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Abstract

An efficient method for calculating the normal form and the associated non-linear transformations for
the semi-simple case without central manifold reduction is given in this paper. The one-step transformation
concept is adopted for easy programming. This method can be used to calculate high order normal forms of
high-dimensional ordinary differential equations of non-linear oscillators. A program in MATHEMATICA
language is designed to perform the calculation. Three examples are given in order to verify the method and
to show the efficiency of the program.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The normal form method has been widely used in the fields of dynamical systems, ordinary
differential equations (ODE) and non-linear vibration. For examples, Kern and Maitz [1] applied
to flutter prediction. Khajepour et al. [2] designed modal coupling controllers using the normal
form. Fredriksson and Nordmark [3] found the normal form of impact oscillators. Yu and Bi [4]
analyzed a double pendulum. Yu and Zhang [5] studied a thin plate.

There were four primary methods of calculating normal form. Wang [6] made a summary from
the mathematician’s view point and gave a detailed introduction to the three basic methods of
calculating the normal form of ODE. The three methods are the matrix representation method,
the adjoint operator method and the method based on the representation theory of sl(2, R). The
fourth method of perturbation was used by Nayfeh [7], Yu [8] and Leung and Zhang [9,10].
Recently, a number of other important new and well-established methods [11,12] namely.
Liapunov—Schmidt reduction, succession functions and intrinsic harmonic balance have been
published to determine normal forms.
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Normal form theory plays an important role in the study of the dynamical behavior of non-
linear systems near the dynamic equilibrium points because it greatly simplifies the analysis and
formulations. This simple form can be used conveniently for analyzing the dynamical behavior of
the original system in the vicinity of the critical equilibrium. However, it is not a simple task to
calculate the normal form for a given set of ODE. In particular, it is difficult to derive explicit
formulas of a normal form in terms of the coefficients of the original ODEs. A crucial part in
computing normal forms is to find the coefficients of the normal forms and the associated non-
linear transformations efficiently. The algebraic manipulations become very involved as the order
of normal forms and the dimension of ODE increase. Thus, symbolic computations using
languages such as MAPLE, MATHEMATICA and MACSYMA have been introduced to
compute the normal forms. For examples, Chen and Zhang [13] presented a symbolic computer
program using REDUCE for computing the explicit coefficients of the normal form at Hopf
bifurcation. Leung and Zhang [10] gave a combined method of normal form and averaging which
takes the advantages of each theory to find the higher order averaging equations for normal forms
via MATHEMATICA. Yu [8] gave a perturbation method of multiple scales to calculate normal
form via MAPLE. Bi and Yu [14] introduced a method to calculate normal form for semi-simple
cases via MAPLE. Zhang et al. [11,12] presented a new procedure for obtaining high order normal
forms and the associated coefficients via MAPLE.

Normal form is usually applied in conjunction with the central manifold theory [14,15-18].
Earlier work which produces normal forms without first achieving reductions through the
application of central manifold theory can be found in Refs. [19,20] dealing with two-dimensional
systems. More recently, high-dimensional systems have also been considered in Ref. [21].

A method of calculating normal form without central manifold reduction is given in this paper.
Fewer transformations are used in this method. The present method is different from the
averaging technique in that normal forms are obtained by applying a sequence of near-identity
transformations. It is also different from the other normal form methods by giving non-linear
algebraic equations, but not the differential equations, between the variables associated with
center manifold and stable manifold. Although the stable manifold does not change the dimension
of the central manifold, it does affect the coefficients of the normal form of the same dimension.

Three examples are given to illustrate some of the advantages and to verify the correctness of
the proposed approach.

2. Normal form without central manifold reduction

Consider the system of ODE
x=Ax+f(x,¢), xeR', f(x,¢e):R">R", (D)

where an over-dot denotes differentiation with respect to time. A dimensionless symbol ¢ is
introduced here to denote the degree k of the homogeneous polynomial so that if pi(y)e H¥, k =
2,...,n is an n-variable homogeneous polynomial of degree k, then pi(ey) = & pr(y).

