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Abstract

This work examines elastic wave scattering around cavities embedded in a continuum with depth-
dependent shear modulus and under conditions of plane strain. A restricted case of inhomogeneity is
considered, where the Poisson ratio is fixed at 0.25 and where the density profile also varies, but
proportionally to the shear modulus. For this specific case, the wave speeds remain macroscopically
constant and it becomes possible to recover the exact Green functions by using an algebraic transformation
method. These functions are subsequently used as kernels in a standard 2D boundary element formulation
defined in the Laplace transform domain. The final step involves an inverse Laplace transformation,
whereby the transient behavior of cavities in the aforementioned inhomogeneous continuum can be
recovered. Two basic examples are solved, namely the circular cylindrical cavity under sudden internal
explosion and under a pressure wave sweep. In the latter case, it is possible to investigate the effect that the
angle of wave incidence has on the displacement and stress that develop along the cavity’s perimeter, given
the fact that the shear modulus is changing along the vertical direction. These examples serve to illustrate
the present approach and to reveal some interesting differences that are observed in transient wave
scattering phenomena between homogeneous and continuously inhomogeneous models, where the latter
models yield a more realistic representation of geological formations.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Wave motion in naturally occurring formations as well as in man-made materials is a subject
under continuous investigation [1–4] because of widespread applications in a number of scientific
fields; acoustic and electromagnetic signal transmissions, seismically induced ground motions,
subsurface exploration, non-destructive testing evaluation and mechanical properties of materials,
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noise pollution control, deep water acoustics, etc., are all governed by scalar or vector wave
equations. Due to the complex structure of such media, wave propagation is invariably
accompanied by reflection, refraction, diffraction and scattering phenomena that are difficult to
quantify. As a result, it becomes necessary to introduce a number of refinements in the standard
mathematical description of these problems such as position-dependent moduli, layering,
anisotropy, etc., [5,6]. Additional phenomena that may have to be accounted for are structural
periodicity [7], damping mechanisms [8], material parameter fluctuations [9], the presence of
cracks [10] and the existence of a second phase within the original material [11]. In general, the
complexity of all these classes of problems is such that most cases must be examined individually
and within the context of specific applications. Furthermore, recourse to specialized numerical
methods of solution, such as boundary integral equations, is often an imperative [12,13].
Elastic waves in discretely layered media and in variable velocity layers are discussed in Ewing

et al. [1], where the basic problem of inseparability of waves into dilatational and rotational
components is brought forth. Brekhovskikh and Beyer [14] and Chew [15] examine primarily
acoustic and electromagnetic waves, with the former reference focusing on wave reflection and
refraction in discrete as well as in continuously layered media and the latter on specialized
methods such as variational techniques, mode matching, the Green functions, integral equations
and the T-matrix approach which can be used for numerical solution of problems involving waves
in planar, cylindrically and spherically layered media. In general, most of the work on waves in
inhomogeneous continua focuses on acoustic and electromagnetic waves in discretely layered
media and under time-harmonic conditions. Of major importance is the planar scalar wave
equation with a depth-dependent wave number, because it corresponds to (a) sound waves when
acoustic medium density variation over the wavelength is negligible, (b) electromagnetic waves
when the electric field is polarized and (c) horizontally as well as vertically polarized elastic shear
waves. In this latter case, it is necessary to resort to a potential representation of the displacement
vector in order to recover two scalar wave equations, so that certain restrictions on the medium
inhomogeneity need to be imposed. Furthermore, the problems most often considered are wave
reflection and refraction at an interface separating two media, while wave scattering problems in
most cases require numerical techniques for their solution.
Wave motion in geological media presents certain peculiarities that have to do with the inherent

difficulty of providing an accurate description of the underlying soil and rock formations [5,16].
As a result, many specialized methods for analyzing seismically induced ground motions have
been devised [17]. For instance, Geller and Ohminato [18] compute synthetic seismograms for
laterally and vertically heterogeneous media, consisting of both solid and fluid regions, by the
direct solution method. Specifically, their formulation derives from the addition of appropriate
surface integrals to the weak (Galerkin) form of the governing equations of motion followed by
enforcement of all the necessary boundary conditions. A hybrid method for computing seismic
motion in non-homogeneous viscoelastic topography is presented in Moczo et al. [19] by
combining the discrete wavenumber method with finite differences and with finite elements, while
a specialized finite element approach was used by Kim et al. [20] for simulating the cross-hole
experimental procedure, which is used to determine material properties of in situ soil deposits as
well as their variation with depth. Gragg [21] analyzed 1-D wave motion in a weakly non-uniform
medium by recasting the governing Helmholtz equation as a first order, initial-value problem and
employing d’Alembert’s decomposition. By assuming negligible signal backscattering, a solution
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is derived whereby the forward and backward travelling waves generated at a discontinuity are
uncoupled, their separate energies are conserved and coupling has a residual effect on their phases
only. Muravskii [22] studied time-harmonic surface waves in a linearly inhomogeneous half-space,
where Rayleigh and Lamb waves are manifested at large distances form the point of application of
vertical and horizontal forces, respectively. By quantifying the manner in which medium
inhomogeneity affects the complex amplitude and frequency contents of the ensuing vibrations, it
is possible to tabulate information from which the shear modulus variation and energy dissipation
characteristics of the material in question can be deduced from experimental measurements.
Finally, numerical approaches such as those mentioned above find application in structural
mechanics as well. For instance, Volovoi et al. [23] compute dispersion curves for beams with non-
prismatic cross-section made from non-homogeneous, anisotropic materials by using finite
element analysis based on higher order beam theory.
An alternative approach for modelling geological media is to assume that inhomogeneities are

