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Abstract

Analysis and control of vibrations of agricultural machines to improve machine performance and
vibration comfort of the operator is a major concern of manufacturers these days. In this paper, an
analytical method to build the linearized equations of motion of an elastic tree structured mechanism, is
presented. The method is based on the principle of virtual work resulting in a set of parameterized linear
equations that are functions of the mechanical parameters and the geometry and the interconnection
structure of different bodies in the mechanism. The rigid-body motions of the mechanical system are
represented by Lagrangian generalized co-ordinates while elastic deformations are described by nodal co-
ordinates from a finite element formulation. Explicit expressions for external distributed and concentrated
forces and internal concentrated forces acting on the mechanism are given.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Modern agriculture, with competitive prices for marketable arable crops, forces farmers and
contractors to apply faster and more powerful mobile agricultural machines to reduce labour
costs in field crop production. However, with increased operating speed, dominant peaks in the
power spectrum of soil unevenness, shift toward higher frequency bands, imposing excessive
vibration levels on the machine. Heavy vibrations cause malfunctioning of machine and
implement and discomfort to the driver or operator. Manufacturers and research groups put in a
great deal of effort to reduce machine vibration in order to improve comfort and to increase
efficiency of field operations.
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The vibration phenomena of a complex mechanical system are completely characterized by the
fundamental modes of the mechanism, also called modal parameters or fundamental parameters
[1,2] including resonance frequencies, damping ratios and mode shapes of the system. Modal
parameters can be extracted from the linearized equations of motion of a structure which are
derived analytically or experimentally. In the method of experimental modal analysis, the
response of a structure to known input excitation forces, is measured at several locations. From
the input–output measurements, the frequency response functions (FRFs) are determined. These
FRFs can be used to derive a dynamic model of the structure by estimating the modal parameters
in the frequency domain or in the time domain [1]. Because experimental models are accurate and
easy to build, they have shown to be very useful to analyze the vibrational behaviour of
operational mechanical structures such as ships, air planes, cars, trains, offshore platforms,
agricultural mobile machines, etc. [3,4]. For design studies, however, experimental models can
hardly be applied as they are unstructured black box models lacking a sufficient flexibility in use
owing to the absence of explicitly defined mechanical parameters (as masses, centres of mass,
moments and products of inertia, damping and stiffness coefficients of applied dampers and
springs, etc.) in the model [1]. Analytical methods used to build the differential equations of
motion of a mechanism, are based upon the principle of virtual work [5], the method of Newton–
Euler [6], the method of Lagrange [6,7] or Kane’s method [8] (i.e., the principle of the virtual
power). The resulting parameterized equations of motion, also called white box models, are
functions of the mechanical parameters and the geometry and the interconnection structure of
different bodies in the mechanism. Although white box models are commonly less accurate than
black box models, they are much better suited for design purposes thanks to their parameterized
structure.

Linearized analytical models have widely been used as a tool to predict vibration levels on
agricultural machines and implements [9–19]. At the design stage, machine performance
and ride comfort are improved by optimizing diverse mechanical parameters and the
configuration of the mechanical structure as well as through the assistance of the models within
the constraints set by other requirements [13,19–21]. However, the applied linear models are
generic and can only be employed in the application they are derived for. In addition, most studies
are concentrated on mechanical systems with only rigid-body motions. In just a few cases, finite
element techniques are used to describe small elastic deformations of flexible parts in the
mechanism [18].

Most control designs, including these on agricultural machinery [22–26], are based upon
the use of a design model. The relationship between models and the reality they represent is
subtle since no single model can respond exactly like the true plant. As a result, control
strategies must be able to account for the inevitable inadequacy of design models. To
cope with modelling errors, mathematical system theoreticians and control engineers
developed robust control theories among which linear robust control offers today a pallet
of well established design methods [27–33]. Linear robust controllers guarantee robust
stability and performance of the feedback system in the presence of model uncertainties within
well-defined boundaries (e.g., uncertainties arising from variations in the mechanical parameters
and material properties, or from unmodelled non-linearities and truncated high-frequency
dynamics) and thus created a renewed interest to apply linear white box models for control
system design.
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2. Objectives

A generalized methodology, based upon the principle of the virtual work, to build
systematically the linearized equations of motion of a tree structured, non-gyroscopic and time-
invariant rigid multibody has been developed [34]. The equations of motion, composed of a set of
coupled second order differential equations, are formulated as a function of independent
Lagrangian generalized co-ordinates. This indicates that the total number of differential equations
is minimal in the course of which each differential equation represents just one degree of freedom
of the mechanism.