Suppose that the system contains stable and central manifolds only, i.e., there is no
eigenvalue with positive real part. Let the eigenvalues of A with zero real parts be
Jo = diag(41, 42, ..., An,), and those with negative real parts be J; = diag(4,,.,, Ang+2, ---» An). One
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can write J = T~'AT = diag(Jy, J;), where T is the eigenmatrix of A. Further, let y = (w, )" =
T-'x, where w and v are the variables associated with the eigenvalues of J with zero real parts and
with negative real parts, respectively. Then, Eq. (1) can be rewritten as

wil [ Jo O f|w filw,v)
= )] e ”

Theorem 1. If the linear part of Eq. (1) is in diagonal form (semi-simple case), then the normal
forms are combinations of the resonant monomials [18].

and one has the following theorem.

Therefore, the normal forms of Eq. (1) are combinations of the resonant monomials, which
contain only those terms that satisfy

(m, Ay —ds = midi— s =0, (3)
i=1

where m; is a positive integer, s = 1,2, ..., n.
The method of calculating normal form without central manifold reduction can be used to
calculate the normal form of Eq. (1) for the following reasons:

(a) If Eq. (3) is satisfied for s less than or equal to ng, then Eq. (3) does not contain 4; terms for i
great than ny. Otherwise Eq. (3) cannot be satisfied as m; is always greater than zero. The real
part of 4; is less than zero and the real part of Ag is always equal to zero. So the normal forms
of the first ny equation contain only the central manifold terms.

(b) If Eq. (3) is satisfied for s greater than ny, then the corresponding normal forms are
combinations of the central and stable manifolds.

3. Solution for the transformation

To transform Eq. (2) into its normal form, a series of almost identical non-linear co-ordinate
transformations is required. Let adf[pk@)] = D,piJy — Jpi, where D, denotes partial differentia-
tion with respect to y and Im be the image.

The following theorem has been proved in Ref. [6].

Theorem 2. Let C. be the complementary subspaces to Im adf,C in H* for k =2, ...,n. There exist a
series of near identity non-linear transformations

x=Jy+p(), pOeH', k=2,...n, 4)
such that system (2) reduces to its normal form
y=Jy+ CQ), (5)

where C(y) contains only the resonant terms.
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Alternatively, Nayfeh [7] suggested a one-step method transforming Eq. (2) into its normal
form based on perturbation. The transformation is written as

x=y+ P(y), (6)

and he showed that the normal form obtained is in agreement with the classical method. In this
paper, the one-step transformation method is used. Substituting Eq. (6) into Eq. (2), one obtains

I+D,Py=Jy+P)+f(y+Pe), (7)

where D, P is the Jacobian matrix of P(y). A conventional approach for solving Eq. (7) is to use
Taylor’s series

[l +D,P)]' =1-D,P+(DP)—(DP) + -
and substitute it back into Eq. (7) to obtain

y = +D,PI"'[J(y+ P)+f(y+ P,e)]
=[I - D,P +(D,P)> — (D,P)’ + ---JJy + JP + f(y + P,e)]. (8)

The difficulties involved in the above procedure are not only that one has to handle a large
amount of algebraic manipulations, but also that it is hard to know the number of terms chosen in
Eq. (8) for a given order of normal forms. In order to overcome the difficulties due to the
computation of the inverse of (I + D, P), an alternative approach [22] may be used. It is achieved
as follows. First substituting Eq. (5) into Eq. (7), one has

[I+D,PllJy+ C()]=J(y+P)+f(y+P,e). )
Rearranging, one obtains
D,PJy —JP = F(y,e) — D,PC(y) — C(p), (10)

where F(y,¢) = f(y + P, ¢).
Eq. (10) is all one needs for computing the normal forms and the associated non-linear
transformations by iteration. If one can find P(y) and C(y) from Eq. (10), one then has obtained
the normal forms and the associated non-linear transformations.