randomly distributed across a homogeneous background and then use stochastic methods of
analysis [24]. There are also efforts towards obtaining effective properties plus their bounds for
various types of heterogeneous materials (such as composites) by considering families of
specimens of different sizes for the material in question and then using stochastic averaging
techniques [25].
In this work, one focuses on the dynamic response of underground openings in an

inhomogeneous continuum where both shear modulus and density vary proportionally in the
vertical direction, so that the wave speeds of the travelling pressure (P) and shear (S) waves are
macroscopically constant. A direct boundary integral equation formulation defined in the Laplace
transform (LT) domain is employed, and time dependence of the resulting displacements,
tractions and stresses is recovered through the inverse transformation. Numerical implementation
of the aforementioned formulation is of the boundary element method (BEM) type, whose power
in solving dynamic problems for continuous media has been amply demonstrated over the past 20
years or so [26,27]. There are two basic avenues for extending the BEM to the various cases that
arise when time-dependent behavior of natural media or manufactured materials is sought: (a) use
of specialized fundamental solutions or the Green functions [28] so that the chief advantage of the
BEM, namely surface discretization only, is preserved and (b) use of volume discretization by
converting the difference between the actual mechanical state and a basic state that corresponds to
ideal linear elastic, homogeneous and isotropic conditions into a body force. This is known as the
dual-reciprocity BEM [29]. The resulting volume integral is subsequently computed with the help
of specialized functions so that relatively few interior nodes are required for maintaining good
numerical accuracy.
For non-homogeneous isotropic materials, Chen et al. [30] developed a generalized BEM where

the domain integral involves first order derivatives of the displacement kernel. By using radial
basis functions, the domain integral is converted into a boundary integral so that numerical
implementation for 2-D elastostatics is performed using a surface mesh plus relatively few internal
collocation points. Also, Itagaki [31] developed a dual-reciprocity BEM for Helmholtz-type
equations with a space-dependent source term based on repeated application of particular
solutions for the Poisson equation. This scheme was subsequently expanded to iteratively solve
problems involving non-uniform media. Similarly, Xu and Kamiya [32] approximated the
inhomogeneous term for non-linear potential problems by polynomials whose coefficients were
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determined in a least-square sense from a system of integral equations defined at both boundary
and interior domain of the problem in question.
Analytical solutions for the steady state response of layered acoustic as well as elastic

formations that are valid at high frequencies and can serve as the Green functions for a BEM
analysis of 3-D fluid–structure interaction problems appear in Tadeu and Antonio [33]. An
efficient method based on the Hankel transform combined with matrix formalism was recently
derived by Wang and Ishikawa [34] for computing displacements and stresses in multilayered
media under axisymmetric conditions. Furthermore, boundary integral equation formulations
for the solution of static deformations in continuously inhomogeneous, anisotropic solids
have also appeared recently through the introduction of appropriate kernel functions [35]. Finally,
among other recent work on the computation of the specialized Green functions one
mentions that of Guzina and Pak [36] on the response of a vertically heterogeneous elastic
half-space with smooth modulus variation under a set of time-harmonic ring and point sources
via asymptotic decomposition of the displacement vector, and that of Vrettos [37] on the response
of a compressible and continuously non-homogeneous elastic soil to a static vertical load
at the surface by using classical integral transform techniques and the extended power series
method.
In sum, the present BEM approach employs the specialized Green functions that are exact

solutions to the boundary-value problem of a point force in a continuously inhomogeneous 2-D
elastic medium whose precise description was given above. These Green functions are derived
following the method originally developed for a 3-D continuum in Manolis and Shaw [38]. They
are subsequently used as kernel functions within the context of a standard BEM program and a
series of numerical example are solved involving underground openings so as to demonstrate the
efficiency of the present approach and to help draw conclusions on the vibration characteristics of
these openings as they are swept by elastic waves.

