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1. Introduction

The steelpan as a musical instrument of the percussion family, with rigid vibrators, has been
shown to operate as a system of non-linear mode-localized oscillators [1–3]. Each note consists of
a shallow dome-shaped shell formed on the indented face of a steel drum [1]. The first mode (the
fundamental) of each note is tuned according to the musical scale with the second mode as an
upper octave and the third mode as a musical twelfth. The unique tonality obtained on this
instrument is supplied by the amplitude and frequency modulations produced by the non-linear
quadratic and cubic interactions between the tuned modes on a note or between two sympathetic
notes. To obtain acceptable tonality however, the second and third modes must never be tuned as
exact harmonics of the first mode [4].
In the non-musical (exotic) applications, under continuous sinusoidal excitation the instrument

has been shown to display Hopf bifurcation and the jump phenomenon [1]. Using electronic
synthesis, the instrument has also shown interesting chaotic behaviour [5,6].
The purpose of this communication is to show that the vibrational state of a steelpan note,

when played by striking with the stick (or mallet), remains essentially in the acquisition mode (in
the terminology of control theory) but under the right conditions, may correspond to the
oscillations of locked modes. The treatment considers interaction of the first two (tuned) modes
and is limited to quadratic non-linearities only.

2. Modal equations

Following the analysis of Ref. [1], the governing equations for these rigid vibrators with un as
the modal displacements are

.un þ o2
nun þ e 2mn ’un �

XN
j¼1

XN
k¼1

aj;k;nujuk � f ðtÞ

" #
¼ 0: ð1Þ
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Here, .u is the inertial term (the dot represents differentiation with respect to time t), o2
nun is the

structural stiffness term with as on the natural frequencies of the linearized system, mn ’u represents
viscous damping while mn are the damping coefficients;

P3
j¼1

P3
k¼1 ajknujuk represents quadratic

stiffness with ajkn as the coupling parameters ðajkn ¼ akjnÞ; e is an order parameter, f ðtÞ is a short
duration external impulse, which is set to zero after impact for the free system.
For the purposes of this analysis, it is sufficient to consider only the free oscillation phase for

the following reasons: Generally for normal playing action on this percussion instrument, the
duration of the initial impact phase is less than one period of oscillation of the fundamental (first)
mode. In addition, the first mode takes a few periods of oscillation to rise to maximum amplitude
while the second mode, as it receives energy from the first mode through quadratic coupling,
reaches its maximum somewhat later.
For phase locking to occur the natural frequencies o1 and o2 must be nearly harmonically

related as described by the detuning parameter s where

o2 ¼ 2o1 þ es: ð2Þ

In the present context, es ð¼ OÞ is the initial frequency detuning. To solve the set of equations in
Eq. (1), the multi-time method [7,1] is used. Assuming a set of solutions (for zeroth order in e) of
the form

un0 ¼ 1
2 anðt1Þeiðont0þfnðt1ÞÞ þ cc; ð3Þ

where an and fn are functions of the slow time t1 ð¼ etÞ and represent the amplitude and phase of
the nth Fourier component of the displacement, respectively, the (free) system equations are
reduced to the following solvability equations:

a0
1 ¼ �m1a1 þ

an121
4o1

a1a2 sin g1; a0
2 ¼ �m2a2 �

a112
4o2

a2
1 sin g1;

a1f
0
1 ¼ �

an121
4o1

a1a2 cos g1; a2f
0
2 ¼ �

a112
4o2

a21 cos g1; ð4a2dÞ

where anjkn ¼ ajkn þ akjn; the prime denotes d=dt1; and

g1 ¼ f2 � 2f1 þ st1: ð5Þ

3. Growth and decay of modal amplitudes

From Eqs. (4a) and (4b) the following conditions are obtained:

1. Mode 1: the amplitude a1 grows when ðan121=4o1Þa2 sin g1 > m1; which requires that sin g1 > 0:
2. Mode 2: the amplitude a2 grows when �ða112=4o2Þða21=a2Þ sin g1 > m2; which requires that

sin g1o0:
3. The complements of (1) and (2) are the conditions for decay.

Mode coupling is clearly evident in these conditions. As sin g1 swings between þ1 and �1;
energy is exchanged between the two modes and the modal amplitudes and frequencies are
modulated. The modulation rates are described by the slowly varying phase angle g1:
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4. Mode locking

From Eqs. (4c) and (4d) if one defines ef 1 ¼ �ðan121=4o1Þa2 cos g1 and ef 2 ¼ �ða112=
4o2Þða2

1=a2Þ cos g1 one can write

f1ðt1Þ ¼ �
an121
4o1

Z
a2 cos g1 dt1 ¼

Z
ef 1 dt1;

f2ðt1Þ ¼ �
a112
4o2

Z
a2
1

a2
cos g1 dt1 ¼

Z
ef 2 dt1: ð6a;bÞ

Eqs. (6a) and (6b) show that the actions of the non-linear shell oscillators are those of integrators
generating the phase angles fn of the oscillator signals