In general, however, closed-form solutions of Eq. (10) cannot be found. Thus, an approximate
solution may be assumed in the form of

—1 .
PG = pu) =) & ST D Y (11)
m=2 m=2 my+my+ - +m,=m
- ~1
Cy) = Z " en(y) = Z & Z Comma -y V| Vo s eees Vi, (12)
mz=2 m=2 my+my+---+m,=m

F(y,e)—DyPC(y):me(y)ZZ< S S my1y2y> (13)

m=2 m=2 \mj+nmo+---+my,=m
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Then Dyp,(y)Jy can be written as

§ : my my m n
(Dy pmlmg ..... l’n,,ul ]u22u33, "'9uzl )(Jy)

my+my+---+m,=n

:< > Dpwm... m,zy’f"y'z"zy?”,---,yZ’”)> /)

mi+my+---+m,=n

"~ 0
= Z < F(pmlmz ..... m VS yZ’")ﬂ»iyi)
e

my+my+-+my=n \ i=

= Z (mlil + m2j~2 + -+ mnjvn)pmlmz ,,,,, m,ly’f”yguy';}, ,yz1”

my+n+ - +my=n

= > AoPmmm VISR Ly, (14)

my+mp+---+my=n

where

/10 = ml/ll —|-WL2/12 + - —i—m,,/ln.

Substituting Egs. (11)—(14) into Eq. (10) and equating the coefficients of ¢! on both sides of
Eq. (10), one has

(/LOI - J)pmlmz ,,,,, my :f;nling ..... m, — lemz ..... my, + (15)

This is a simple algebraic equation for calculating the normal form and the associated
non-linear transformation. The solvability of Eq. (15) depends on the singularity of the matrix
Ay = (Ao — J).

Let A(Ay) denote the eigenvalues of Aj. The non-resonant condition is {(m,A) — A, =
miAr + mady + - + mud, — A;#0. In this case, A(Ag)#0 implies that Ay is non-singular.
Therefore, py,m,...m, can always be determined for a given ¢ m,. . m,. In order to obtain a
normal form for this particular order as simple as possible, one may choose Cum,....m, =0,
and thus,

,,,,,

-1
Coumy,...om, — O, Pmymy,...m, = A() mimo,... My, - (165 17)

The resonant condition is {m,A> — A, = myiy +moly + --- + mud, — 4, = 0. In this case,
MAp) = 0. Ay is singular and thus, py, m,...m,cannot be uniquely determined from Eq. (15) for a

ZIVeN Cpymy... my-
The Fredholm theorem [17] states that:

Theorem 3 (Fredholm). Let ad, be a linear operator in a finite dimensional inner product space V.
Suppose ad; is the adjoint operator of ady. Then

V=1Imad,® Ker ad,,

where Imady is the image of ady and Ker ad)y is the null space of ad,.
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According to Theorem 2, the procedure of finding the coefficients of py,;,m,.... m, and ¢, m,
for the resonant case is as follows.

Suppose ¢;,, ..., 18 the resonant term, then it will appear in the normal form according to
normal form theory and ¢, ,, ., € Ker Ag. Suppose the linear complementary operator of Ay is
A, and the number of zero eigenvalues of Ay is n;, so that Ay = diag(0,0, ...,0, 4,41, A 42, -.vs An)
and A* = diag(1,1,...,1,0,0, ...,0). Where the number of 1’s is n; and the number of 0’s is n — ;.

Consequently, A = Ay + A" is non-singular, and Eq. (15) becomes
* = —1 = —1
Coumy,...m, — AA fmlmz ,,,,, mys  Pmimy---m, = A (fmlmz ,,,,, m, — Cmyma,..., mn)- (18: 19)

Eqgs. (16)—(19) are all one needs to calculate the normal forms and the corresponding non-linear
transformations.

,,,,, iy

4. Outline of the MATHEMATICA program

A computer program has been designed to compute the normal forms of a set of ODE of any
dimension up to nine. The dimension is set for convenience and is limited by the capacity of the
computer only. The symbolic computer programs, including the source code, written in
MATHEMATICA, are listed on the JSV + website. The program is constructed in the following
manner.

(1) Create the input file:

Xi = filx1, X2, ..., xn), i=1,2,...,n

One should input fi] with the state variable x[i] and the degree of polynomials ¢ and save them
in a working subfolder.
(2) Compute the normal form and its corresponding non-linear transformations:

1. Set the input and output file path in the first line.

2. Read the input file in the second line.

3. Transform the functions from real co-ordinate form to complex co-ordinate form.

4. Calculate the normal form and its corresponding non-linear transformation in complex form.
5. Transform the normal form into real co-ordinate form.