2. Governing equations of motion

The dynamic equilibrium equations, the kinematic relations and the constitutive law for a linear
elastic, isotropic medium are

sij;j þ rfi ¼ r .ui; eij ¼ 0:5ðui;j þ uj;iÞ; sij ¼ lydij þ 2meij : ð1Þ

In the above, ui, rfi, eij and sij, respectively, are the displacements, the body forces per unit
volume, the strains and the stresses, while l, m are the Lam!e constants and r is the mass density.
Furthermore, y ¼ ekk ¼ uk;k is the dilatation. All indices range from 1 to 2 in 2-D, with commas
indicating partial differentiation with respect to the spatial co-ordinates xi and dots indicating
partial derivatives with respect to time t. Finally, the summation convention is implied for
repeated indices and dij is Kronecker’s delta.
In the case of a homogeneous medium, Eqs. (1) combine to give the well-known Navier–

Cauchy equations that govern elastic wave propagation as

ðlþ mÞuj;ji þ mui;jj þ rfi ¼ r .ui: ð2Þ
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In vector form, these equations are

ðlþ mÞ==duþ m=2uþ rf ¼ r.u ð3Þ

where = is the gradient and =2 is the Laplacian. If the continuum is heterogeneous, then the
material parameters are position dependent (e.g., l=l(x), m=m(x), r=r(x)) and the Navier–
Cauchy equations are recovered in a form different from that shown above. More specifically, a
first step yields

flðxÞuk;kðx; tÞg;i þ fmðxÞðui;jðx; tÞ þ uj;iðx; tÞÞg;j þ rðxÞfiðx; tÞ ¼ rðxÞ .uiðx; tÞ: ð4Þ

Once the differentiations have been carried out we have, in vector form, that

=fðlþ 2mÞyg þ m=2u� m=y� 2y=mþ 2=m � Eþ rf ¼ r.u ð5Þ

where E is the strain tensor eij. The above equation appears in Ewing et al. [1], where it is
mentioned that unless the variation of the material parameters over a wavelength is small, there is
coupling between pressure and shear waves at every point of the continuum. Therefore, an
approach based on the Helmholtz vector decomposition will not work.

2.1. Algebraic transformation procedure

In order to obtain a fundamental solution for the dynamic equilibrium equations governing
elastic wave propagation in a restricted class of heterogeneous continua, the following algebraic
transformation that was originally established for 3-D cases [38] is employed here in conjunction
with the displacement vector u=(u1, u2) as

uðx; tÞ ¼ TðxÞUðx; tÞ; ð6Þ

TðxÞ ¼ m�1=2ðxÞ: ð7Þ

Using this transformation, a quadratic profile for the shear modulus with respect to the depth
x2=y co-ordinate is recovered as

mðyÞ ¼ ðay þ bÞ2; ð8Þ

where a, b are constants. By taking all the resulting constraints into account [38], the final form of
the dynamic equilibrium equations is

mðyÞUi;jj þ 2mðyÞUj;ij þ rðyÞm1=2ðyÞfi ¼ rðyÞ .Ui: ð9Þ

One notes here that T(x) belongs to the group of ‘‘reverse’’ transformations in the sense that the
material profiles for which it is applicable are recovered a posteriori as constraint functions.
Thus, it is not as general as integral-type transforms, but instead has the advantage that it is
simple to invert, i.e., U=T �1/2u. If the same transformation is used for the body force so that
fiðx; tÞ ¼ m�1=2ðyÞFiðx; tÞ; then

Ui;jj þ 2Uj;ij þ rðyÞFi ¼ ðrðyÞ=mðyÞÞ .Ui: ð10Þ
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3. The LT domain solution

The LT with respect to the time variable of a given function f(t) and the inverse transformation
are defined as [39]

*fðsÞ ¼
Z

N

0

f ðtÞ expð�stÞ dt; Refsg > 0;

f ðtÞ ¼
1

2pi

Z cþiN

c�N

*fðsÞ expðstÞ dt; 0otoN; ð11Þ

where c is greater than the real part of all singularities of *fðsÞ: The LT of the previous equation of
motion (10) with zero initial conditions becomes

*Ui;jj þ 2 *Uj;ij � s2ðrðyÞ=mðyÞÞ *Ui ¼ �rðyÞ *Fi: ð12Þ

If the original forcing function is assumed to be a point impulse in time, i.e., fiðx; tÞ ¼ f0dðxÞdðtÞ;
and if the shear modulus and density variations remain proportional as rðyÞ=mðyÞ ¼ r0=m0; then

*Ui;jj þ 2 *Uj;ij � s2ðr0=m0Þ *Ui ¼ �rðyÞf0dðxÞ ¼ �r0f0dðxÞ ð13Þ

In the above, r0, m0 are the values of the material parameters at the point of application of the
load, which is labelled as the source and assumed to be at the origin of the co-ordinate system
(x=0). Eq. (13) is equivalent to the transformed equation of motion of a homogeneous solid.
Thus, its solution can be recovered by standard methods of elastodynamics, such as the use of
potentials, the dynamic equivalent to Galerkin’s vector, etc. [2,3].