In this paper, the methodology is extended to multibodies with flexible parts. The rigid-body
motions are again described by independent Lagrangian generalized co-ordinates while the
flexible deformations of the multibody are represented by nodal co-ordinates from a finite element
formulation. This generalized modelling methodology is validated in another paper on an elastic
spray boom of which the final differential equations of motion are evaluated on a laboratory
experiment [35].

3. Description of the degrees of freedom of an elastic multibody

Motions of an elastic multibody Q; composed of n deformable bodies Q1;Q2;y;Qn; are a
combination of rigid-body displacements and flexible body deformations. The linearized
equations of motion of a tree structured mechanical system with elastic parts, will be presented
in hybrid co-ordinates: independent Lagrangian generalized co-ordinates (collected in the vector
q) and independent nodal (or modal) co-ordinates (introduced by applying finite elements for the
elastic deformations and collected in the vector u) will be used to describe the rigid-body motion
and the flexible body deformation of the mechanism.

Remember that a multibody has a tree structure (i.e., multibody ordered in an open chain) if
and only if a selected body Qi in Q can be reached through only one single path when proceeding
from any body in Q or from Q0 to Qi along a sequence of bodies and hinges in such a way that no
hinge is passed more than once.

3.1. Nodal co-ordinates

In finite element analysis, an elastic body Qi is divided into say mi finite elements or subregions
with finite size and having simpler geometries than the original structure (Fig. 1). In each finite
element a number of nodes is selected in which the elastic deformation of Qi is derived. All nodes
in Qi have a certain number of degrees of freedom (d.o.f.) (up to a maximum of six d.o.f.: three
translational and three rotational), each represented by a time-dependent nodal co-ordinate
[36,37]. As a consequence, elastic deformations of Qi with hi flexible d.o.f. are described by the hi

independent nodal co-ordinates ui1;y; uihi
; collected in the nodal displacement vector ui: The total

number of flexible d.o.f. of Q; composed of n elastic bodies, is represented by the overall vector of
independent nodal co-ordinates

u ¼ ½uT1 y uTi y uTn �
T ¼ ½u11 y u1h1

y ui1 y uihi
y un1 y unhn

�T:
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Contrary to other methods (Rayleigh–Ritz method, the assumed mode method, the method of the
weighted residuals), u is a collection of physical co-ordinates, which is an interesting feature of the
finite element method [38].

3.2. Deformation co-ordinates

Suppose a selected point Pij located in volume element dVij which is part of element j enclosing
volume Vij (Fig. 1). To describe the position of Pij in Qi; moving with respect to the inertial body
Q0; several co-ordinate systems should be introduced (Fig. 1). The (absolute) reference co-
ordinate system (ox; oy; oz; oo) (or global co-ordinate system, or inertial co-ordinate system) is
fixed to Q0: The floating reference co-ordinate system (ix; iy; iz; io) (or body co-ordinate system)
follows the rigid-body motion of Qi i.e., when Qi moves as an undeformable structure. However,
due to the elastic nature of io; the origin io cannot be associated with a physical point of Qi: By
this, the term ‘‘floating axes’’ marks the floating nature of the axes relative to the deformable finite
elements. Finite element j in Qi is located with regard to (ix; iy; iz; io) by two co-ordinate systems:
an element reference frame (ij #x; ij #y; ij #z; ij #o) (or local reference frame) attached to a fixed point of
element j and following the orientation of that element, and an intermediate element reference
frame (ijx; ijy; ijz; ijo) of which the origin ijo remains fixed with respect to io and whose axes retain
a fixed orientation with respect to (ix; iy; iz) whether Qi performs a rigid-body motion or an elastic
deformation. When Qi is in undeformed state, the intermediate element reference frame and
element reference frame coincide.