6. Transform the normal form into polar co-ordinate form.

(3) The feature of the program
Four functions are defined, which make the program more efficient and simpler.

(a) Jacobi[funs_List,vars_List]: = Outer[D,funs,vars]. This function is used to calculate the
Jacobian matrix of funs about vars.

(b) Co3[i_]: =DIb[k,nn],{u[i],nk[i]}]/nk[i]! This function is used to calculate the coefficient b[k,nn]
about the nk[i]-th of uli].

(¢) ne[k_]: =j-Sum|nk[i],{i,1,k-1}]. The combined use of the above two functions and an
evaluating command, Table[ne[i]=0, {I,n,8}], makes the present program much simpler than
that of Ref. [14]. It possible to combine several individual program blocks in one. The main
program is reduced from three pages to one page despite the fact that the dimension of the
function in the present program is higher than that of Ref. [14]. Also, one only needs to add
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2(m—9) sentences in the program if one wants to study an m dimension system, when m is
higher than nine. The program can be easily extended to calculate very high-dimension
normal form.

conjug = Complex[a_,b_]:- > Complex[a,-b]. This function is used to calculate the conjugate of
complex functions in symbolic form.In order to calculate the higher order normal form, one
should substitute y = y + P(y) = y + Zp;(y) into the function of f(x) directly. The term that is
higher than the order that one needs to calculate is eliminated by an intelligent judgement in
the substituting process. In this way, the program becomes more efficient. The arrangement
sequence of the variable of normal forms in polar-co-ordinate form is determined by its
corresponding eigenvalues. First the ones with negative real eigenvalues and then the ones
with zero eignenvalues, which are followed by the ones with conjugate complex eigenvalues
and the ones with pure imaginary eigenvalues.

5. Examples

All six examples in Ref. [14] were calculated in order to verify the presented method and to
show the efficiency of the program. The results show that the normal forms on the central
manifold are quite the same. Ref. [17] gives only this kind of normal form. Only three of the six
examples are given below.

5.1

Example 1

Calculate the fifth order normal form of the following five-dimensional system:

%) ] 0 1 0 0 0 7[x] [ X -xix ]
X -1 0 0 0 O X2 X3+ x1X4 + ex3
x3|l=10 0 -1 0 O x| +e x?
X4 o 0 o -1 1 X4 x%
(x5 [0 0 0 —1 —1]|xs5] i x3 |
The Jacobian matrix of this system evaluated at the equilibrium x; =0, k = 1,2, ..., 5 has the
eigenvalues +i,—1 and — 1+i. Two of them have zero real parts. The center manifold is two

dimensional.
The input file is:

n=>3;

norder=5;

fl1]1=x[2] + epsilon (x[1]"2—x[1] x[3]);

f]2] = —x[1] + epsilon (x[2] "2 + x[1] x[4] + epsilon x[2]"3);
f[3]= —x[3] +epsilon x[1]"2;

]
fl4] = —x[4] + x[5] + epsilon x[1]"2;
]

f[5] = —x[4]—x[5] + epsilon x[2] *2;
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The normal form of this system up to order five in polar co-ordinates is:

29 1 ) 3 619
0 = —u + —¢° cos(0, — Hz)rlrg — E83 sin(0; — 02)r1r3 + §r§u1 +— 750 84rgu1

120

43U, 4 137

4 cos2(0; — 04
612000 2800° 0820 = 02)rirs

) 1
i 2—71—1-2—08 rirs +

1229 ,
T 4800°

sin 2(91 92)1’11”‘2‘

7 15 .
_ @83 cos(0y — 02)r3uy — ) & sin(0; — 02)r3u;

. 3
0, = 1—|—%82l’§—

4271 A4 1229 p
51000° "2~ 2800°

137
4 4 _ 4
cos 2(0, — Ox)r, 1300 g sin2(0; — 0>)r

1 7
_ 4_r1COS(01 — 02)g3rgu1 + Ws sin(0; — 02)r§u1

32

2 14867 , s
40° 2 68000

: 914
', 9—1—12~2§+56 03 &'rs.