3.1. Displacement fundamental solution

The procedure by which the Green function can be recovered for a dynamic equilibrium
equation such as Eq. (13) follows Cruse and Rizzo [40], i.e.,

*Gij ¼ ðf0=2pm0Þ½cdij � wr;irij
; ð14Þ

where

c ¼ K0ðsr=c2Þ þ ðc2=srÞ½K1ðsr=c2Þ � ðc2=c1ÞK1ðsr=c1Þ
;

w ¼ K2ðsr=c2Þ � ðc22=c21ÞK2ðsr=c1Þ: ð15Þ

As shown in Fig. 1(a), imposition of a unit point force at source n in both directions produces the
displacement components *Gij at receiver x, which is at a distance r away. Furthermore, Km are the
modified Bessel functions of second kind and order m, while s is the LT parameter and c1, c2 are
the P- and S-wave speeds. One notes in passing that for zero initial conditions, the Laplace
transform results are equivalent to Fourier transformed results if s=io, where o is the frequency
parameter and i ¼

ffiffiffiffiffiffiffi
�1

p
: Also, because the delta function is defined only at n, the relevant value of

the shear modulus is that registered at the source, i.e., m=m(n)=m0. Finally, the wave speeds
appearing above are macroscopically constant since for the particular type of inhomogeneity
examined herein, both shear modulus and density vary proportionally. Thus, c22 ¼ mðxÞ=rðxÞ ¼
m0=r0 and c1 ¼

ffiffiffi
3

p
c2 for the Poisson ratio of v=0.25.
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The next step is to perform the inverse of the algebraic transformation defined by Eq. (6) so as
to recover the Green function *gijðx; nÞ in the original domain. Specifically, the inverse
transformation yields

*gij ¼ m�1=2ðxÞ *Gij ¼ m�1=2ðxÞm�1=2ðnÞ½f0=2p
½cdij � wr;i r;j 
: ð16Þ

3.2. Traction fundamental solution

The *fij kernel is derived for *gijðx; nÞ by using first principles. Specifically, the displacements ui

and the tractions ti are defined as

ui ¼ gijej; ti ¼ sijnj; ti ¼ fijej: ð17Þ

where ej and nj are the unit vector and the outward pointing normal vector, respectively, while the
kinematic relations and the constitutive law appearing in Eq. (1) are still relevant. The operations
indicated in Eqs. (1) and (17) are done with respect to field point x, which implies that the value of
the shear modulus at n remains fixed as fij is being computed. Also, the (B) superscript, which
indicates LT values, is dropped for notational convenience.
In view of Eq. (17), plus the fact that l=m for our particular type of inhomogeneity, the stresses

are given as

s11 ¼ mðx2Þ½3g11;1e1 þ 3g12;1e2 þ g21;2e1 þ g22;2e2
;

s22 ¼ mðx2Þ½g11;1e1 þ g12;1e2 þ 3g21;2e1 þ 3g22;2e2
;

s12 ¼ mðx2Þ½g11;2e1 þ g12;2e2 þ g21;1e1 þ g22;1e2
 ¼ s21; ð18Þ

where x2 is the vertical co-ordinate of field point x.
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Fig.1. Definitions for (a) the displacement fundamental solution and (b) the surface discretization of the inhomogenous
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Next, the tractions ti are grouped using matrix notation as

t1

t2

( )
¼

f11

f21

f12

f22

�����
" #

e1

e2

( )
¼ mðx2Þ

�
ð3g11;1 þ g21;2Þn1 þ ðg11;2 þ g21;1Þn2
ðg11;1 þ g21;1Þn1 þ ðg11;1 þ 3g21;2Þn2

ð3g12;1 þ g22;2Þn1 þ ðg12;2 þ g22;1Þn2
ðg12;2 þ g22;1Þn1 þ ðg12;1 þ 3g22;2Þn2

�����
" #

e1

e2

( )
: ð19Þ

Based on the above expansion, the traction kernel can be written in compact form as

fijðx; nÞ ¼ m�1=2ðx2Þ #fijm�1=2ðx2Þ þDðxÞ½m�1=2ðx2Þ
 #gijm�1=2ðn2Þ ¼ f
ð1Þ

ij þ f
ð2Þ

ij : ð20Þ

The #fij and #gij parts correspond to the homogeneous medium solutions [40] divided by the shear
modulus m, namely

#gij ¼
ðf0 ¼ 1Þ
2p

½cdij � wr;i r;j 
 ð21Þ

and

#fij ¼
1

2pm
dc
dr

�
1

r
w

	 
�
dij

@r

@n
þ r;j ni

	 

�
2

r
w njr;i �2r;i r;j

@r

@n

	 