The position of Pij after rigid-body motion and elastic deformation of Qi; is stated by the vector
sij representing the rigid-body motion and the variable element displacement co-ordinate vector
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Fig. 1. Description of the position of a point in space.
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[38] tij (or deformation co-ordinate vector) representing the elastic deformation (Fig. 1). The
vector sij is defined in (ix; iy; iz; io). However, since the finite element formulation requires local
co-ordinates in the shape functions, tij is defined in (ijx; ijy; ijz; ijo). All components of tij are time-
dependent deformation co-ordinates (or deformation variables). The deformation variables
express the displacement of Pij from its initial position to its end position after deformation.

Transformation matrices provide a relationship between tij and ui [38]:

tij ¼ UT
ijui: ð1Þ

As the floating reference co-ordinate system follows rigid-body motions of Qi; displacements due
to elastic deformations can fully be described in this frame. By this, the vector ui is described in the
floating reference frame of Qi: The matrix UT

ij ð
ijx; ijy; ijzÞ is a function of the shape functions (or

basic functions, Hermitian interpolation functions) of every finite element j of Qi [38].

3.3. Lagrangian generalized co-ordinates

Supposing an arbitrary hinge, aa; linking two contiguous bodies Qi and Qj in the multibody Q;
preserves na translational and/or rotational rigid-body degrees of freedom. As an example, the
two adjacent bodies Qi and Qj in Fig. 2, connected by the single cylindrical joint aa; allow one
translational and one rotational rigid-body d.o.f. by which na becomes two. The na independent
Lagrangian generalized co-ordinates qa1;y; qana

; collected in the vector qa; describe the na rigid-
body d.o.f. in hinge aa: A tree structured multibody Q composed of n bodies, Q1;y;Qi;y;Qn;
is linked by an equal number of hinges a1;y; aa;y; an: The overall vector of generalized
co-ordinates q; representing all rigid-body d.o.f. of the n-body system Q becomes then

q ¼ ½qT1 y qTa y qTn �
T ¼ ½q11 y q1n1

y qa1 y qana
y qn1 y qnnn

�T:
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4. Kinematic analysis of a multibody system

Kinematic analysis is the process of defining the position, velocity and acceleration of a
specified multibody design.

4.1. The overall angular acceleration vector

The inertial angular velocity of Qi; is a vector quantity, commonly presented (i.e., projected) in
(ox; oy; oz; oo) as oxi or in (ix; iy; iz; io) as xi ¼ oAT

i
oxi in which oAi is the co-ordinate or rotation

transformation matrix from (ix; iy; iz; io) to (ox; oy; oz; oo). The right superscript T of a matrix
means the transpose of this matrix. It can be proved for linear time-invariant systems that the
overall angular acceleration vector ’x can be expressed as [39]

’x ¼M11

.q

.u

" #
ð2Þ

in which for the n-body system Q

’x ¼ ½ ’xT
1 y ’xT

i y ’xT
n �

T:

M11 is a constant matrix with appropriate dimensions.

Example. In space, the instantaneous orientation of a rigid-body Q1 with three rotational d.o.f.
with respect to QO can be described with the Tait–Bryan angles yðtÞ; fðtÞ and cðtÞ representing
body roll, pitch and yaw of Q1 around its co-ordinate axes 1x; 1y and 1z: In this case for linear
motions,

oA1 ¼

1 �c f

c 1 �y

�f y 1

2
64

3
75 ð3Þ

and

ox1 ¼

oo1x

oo1y

oo1z

2
64

3
75 ¼

.y

.f

.c

2
664

3
775: ð4Þ

4.2. The variation of the overall angular orientation

Finite rotations do not obey the commutative law of addition and therefore cannot be
considered as vectors [40]. However, infinitesimal rotations and the variation of finite
rotations meet the three necessary attributes characterizing vectors [40] and can be treated
as such.