14688000 °

iy =

5.2. Example 2

Calculate the fifth order normal form of the following equation:

(5] foo0o 0 0 o o][x] [~G-x-x)]
% 00 1 0 0 0]||x —(x1 — X2 + x5)°
X3 0 -1 0 0 0 0|]|mx —(x1 — X2 + x4)°
sl o0 0 1 0 oflx| T w2 |
X5 0O 0 0 0 -1 1 Xs (x1 — x4)°

(k] L0000 0 <1 ] | gy

whose Jacobian matrix evaluated at the origin involves the eigenvalues 0, +i, —1 and —1+i.
The normal form has a three-dimensional central manifold. The input file is:

n=>6;

norder=5;

f[1]= —epsilon (x[1]—x[2]—x[4])"2;

f]2] = x[3]—epsilon (x[1]—x[2] + x[5])"2;

f[3] = —x[2]—epsilon (x[2]—x[3] + x[4]) " 2;
f[4] = —x[4] + epsilon (x[1]—x[5])"2;
f[5]=—x[5]

-

+x[6] + epsilon (x[1]—x[4])"2;
D2

fl6] = —x[5]—x[6] + epsilon (x[2] + x[5
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The normal form in polar co-ordinates is:

11 163 9
i = —u +—¢& cos(0; — 92)r1r2+—3 sin(0, — 92)r1r§ 0 84r‘2‘u1

12 60

7789 4 )
—2¢? cos(6; — Ox)rirauy — 900 ¢* cos(0; — 92)r1r§u4 + 267 sin(0; — Or)rirous
4601 3
+ 150 &t sin(0; — 0>)ry r§u4 — 783r§u1u4 — 583 cos(0y — O)r; rgui

39 , 303 163
— ?8 sin(0, — 62)r1r2u4 4l — ?a4r§u1uﬁ + 50 ¢*cos(0; — 62)r1r2ui
991
— %8 sin(0; — 02)r1r2u4 —2& u1u4 + 18¢ ului,
1 411 503 33
i = — 3 ers — mﬁré — 263Uy — 300 ey — el + 5 e rjul + 2&%u]
1013 11
T 4}’%1/12 + 5 7 Z,
1 1 67
1= —r — gszrlrg — Es cos 2(0; — 02)r1r§ + 61200 £4r1r2
1563767 9 )
244800 4C 82(01 02)1’17’42‘—%82 sm2(91 —92)7‘11”%
288671 137 ,
27200 ¢* sin 200, — 92)r1r2 + ma cos(0; — Hz)rgul
—28 sin(0; — 0,)r3u ——283r ru ——383 cos 2(0, — 0y)ririu
120 1 2)r U] 45 1744 100 1 2)F1rU4
137 5 . 727 4
- fe sin2(0; — 02)r1r§u4 + & cos(0y1 — 0r)rouuy — mz—: cos(0; — 02)r§u1u4
9469 3881
+ 32 sin(0) — 0>)rauyus + 360 e*sin(0, — 0)r3ujuy + 500 etrrdug
35947 16211 .
3000 &t cos 2(0; — 0x)ryrou; — 2000 5m 200y — O)rir3u;
69 , 97 ;5 . 3
- 1—05 cos(01 - 02)r2u1uﬁ + ES sin(0; — 02)r2u1uﬁ - gs3r1ui
773 4 933 , 519
~ 50 ¢ 4 cos(0) — Oy)ryuyu — %s sin(0y — Oy)ryuqu + —— 5 e*riug,
49 9 567587 288671
0, =1+— %0 821’% —%8 2 cos2(0; — 02)r5 + 108800 &t 3 372000 ¢* cos2(0, — 62);"2‘
1 1563767 91
+3 og r3sin 2(0, — 0,) + 5448000 & sin2(0; — 02)r3 — W83 cos(0 — 0x)r3u,

13
e r§u4 ———¢&cos 200, — 02)r§u4

7 : 1
& sin(6; — 02)r2u1 + — 75

1207 10
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73 3 9469
+-——¢’sin 200, — 62)r%u4 + r_82 cos(0y — Ox)raujuy + ¢t cos(0; — 92)r§u1u4
1