�2
dw
dr

r;i r;j
@r

@n
þ

c21
c22

� 2

	 

dc
dr

�
dw
dr

�
w
r

	 

r;i nj

�
: ð22Þ

In the latter case, m is the value at x and

r
dc
dr

¼ �½sr=c2 þ 2c2=sr
K1ðsr=c2Þ þ ½2c22=c1sr
K1ðsr=c1Þ � K0ðsr=c2Þ þ ½c22=c21
K0ðsr=c1Þ;

r
dx

dr
¼ � ½sr=c2 þ 4c2=sr
K1ðsr=c2Þ þ ðc22=c21Þ½sr=c1 þ 4c1=sr
K1ðsr=c1Þ

� 2K0ðsr=c2Þ þ ½2c22=c21
K0ðsr=c1Þ: ð23Þ

The operator D(x) is simply the derivative with respect to the vertical direction at x. Thus, if
m(x2)=(ax2+b)2, then

@½m�1=2ðx2Þ
=@x1 ¼ 0; @½m�1=2ðx2Þ
=@x2 ¼ �a=mðx2Þ: ð24Þ

Given the specific profile of m, constants a ¼ ð
ffiffiffiffiffi
m1

p
�

ffiffiffiffiffi
m0

p
Þ=L and b ¼

ffiffiffiffiffi
m0

p
; where L is the vertical

distance separating points x and n.
Carrying out the algebra, Eq. (20) attains the final form

fijðx; nÞ ¼ m1=2ðx2Þ %fijðrÞm�1=2ðx2Þ �

ffiffiffiffiffi
m1

p
�

ffiffiffiffiffi
m0

p
L

 !
%gijðrÞm�1=2ðx2Þ ð25Þ

where %fij is #fij without the shear modulus in the denominator and

%gij ¼
#g21n1 þ #g11n2

#g11n1 þ 3 #g12n2

#g22n1 þ #g12n2

#g12n1 þ 3 #g22n2

�����
" #

: ð26Þ
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A rather interesting observation is that the second term in fij, which directly depends on
fundamental solution gij, is non-symmetric as well (even for favorable values of the outward
normal such as n=(1,0) or n=(0,1), which indicates that the direction of application of the point
force is intertwined with the direction of the inhomogeneity in the Lam!e parameter profiles.

4. The BEM solution

The BEM statement is formulated in the LT domain, where solution of the boundary-value
problem is performed. A subsequent inverse Laplace transformation yields selective results (nodal
displacements and/or tractions, element stresses) in the time domain. This is achieved numerically
by employing Durbin’s algorithm [41], whereby the transformed function of interest is sampled at
discrete values of the transformed parameter as sk ¼ 6:0=T þ ið2p=TÞk; k ¼ 0; 1;y;N � 1;
where N is the total number of points deemed necessary for an accurate inversion and given as
N ¼ 2�2�5�5?: Furthermore, T is the total time interval of interest and results are given at every
time step Dt ¼ T=ðN � 1Þ; starting with t=0. The aforementioned algorithm corresponds to
numerical quadrature over the complex plane and it is known that the trailing part of the inverted
function is not accurate (i.e., the last 10% of the time interval T).
The statement in the LT domain is based upon the usual reciprocity relation for the energy

produced by the actual elastic state in the continuous body with volume V and surface S acting
upon a reference (starred) elastic state [40]. Specifically,Z

*tiu
�
i dS þ

Z
r *fiu

�
i dV ¼

Z
t�i *ui dS þ

Z
rf �

i *ui dV : ð27Þ

Since the starred state is identified with the fundamental solutions as u�
i ¼ *gijej and t�i ¼ *fijej due

to a point load f �
i ¼ dðx� nÞei; the final boundary integral equation when both x, n are allowed

on S is

cijðnÞ *uiðnÞ ¼
Z

*gijðx; nÞ*tjðxÞ dSðxÞ �
Z

*fijðx; nÞ *ujðxÞ dSðxÞ: ð28Þ

In the above, the jump term cij depends on the geometry at n in exactly the same fashion as for a
homogeneous medium, because the singularity in the fundamental solutions has not changed.
Also, one does not consider any body forces *fi and the second integral is understood in the usual
Cauchy principal-value sense. As shown in Fig. 1(b), the definition of the field x and receiver n
points in the BEM statement is the reverse of that employed in the definition of the kernel
functions.
Numerical solution of Eq. (28) follows along well-known lines, namely use of quadratic (three-

noded) isoparametric surface elements along with a semi-analytical integration of the strong
singularity exhibited by the traction kernel *fij : More specifically, the static kernel is subtracted
from the steady state kernel and the difference is integrated numerically using Gaussian
quadrature. The singularity exhibited by the static kernel is found by the rigid-body motion
concept. Since one is dealing with an inhomogeneous medium, it was necessary to derive the
limiting form of *fij as s-0, which serves as the equivalent static kernel. For the weak singularity
of the displacement kernel *gij one uses log-weighted Gaussian quadrature. If the singular node
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happens to be the middle one, then the corresponding element is further divided into two sub-
elements on either side of the singularity.
Additional refinements [12] include viscoelastic material behavior, which is quite simple to