The inertial variation of small angular displacements of Qi with respect to Q0 can again be
presented in Q0 by the vector opi or in Qi by the vector pi ¼ oAT

i
opi: After collecting these vectors

ARTICLE IN PRESS

J. Anthonis et al. / Journal of Sound and Vibration 266 (2003) 553–572558



in the overall vector of the variation of the angular orientation p; one obtains for a linear-time
invariant n-body system [39]

dp ¼ ðM11 þM12ðq; uÞÞ
dq

du

" #
; ð5Þ

in which

dp ¼ ½dpT
1 y dpT

i y dpT
n �

T:

The elements in the matrix M12ðq; uÞ are linear functions of q and u:

Example. The variation of the overall angular acceleration of Q1 in the example of the previous
subsection is calculated as

odp1 ¼

odp1x

odp1y

odp1z

2
64

3
75 ¼

1 0 0

0 1 0

0 0 1

2
64

3
75þ

0 �c f

c 0 �y

�f y 0

2
64

3
75

8><
>:

9>=
>;

dy

df

dc:

2
64

3
75 ð6Þ

4.3. The overall acceleration vector of the origin of the body co-ordinate systems

The second derivative of the inertial position vector ori of the origin io of Qi gives the inertial
acceleration vector of io which can be presented in (ox; oy; oz; oo) as o.ri or in (ix; iy; iz; io) as
.ri ¼ oAT

i
o.ri: Consequently,

.r ¼M21

.q

.u

" #
; ð7Þ

.r ¼ ½.rT1 y .rTi y .rTn �
T; is the inertial overall acceleration vector of the origin of the floating

reference frames. As already explained, each acceleration vector ri is represented in the
corresponding floating reference frame of Qi and M21 is a constant matrix with appropriate
dimensions.

Example. Suppose that in the example of the previous subsections, a rigid-body Q2 is connected
to Q1 with a hinge retaining three translational d.o.f. that are represented by the Lagrangian
generalized co-ordinates x; y and z traced along the body co-ordinate axes 2x; 2y and 2z of Q2: In
this case, the overall acceleration vector of the origin 20 of the body co-ordinate system for linear
motions becomes

or1 ¼

or2x

or2y

or2z

2
64

3
75 ¼

.x

.y

.z

2
64

3
75: ð8Þ
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4.4. The variation of the overall position vector of the origin of the body co-ordinate systems

The procedure to derive .ri or o.ri can be used to calculate dori or dri ¼ oAT
i d

ori such that [39]

dr ¼ ½M21 þM22ðq; uÞ�
dq

du

" #
; ð9Þ

dr ¼ ½drT1 y drTi y drTn �
T; is the variation of the overall position vector of the origin of the

floating reference frames. Again, the variation of each individual inertial position vector dri is
represented in the corresponding floating reference frame (ix; iy; iz; io) and the elements in the
matrix M22ðq; uÞ are linear functions of q and u:

Example.

dor2 ¼

dor2x

dor2y

dor2z

2
64

3
75 ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
64

3
75

8><
>:

þ

0 �y z 0 �c f

x 0 �z c 0 �y

�x y 0 �f y 0

2
64

3
75
9>=
>;

dy

df

dc

dx

dy

dz

2
6666666664

3
7777777775
: ð10Þ

5. Dynamic analysis of a multibody system

5.1. The principle of virtual work for a flexible multibody

For a multibody system, composed of n elastic bodies, the principle of virtual work can be
written in the form [38–43]

Xn

i¼1

Xmi

j¼1

Z
Vij

rijd
opTij

o .pij dVij

( )