100 360r,

) 5
¢t sin(0; — 02)r3u1u4 - Eszui

1, . 2
—;8 sin(0; — O))roujug + 1150

50503 4, 5 16211

cos 2(0 — Ox)r3u] + &t sin 2(0, — 02)r3u;

3600 © 2" T 12000 3000
97 o ;
+ ers cos(0; — 02)72u1u421 + erg sin(0, — 02)@”]”3 _ ?83%3‘
933 773 a1
_ —20 " 8 COS(HI - Qz)rzului + Tﬁ sm(@l — 02)r2u1u4 100 4 4
7 ——i82r3 75597 84r5+8l"u —|—833ru +182ru+@4
27 740 36000513 T ertta + < £ rus + 5 & + 100
S35, 0 19 .
T R R T M
. 6722 902267944 7 a0 30, 192391 5,
=1 4657 7 K600 © 7 T 1007 2 T 25 T 000 12
EFPEICIW
10 10° 30 & Ha

5.3. Example 3

Calculate the fifth order normal form of the following equation:

5] [0 1 0 0 0 0 07[x] [808—2x1x5 = xjxs + 5x2x3) |
% 10 0 0 0 0 0]|x &(x3 — 2x3X4 + X1X5X)
% 00 0 1 0 0 0]|x e(x7x3 + 3x7x4)
=10 0 =10 0 0 0||xi|+e e(4x3 — X3xq)
s 0 0 0 0 —1 0 0 |]|xs (x1 — xs)°
e 0 0 0 0 0 -1 1]/|xs (x1 — x4)°

| X7 | 0 0 0 0 0 -1 —1]]|x7] I (x2 — x¢6)° |

The Jacobian matrix evaluated at the origin has the eigenvalues +i, +i, —1 and —1+i.
The normal form has a 4-dimensional central manifold. Two of the frequencies are equal; w; =
wy = 1. This is called internal 1:1 main resonance.

The input file is:

n="7;

norder =15;

f1]=x[2] +epsilon”2 (x[1]"3—2 x[1] x[3]"2—x[1]"2 x[5]+ 5 x[2] x[6]"2);
fI2] = —x[1] +epsilon”2 (x[3]"3—2 x[2]"2 x[4] + x[1] x[5] x[6]);
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f[3]=x[4]+epsilon”2 (x[1]"2 x[3]+ "3 x[1]"2 x[4]);
fJ4] = —x[3] t+epsilon”2 (4 x[3]"3—x[3]"2 x[4]);
f[5] = —x[5] + epsilon (x[1]—x[5])"2;
f]6] = —x[6] + x[7] + epsilon (x[1]—x[4])"2;
-

f[7]= —x[6]—x[7] + epsilon (x[2]—x[6]) "2;
The normal form in polar co-ordinates is:
34 1 11
U = —u + 3¢ 4 cos(0; — 03)r3rsu; + &2 r3u1 + 5= 20 84r§r§u1 200 84r§r§u1
1 213 6
+ 30 ¢t cos(f, — 93)r2r§u1 +— 200 34r‘3‘u1 ~ 75 ¢*sin 2(6, — 93)r§r§u1

23 4
+ % ¢t sin(0, — 93)7’27’%”1,

1 129 32501
1= —r + <—s2r1r§ 1600 etriry — 122400 34V1”2V3)COS 2(0r = 02)

3 493 88079
N ( 4,3

——92V11’27'3 — —& r1r2r3 — 163200

20 300 847'1V2r§>COS(291 — 02 — 03)

3 1829 , 89
+ <Z 84r1r§r3 + 12008 r1r2r§>cos(92 03) — 16008 r1r2r3 cos(20, — 36, + 05)

3181 53
T2240° r1r3>cos 200y — 03) + == &*rimn3

72

1 1127
! <_2_082”r§ 300 1

3 9
— r1r2r3cos2(02 03) + —=¢ rlrzrgcos(201 + 0, — 303)

144 320
401 3 161 1361

+ 1200 £4r1r‘31 <40 azrlrg +@84V173 10200 £4r1r2r3>sm 2(0, — 0,)
849 2 2601

+ 3700 84}’17'21’g sin(20; + 0, — 305) + (5821”1;’% 3280 64r1r§r§

19081 13 ,
~ 544300 84;/'17'3) sin 2(0; — 03) + —68 r1r2r3 sin 2(6, — 63)
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6. Conclusion