implement in the LT domain through use of the correspondence principle, plus an infinite element
derived from the quadratic one by allowing two nodes to move to infinity and employing
appropriately modified shape functions. Finally, the matrix inversions required by the algebraic
system of equations ½ *G
f*tg ¼ ½ *F
f*ug following imposition of the boundary conditions across the
entire spectrum of s values is accomplished by Gaussian elimination, suitably modified to handle
complex number formalism and non-symmetric system matrices. Table 1 is a summary of the
BEM implementation. The aim here is to preserve a basic, modular-type BEM software platform
in Fortran 90 where, through relatively simple changes in the specific modulus that contains the
Green functions, it becomes possible to solve new classes of problems in elastodynamics.

5. Numerical examples

In this section, one uses the BEM to examine the dynamic behavior of underground circular
cylindrical openings in an inhomogeneous 2-D continuum.

5.1. Wave speed profiles for the heterogeneous medium

The various constraints that appeared during the solution procedure for the Green functions in
Sections 1 and 2 will now be examined in detail. At first, it was established that the elastic
parameter profiles are quadratic functions of the depth co-ordinate y=x2, as given by Eq. (8), and
that v=0.25. Constants a, b can be determined from values at two reference locations, namely
y=0 and L, which can be viewed as the depth co-ordinates of source and receiver points.
Therefore, given that m(0)=m0 and m(L)=m1, one has

lðyÞ ¼ mðyÞ ¼ ðð
ffiffiffiffiffi
m1

p
�

ffiffiffiffiffi
m0

p
Þðy=LÞ þ

ffiffiffiffiffi
m0

p
Þ2: ð29Þ

Furthermore, in order to employ Helmholtz’s vector decomposition as discussed in Ref. [38], it
was necessary to establish a density profile proportional to the elastic parameters. Thus, using
Eq. (29) the result is

rðyÞ ¼ rðð
ffiffiffiffiffi
m1

p
=
ffiffiffiffiffi
m0

p
� 1Þðy=LÞ þ 1Þ2: ð30Þ
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Table 1

BEM program flowchart

(1) Read input data: Determine mechanical properties, geometry, loading and boundary conditions, select LT

parameter si range

(2) BEM solution at each LT parameter value si: System matrix construction, solution of boundary-value problem,

recovery of unknown boundary quantities, computation of stress components

(3) LT inversion algorithm: Recover time-domain values of tractions/displacements/stresses that have been

specified for inversion; for wave scattering problems, superimpose incident wave field

(4) Write output data: Tables and plots
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The above material parameters yield wave speed profiles c1(y) and c2(y) that are macroscopically
constant, i.e.,

c1ðyÞ ¼ c10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m0=r0

p
; c2ðyÞ ¼ c20 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m0=r0

p
: ð31Þ

In all the ensuing examples, one considers firm soil with ‘background’ material properties

m0 ¼ l0 ¼ 180� 106 Pa; r0 ¼ 2000 kg=m3;

c10 ¼ 519:6 m=s; c20 ¼ 300:0 m=s: ð32Þ

Two basic shear modulus profiles will be examined, namely one where the material stiffens with
increasing depth and another where it becomes softer. Specifically, m1=280� 106 Pa in the former
case and m1=100� 106 Pa in the latter case. The length scale over which this variation takes place
is L=520m, which coincides with the wavelength of the P-wave at a vibration frequency of
f=1.0Hz. Both these profiles are shown in Fig. 2.
Next, Figs. 3 and 4, respectively, plot the non-zero components of the displacement and

traction fundamental solutions (Eqs. (16) and (25), respectively) that register along a vertical line
from the source at y=0 where unit point forces are applied downwards to y=L, i.e., along the
direction of the inhomogeneity. As expected, the displacements increase and the tractions decrease
in the stiffening material as the receiver moves downwards. The opposite trend is observed for the
softening material.

5.2. Comparison study

One first examines a circular cylindrical cavity of radius r=a=0.381m in the ‘‘background’’
homogeneous medium described above, as it is being engulfed by a P-wave propagating from a
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Fig. 2. Shear modulus variation with depth: ?, homogeneous; – – –, stiffening; ——, softening material.
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point source at infinity. Behind the wave front, the following incident stress field develops as

si
xx ¼ s0; si

yy ¼ ðv=ð1� vÞÞs0 ¼ es0; si
xy ¼ 0; ð33Þ

where s0 is taken as 10
5 Pa and e ¼ 1

3
for the Poisson ratio of 0.25. At the same time, the radial and

tangential components of the incident displacement field are

ui
r ¼ �ðs0=rc1Þ cos y½t � tn
; ui

y ¼ �ðs0=rc1Þ sin y½t � tn
 ð34Þ
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Fig. 3. Displacement fundamental solution component of (a) G11 and (b) G22 at f ¼ 1:0Hz: ?, homogeneous; – – –,