1
2
anðt1Þeiðont0þfnðt1ÞÞ: This is precisely the role

played by the voltage-controlled oscillator (VCO) in an electronic phase locked loop; see for
example Ref. [8]. In the case of the steelpan however, because of the non-linear dynamics, the
notes are displacement-controlled oscillators (DCOs). In the sense of servo theory, ef 1 and ef 2; are
‘‘error displacements’’ with g1 as the ‘‘phase error’’.
The equivalent loop model is shown in Fig. 1. Here, the outputs of the analog multipliers

(synthesizing the quadratic parametric excitations) interact (mix) with the normal modes
producing the error signals that control the DCOs. The multiplier outputs are the parametric
excitations observed on the notes of the steelpan [2,9] while the error signals correspond to the
observed amplitude modulations [1]. The inclusion of the low-pass filters (LPF) completes the
description of the system as a well-tuned musical instrument where the (weak) high-frequency
parametric modes [9] play no significant role.
An essential difference between the operation of the present system and that of an electronic

phase-locked loop is that, in the latter, only phase information (and not energy) is transferred to
the VCO after comparison is made between the VCO frequency and the reference frequency. On a
steelpan note, both phase information and energy are transferred among the various tuned
vibrating modes.
By the definition of ‘‘lock’’, the system is locked or in the synchronous mode, if f0

n ¼ 0: From
the cosine in the integrands of Eqs. (6a) and (6b), this requires that fn arrive at one of the stable
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Fig. 1. Model of the coupled non-linear modes on a steelpan note. Mode 1 on the left, e01 ¼ 1
2
a1e

io1tþf1 ; and mode 2,

e02 ¼ 1
2
a2e

io2tþf2 ; on the right.
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nulls g1 ¼ ð4m71Þp=2: In practice, the conditions for steady state are less precise and may be
more realistically defined by the conditions jf0

njpdo and jfn � 2mpjpdf: But this is a steady state
condition that cannot be maintained over the duration of the tone driven initially by an impact.
The system will therefore constantly be in the acquisition mode, with smooth passages through
the synchronous mode if the conditions are right. This behaviour produces frequency modulations
that exceed the frequency limit do:
If the present system is required to lock ‘‘harmonically’’, with o2E2o1; a clearer understanding

of the operation of this system can be obtained by considering that initially, the system is not in
lock but that the frequency relation is closely harmonic. The quadratic non-linearity, described by
the coupling parameter a112; will generate from mode 1 (with displacement u1), both constant and
second harmonic terms:

u21Eðcoso1tÞ
2 ¼ 1

2
ð1þ cos 2o1tÞ: ð7Þ

This second harmonic component will beat against the second mode at o2: Another component at
frequency o2 � o1 generated through the quadratic coupling defined by the parameter a121 will
beat against the first mode at o1: Under these conditions the error displacements will be two beat
components of low frequency Djo2 � 2o1j: These error displacements, by generating the phase
changes in Eqs. (4a) and (4b), will produce changes in the instantaneous frequencies ðo1 þ
f0
1;o2 þ f0

2Þ of mode 1 and mode 2, respectively, and at some point these frequencies will be
harmonically related and lock may result. While the error displacements may assume levels
sufficient to attain lock, the system will be losing energy through material damping and acoustic
radiation. The locked state can therefore only be transitional. These changes show up as
amplitude and frequency modulations of the decaying musical tones of the instrument.

Mode locking with a 1:2 frequency ratio occurs when

o2 þ f0
2 ¼ 2ðo1 þ f0

1Þ; ð8Þ

which may be written

o2 � 2o1 ¼ 2f0
1 � f0

2; ð9Þ

and finally as

O ¼
a112
4o2

a2
1

a2
�

an121
2o1

a2

� �
cos g1: ð10Þ

Since �1pcos g1pþ 1; this locking condition is equivalent to

jOjp
a112
4o2

a2
1

a2
�

an121
2o1

a2

����
����: ð11Þ

The expression on the right-hand side of Eq. (11) gives the greatest frequency separation between
the second mode signal at o2 and the frequency-doubled signal at 2o1 in order to attain lock. This
expression is therefore the pull-in range, which, for the present system, is dependent on the modal
amplitudes (an interesting non-linear behaviour).

Pull-in range ¼
a112
4o2

a21
a2

�
an121
2o1

a2

����
����: ð12Þ
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Mode locking therefore requires strong coupling through the parameter a112 or relatively large
values, the modal amplitude a1; together with small values of a121 and a2: In typical phase-locked
loops, the reference oscillator is of stable and fixed frequency. In the present system the first mode
acts as the reference but its frequency is modulated by f0

1½¼ �ðan121=4o1Þa2 cos g1	; which
effectively reduces the pull-in range as the second term in Eq. (12) shows.

5. Conclusions

It is clear that on this musical instrument, where significant amplitude and frequency
modulations are necessary for good tonality, the sounding note will remain in the acquisition
mode. However, during the tuning of the instrument, a note can be placed in the state where mode
2 is at the exact second harmonic frequency of mode 1 (equivalent to making O ¼ 0). This
produces a musically unpleasant tone, called the ‘‘pung tone’’ by the present author [4], in which
the fundamental (mode1) after the initial rapid attack, decays rapidly in intensity, with mode 2 in
the meanwhile rising more slowly then decaying to zero. There are no additional amplitude
modulations and the frequencies remain stable throughout the duration of the tone.
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