A simple and efficient symbolic computer program using MATHEMATICA language has been
developed for computing the high-dimension and high order normal forms without central
manifold reduction for a system in semi-simple case. Explicit formulas for the normal form and
the associated non-linear transformation are given in terms of the coefficients of the original
differential equation. The program can be easily extended to calculate high-dimensional normal
forms.
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Appendix A

Pnnq”*****************************************************"T
’

Print[" Read the input functions" 1;
Pnnq"*****************************************************"L
SetDirectory["path"]
ReadList["file"];
Print["*****************************************************"];
Print[" Transform the real functions form to complex functions form"];
Prl nt["*****************************************************"];
epsilon=\[Epsilon];
FA=Table[0{i,n}];
F=Table[f[i],{i,1,n}];
X=Table[x[i],{i,1,n}];
U=Table[u[i] {i,1,n}];
Jacobi[funs_List,vars List]:=Outer[D,funs,vars]
A=Jacobi[F,X];
Do[A=A/{x[K]->0};{k,1,n}]
B=Eigenvalueg/A]
Table[bb[k]=0{k,1,n}];
Dol

If[B[[K]]!=0,

bb[k]=1/2;,
bb[K]=L1];

{kLn}t];
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BC=Diagona Matrix[ Table[bb[k] { k,1,n}]1;
EV=EigenvectorgA]
EV=Transpose[EV].BC;
I[EV=Inverse[EV];

X=EV.U;

Do[x[i]=X[[i]].{i.n}]

F=IEV.F;

Jo=DiagonaMatrix[B];

F=F-J0.U;

Do[
FFI[i]=CoefficientList[F[[i]],\[Epsilon]];
lefi]=Length[FFI[i]];

Dol

fcili,k1]=Part[FFI[i] k1];

Dol
fcili,k1]=fci[i,k1]/{u[k]->V[K]};
{kLn}t];

{KLLIei]}H;

ALLn}];

P”nq"****************************************************"T
1

Print[" Compute the normal form and nonlinear transformation"];
P”nq"****************************************************"L
Cog3[i_]:=D[b[k,nn] { u[i],nk[i]}]/nk[i]!
nelk_]:=j-Sum[nk[i] {i,1,k-1}];
Table[neli]=0{i,n,8}];
Table[nk[i]=0{i,1,n}];
Do[TP[j]=Table[0{i,1,n}],{],0,norder-1}];
Do[TNF[j]=Table[0{i,1,n}],{j,0,norder-1}];
Dol
If[j>2,
Do[
Do[
fc[k,k1]=fci[k,k1];
If[k1<j,
Do[vv[K]=u[k]+Sum[\[Epsilon]j1* TP[j1][[K]].{j1,1,)-k1}]{k,1,n}];
Do[fc[k,k1]=fc[k,k1]/{V[i]->wV[il};.{i,1,n}];,
Do[fc[k,k1]=fc[k,k1]/{Vv[i]->u[i]};{i,1,n}];
I;
{KL2IefK]};
FF[K]=Table[fc[k,k1] {k1,2,le[K]}];
EE=Table[If[i<j,\[Epsilon]i,0] {i,1,le[k]-1}];
f[K]=FF[k].EE;
{k1n}t];

275



276 A.Y.T. Leung, Q.C. Zhang | Journal of Sound and Vibration 266 (2003) 261-279

F=Table[f[i].{i,L.n}];
Do[FF[i]=CoefficientList[F[[i]],\[Epsilon]] {i,1,n}];,
Do[FF[i]=FFI[i] {i,1,n}]

I;
Do[lel[Kk]=Length[FF[K]] ,{k,1,n}];
Do[If[j>le1[k],g[k]=0;,g[K]=Part[FF[K]j]];,{ k,1.n}];
FA=Sum[Jacobi[ TP[j-1-j1],U.TNF[j1] {j1.1,j-2}];
If[FA==0,FA=Table[0{i,n}];];
Table[p[K]=0,{k,n}];

Table[nf[K]=0,{k,n}];