stiffening; ——, softening material.
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and delay t* is the time required for the wave to reach a particular station (a, y) on the cavity’s
perimeter, i.e.,

tn ¼ að1� cos yÞ=c1: ð35Þ

Obviously, t*=0 at the point of first impact, which would be station 1 at y=0 in Fig. 5(a) for an
angle of incidence j=0. One notes here that the total field is understood to be the sum of incident
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Fig. 4. Traction fundamental solution components of (a) F11 and (b) F22 at f ¼ 1:0Hz: �?, homogeneous; – – –,
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(i) plus scattered (s) fields; in the case of displacements, a rigid-body motion component can be
extracted as the cavity displaces in the direction of the incoming wave. Finally, an intrinsic time scale
can be computed for this material as the time require for the P-wave to traverse distance 2a, i.e.,

t0 ¼ 2a=c1 ¼ 0:001467 s: ð36Þ
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Fig. 5. Circular cylindrical cavity under (a) pressure wave sweep with arbitrary angle of incidence j and (b) sudden

internal pressure.
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An analytical solution for the total stress produced around the cavity wall during and after
wave passage appears in Baron and Matthews [42]. Specifically, an integral transform technique is
employed and the ensuing expressions for the radial (srr) and hoop (syy) stresses are derived in the
time domain following analytical inversion over the complex frequency plane. The results are
normalized by dividing with the incident stresses and are plotted as stress concentration factors
SCF ¼ ðss

yy þ si
yyÞ=s

i
yy versus dimensionless time T ¼ c1t=2a: The same basic approach was

subsequently used by Baron and Parnes [43] for the cavity wall displacement field normalized as
Us

i ¼ us
im=ðs0aÞ versus T. Finally, the analytical results are inaccurate at early times, up to about

one full transit time t0, because of the limited number of terms retained in the series expansion of
the relevant fields in the transformed domain. It is mentioned in the aforementioned references
that a short-time asymptotic solution would be necessary for very early times, limited to the
illuminated zone of the cavity, i.e., the region |y|o60.
One imposes the following boundary-value problem on the BEM formulation of Section 4

tx ¼ si
xx cos yþ si

xy sin y; ty ¼ si
xy sin yþ si

yy cos y: ð37Þ

One then solves for the displacement field (ux, uy), from which the stress field (sxx, syy, sxy) can be
derived by combining the last two of Eqs. (1), introducing derivatives of the strains in the normal
(n) tangential (q) directions as @ui=@n ¼ ð@ui=@xiÞð@xi=@nÞ; @ui=@q ¼ ð@ui=@xiÞð@xi=@qÞ and using
finite differences. This solution corresponds to the scattered field. All BEM results have been
normalized as previously mentioned and are plotted in Figs. 6 and 7. One observes a reasonably
good agreement between analytical and BEM results, especially past the first full transit time
interval t0 (or T=1). The BEM solution is stable in the sense that any space discretization past 16
elements and any LT parameter sampling of over 20 points yields the same results at comparable
locations and time instants. Furthermore, the results reproduce the jump associated with wave
signal arrival and smoothly decay to the values predicted by the static solution [44]. The maximum
dynamic SCF is 2.9 and appears at the top and bottom stations.

5.3. Cavity under sudden explosion

The next series of results pertains to the circular cylindrical cavity of radius a under sudden
radial pressure p0=10

5 Pa applied (and maintained) at the cavity walls. One assumes that the
cavity is at a certain depth from the free surface of a half-plane, so that no reflected or surface
waves are present. The BEM solution is obtained by imposing tractions along the boundary. As
mentioned in the previous sub-section, the basic discretization schemes are either 16 elements
yielding 32 nodal points or 32 elements yielding 64 nodal points. Furthermore, either 20 or 50 LT
sampling points are used with each spatial discretization scheme. The results shown below are for
the 16 element and 50 LT point combination.
Cavity expansion in a homogeneous medium is a problem with radial symmetry. In the presence

of inhomogeneity, this is no longer true and it becomes necessary to compute the radial
displacement ur and the hoop stress syy at three (at least) representative locations on the
perimeter, namely stations 1, 2 and 4 that are shown in Fig. 5(b). One notes here that reference
length L is set equal to the cavity diameter, while the relative orientation of the cavity itself is such
that m=m0 is associated with the top station (no. 4 at y=270) and m=m1 with the bottom station
(no. 2 at y=90). Figs. 8 and 9, respectively, plot the time variations of ur and syy and contrast

ARTICLE IN PRESS

G.D. Manolis / Journal of Sound and Vibration 266 (2003) 281–305 295



ARTICLE IN PRESS

-1

-0.8

-0.6

-0.4

-0.2

0

0.00 2.00 4.00 6.00

U
x

-0.04

0.00

0.04

0.08

0.12

0.16

0.00 2.00 4.00 6.00

U
x

-0.80

-0.60

-0.40

-0.20

0.00

0.20

T (sec)

