ik2 �ik1 k2b

�ia 0 k2

�md2 0 2imbk2

2mk1a mk2b �imk1d
2

2mk2a �mk1b �imk2d
2

0
BBBBBBBBB@

1
CCCCCCCCCA

A1

A2

A3

0
B@

1
CA:

Appendix D

The inverse Fourier transform for *Kx and *Ky can be found without difficulties. However, the
same operation for *Kz is not so obvious. Consider the following integral

Kzðr; tÞ ¼
1

8p3

Z Z Z
*Kz e

iðk r�otÞ do dk;
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in which

*Kz ¼ i G0
ðb2 � k2Þ

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � io=g

p ¼
i G0ffiffiffi

g
p ðo2=b2 � 2 k2Þ

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=g� io

p :

This integral diverges in a classical sense. However, it can be treated in the sense of distributions,
so that

Kzðr; tÞ ¼ �
iG0

8p3
ffiffiffi
g

p 1

b2

@2

@t2
� 2D>

� � Z Z Z
eiðk r�otÞ

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=g� io

p do dk:

Next, consider the internal integral

I0 ¼
Z þN

�N

e�i ot

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � io

p do with g ¼ k2g:

The integral can be evaluated using the method of contour integration. The contour of integration
for t > 0 is shown in Fig. 7.
For to0; the contour of integration should be closed in the upper half-plane, where there are no

singular points ðI0 ¼ 0Þ: The branch cut in the complex plane o in chosen such that the condition
Rð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=g� io

p
Þ ¼ RðwÞ > 0 is satisfied everywhere along the path. The contour integration gives

I0 ¼

0; to0;

� 2piffiffi
g

p þ 2ieð�gtÞ RþN

0

eð�ztÞffiffiffi
z

p
ðz þ gÞ

d z; t > 0;

8><
>:

where the remaining integral is standard,

I0 ¼
0; to0;

� 2piffiffi
g

p Fð
ffiffiffiffi
tg

p
Þ; t > 0:

8<
:

Accordingly, the next integral is

I1 ¼
Z Z þN

�N

Fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1 þ k2

2

q ffiffiffiffi
tg

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1 þ k2

2

q eiðk1xþk2yÞ dk1 dk2;
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Fig. 7. Contour of integration for t > 0 in complex o-plane, ðþÞ and ð�Þ show signs of the radical, respectively.
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which, in a polar system of co-ordinates: k1 ¼ k cos ðfÞ; k1 ¼ k sin ðfÞ; x ¼ r sin ðcÞ; y ¼ r sin ðcÞ;
after integration over f; is simplified to

I1 ¼ 2p
Z þN

0

J0ðkrÞFðk
ffiffiffiffi
tg

p
Þ dk;

where J0ð::Þ is the Bessel function of the first kind. The last integral can be found in the standard
integration tables

I1 ¼
2p
r

1� Fð
r

2
ffiffiffiffi
gt

p Þ

 !
:

Finally,

Kz ¼ �G0 hðtÞ
1

b2

@2

@t2
� 2D>

� �
1

2pr
1� F

r

2
ffiffiffiffi
gt

p
 ! ! !

:
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