Dol
Dol
Do[
Dol
Dol
Do[
Do[
Dol
nk[n]=j-Sum[nk[i],{i,1,n-1}1;
Do[
nn=Sum[nk[i]*10"(n-1),{i,1,n} ]+10"n;
blk,nn]=g[k]-FA[[k]];
Do[b[k,nn]=Co3[i],{i,1,n}];
\[Lambda]=Sum[B[[i]]*nk[i],{i,1,n}]-B[[k]];
I
\[Lambda]==0,
un=b[k,nn];
hp=0;,
hp=b[k,nn]/\[Lambda];
un=0
I;
xs=Product[u[i]*nk[i],{i,1,n}];
plk]=p[k]+hp*xs;
nf[k]=nf[k]+un*xs;
Ak, 1]
,{nk[8],0,ne[8]}];
»{nk[7],0,ne[71}1;
,{nk[6],0,ne[6]}];
»{nk[5],0,ne[5]}];
,{nk[4],0,ne[4]}];
,{nk[3],0,ne[3]}];
»{nk[2],0,ne[2]}];
»{nk[11,0,j}1;

TPJi-11=Table[plkl.{k.1.n}t1;
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TNF[j-1]=Table[nf[k], {k,1,n}];
,{j,2,norder} |;

O s
. 2

" The normal form in complex form ">>>d.txt;
"*****************************************************">>>d txt:
. $

Do[tfTk]=Sum[\[Epsilon]*j TNF[j],{j,1,norder-1}][[k]],{k,1,n}];
Dol
"D[u["<>ToString[i]<>"],t]=">>>d.txt;
tili]=B[[i]*u[i]+tf]i]>>>d.txt;
ALLn];

"****************************************************">>>d txt:
. 5

" Transform back to system in real form ">>>d.txt;
"****************************************************”>>>d txt:

. bl
Clear[F.f,X,x,Y,y,v];

X=Table[x[i],{i,1,n}];
F=Simplify[Table[tf[i],{i,1,n}]]
Do[F=F/ {u[k]->y[k]};,{k,1,n}];
Y=IEV.X;
Do[y[k]=Y[[k]],{k,1,n}];

"D[Y, t]=">>>d.txt
F1=Simplify[EV.F]>>>d.txt

"*****************************************************">>>d txt:
. ’

" Transform back to systemin Polar form ">>>d.txt;
“*****************************************************">>>d.txt;
conjug=Complex[a_,b_]:->Complex[a,-b];
nz=0;ni=0;cnz=0;cni=0;cm=0;
Do[
If[Re[B[[K]]] # O,
If[Im[B[[K]]]==0,cnz=cnz+1];,

cm=cm+1;
If[Im[B[[k]]]==0,nz=nz+1;];];
Ak}
sm=n-cm;
ni=(cm-nz)/2;
cni=(cm-cnz)/2;
k2=0;k1=0;
Do[
If[Im[B[[K]]]>0,
k2=k2+1;

v[k]=r[k2] Exp[l B[Kk2]];,
If[Im[B[[Kk]]]==0,
VIK]=u[K];,
k1=k1+1;
v[k]=r[k1] Exp[-I B[K1]];];];
{knt];

k1=0;k2=0;nzn=nz+cnz;
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Do[
If[Im[B[[K]]]==0,
ga=tf[K];
Do[ga=ga/.{ u[i]->V[i]};{i,1,n}];
k2=k2+1;

"D[u["<>ToString[k2]<>"],t]=">>>d.txt;
gk2]=ga>>>d.txt;,
If[Im[B[[K]]]<0,
ga=tf[Kk];
Do[ga=ga/ {u[i]->V[i]};.{i,1.n}];
k1=k1+1;
gc=ga Exp[l 6[k1]];
gd=gc/.conjug;
"D[r["<>ToString[k1]<>"],t]=">>>d.txt;
g[nzn+2 k1-1]= Expand[ TrigReduce] ComplexExpand[ Simplify
[(ge+gd)/2]]]]>>>d.txt;
"D[q["<>ToString[k1]<>"],t]=">>>d.txt;
g[nzn+2 k1]= Expand[ TrigReduce] ComplexExpand[Simplify
[-(ge-gd)/(21* r{k1])]]]]>>>d.txt;
I;
I;
{kn}]
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