U
x

(a) 

(b) 

(c) 

0.00 2.00 4.00 6.00

Fig. 6. Comparison of scattered normalized displacements in a cavity buried in a homogeneous continuum under a

P-wave: (a) station 1 at y=0, (b) station 2 at y=90 and (c) station 3 at y=180. - � � -, 16 BE, 20 LT pts; – – –, 32 BE,

20 LT pts; ——, analytical solution.

G.D. Manolis / Journal of Sound and Vibration 266 (2003) 281–305296



them with the solution obtained for a homogeneous background (m=m0). One observes that the
radial motion at the equator is virtually unaffected by variations in the shear modulus; at the top
station, however, a very different picture emerges in that the crown sinks in. At the bottom,
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displacements show outward movement and are higher for the softer material and lower for the
stiffer material, as compared to the homogeneous background solution. Essentially, the cavity no
longer expands uniformly but assumes a distorted oval shape that depends on whether the
material is becoming softer or stiffer. As far as the transient hoop stresses at the equator are
concerned, there is little difference between the stiffer and softer materials, but both overshoot the
homogeneous material solution. Finally, at both top and bottom stations, the inhomogeneous
material stresses bracket the homogenous stresses. The SCF here is simply the ratio syy/p0. Given
the normalized value for p0, the highest SCF observed are 1.56 at the equator and 1.38 at the
poles, versus 1.25 that would uniformly valid for the homogeneous material.
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5.4. Cavity under pressure wave sweep

This is essentially the same problem solved in the comparison study, except that two additional
parameters enter the analysis: (a) The increase or decrease in the shear modulus registered in the
vertical direction and along a reference distance of L=2a, and (b) the direction of the incoming
P-wave measured with respect to angle j between the normal to the wave front and the x-axis.
Since the incident field is known and was given in Section 5.2, all results in Figs. 10 (horizontally
travelling wave) and 11 (vertically travelling wave) pertain to scattered hoop stress so as to
facilitate the comparison between inhomogeneous and homogenous media. Also, the dynamic
SCF can always be reconstituted by using first principles.
As the P-wave sweeps the cavity along the horizontal direction, the critical stress state is that

developing at the top and bottom stations. For the stiffer profile, there is an overshoot of about
10% at the bottom and no measurable difference at the top as compared to the homogeneous
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material. The reverse situation is observed for the softer profile. One notes here that the scattered
hoop stresses overshoot the incident stress by a factor of 1.9 in the homogeneous material, which
is precisely what produces the SCF of 2.9 discussed in the comparison study. The hoop stresses at
stations 1 and 3 along the equator are of minor importance and, in fact, are an order of magnitude
less than the stresses at stations 2 and 4. One observes that after an early time interval, the
inhomogeneous material stresses diverge from those in the homogeneous background and, for the
most part, are smaller in absolute value terms.
The final case has to do with the P-wave sweeping the cavity from below and in the direction of

the varying shear modulus profile. The key locations are now the two stations along the equator.
There, the hoop stresses overshoot the homogeneous material solution by factors of about 20%
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and 15% for the stiffening and softening material, respectively. The difference is that the rise in the
stress is more rapid for the former type of inhomogeneity. As far as the stresses at the point of first
impact and its counterpart in the shadow zone are concerned, one sees that they act as bounds for
the homogeneous hoop stress. In absolute value terms, the larger stress registered at Station 2 in
the illuminated zone is that for the stiffening material; the reverse holds true at Station 4.

6. Conclusions

In this work, a BEM has been developed for the solution of wave scattering problems in buried
cavities by using the appropriate Green’s function that obviate the need for any interior
discretization. Specifically, these functions are derived by combining algebraic transformations of
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the displacement vector with Helmholtz’s decomposition in a restricted class of 2-D
heterogeneous continua and under time-harmonic conditions. This type of solution is for a point
impulse in the continuum and is subjected to certain constraints that arise during the course of the
solution procedure. Specifically, the constraints correspond to elastic modulii that have a
quadratic variation with respect to the depth co-ordinate, the Poisson ratio of 0.25 and a density
profile proportional to that of the shear modulus. BEM implementation is straightforward and
requires a rather modest discretization effort for this class of problems. For simple cases such as
signal transmission along the vertical direction, the results (given directly by the Green functions)
are predictable: if the material stiffens with depth, displacements decrease and forces increase in
that direction. When boundary-value problems involving openings in the inhomogeneous
continuum are solved, however, the picture that emerges is far more complex. This is due to the
interplay between geometry and material inhomogeneity and furthermore depends on the type
and direction of the loading. Invariable, larger dynamic stress concentration factors are recovered
along the cavity perimeter for the inhomogeneous medium as compared to the homogeneous
background case.
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