¼ �
Xn

i¼1

Xmi

j¼1

Z
Vij

deT
ij rij dVij

( )
þ

Xn

i¼1

Xmi

j¼1

ðdW
df
ij þ dW

cf
ij Þ

( )
ð11Þ

explaining that the virtual work owing to forces of inertia is equal to the sum of the virtual work
performed by internal and external forces, where n is the number of bodies in the mechanism, mi

the number of finite elements in Qi; eij the strain vector defined in (ijx; ijy; ijz; ijo), deij the virtual
strain vector defined in (ijx; ijy; ijz; ijo), rij the normal stress vector defined in (ijx; ijy; ijz; ijo), Vij the
volume of finite element j in body Qi; rij the density of the elementary volume element dVij ; opij
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the inertial position vector of point Pij; d
opij the inertial virtual displacement vector of Pij ; o .pij the

inertial acceleration vector of Pij ; dW
df
ij the virtual work done by the external distributed body

and surface forces on dVij ; and dW
cf
ij the virtual work executed by all concentrated forces in dVij :

With the aid of the Kelvin–Voight model for visco-elastic materials [43], one can prove that [39]

deT
ij rij dVij ¼ duTij dKijuij þ duTij dCij ’uij; ð12Þ

dKij and dCij are respectively the stiffness matrix and the damping matrix of the elementary
volume element dVij:

From Fig. 1 it directly follows that
opij ¼

ori þ osij þ otij ð13Þ

or after substitution of Eq. (1) into Eq. (13)

opij ¼
ori þ oAiðsij þ UT

ijuiÞ: ð14Þ

For linear time-invariant non-gyroscopic mechanisms, the variation and the second derivative of
Eq. (14) lead to the expressions

dopTij ¼ dorTi þ dopT
i

oAi*sij
oAT

i þ duTi Uij
oAT

i ð15Þ

and

o .pij ¼ o.rij � oAi*sij
oAT

i
o ’xi þ oAiU

T
ij .ui: ð16Þ

One should remark that for a vector a ¼ ½ax ay az�T; *a; pronounced a-tilde, represents the second
order tensor or the ð3 � 3Þ skew-symmetric matrix

0 �az ay

az 0 �ax

�ay ax 0

2
64

3
75:

Substituting Eqs. (12), (15) and (16) in Eq. (11) and taking into account that r ¼ oATor and
x ¼ oATox; result in

½drT dpT duT�

½mb� BT ET

B J GT

E G M

2
64

3
75

.r

’x

.u

2
64

3
75

8><
>:

9>=
>;

þ duT½C’uþ Ku� � ½dW df þ dW cf � ¼ 0: ð17Þ

The matrix

½mb� BT ET

B J GT

E G M

2
64

3
75 ¼Mse ð18Þ

is the embryonal form of the overall mass matrix of the mechanism under consideration.
½mb� ¼ oA½mb�oAT ¼ diag½ðmbi

I3Þi� ¼ diagðmb1
I3;y;mbi

I3;y;mbn
InÞ is a block diagonal matrix in

which mbi
is the mass of Qi and I3 a ð3 � 3Þ-identity matrix. oA ¼ diag½ðoAiÞi�; B ¼ diag½ðBiÞi�;
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E ¼ diag½ðEiÞi�; J ¼ diag½ðJiÞi�; G ¼ diag½ðGiÞi�; C ¼ diag½ðCiÞi� and K ¼ diag½ðKiÞi� all have an
equivalent block diagonal structure.

In these matrices one can recognize [42]

mbi
¼

Xmi

j¼1

Z
Vij

rij dVij ; ð19Þ

the total mass of body Qi;

Bi ¼
Xmi

j¼1

Z
Vij

*sijrij dVij; ð20Þ

the inertia coupling between the translation and rotation of Qi;

Bi ¼ O3 ð21Þ

when Qi has a centroidal floating reference frame (the origin io is placed in the center of gravity of
Qi); O3 is a ð3� 3Þ-zero matrix;

Ei ¼
Xmi

j¼1

Z
Vij

Uijrij dVij ; ð22Þ

the inertia coupling between the translation and the elastic deformation of Qi;

Gi ¼ �
Xmi

j¼1

Z
Vij

Uij*sijrij dVij; ð23Þ

the inertia coupling between the rotation and the elastic deformation of Qi;

Ji ¼ �
Xmi

j¼1

Z
Vij

*sij*sijrij dVij ; ð24Þ

the inertia matrix (or inertia tensor) with respect to ðix; iy; iz; ioÞ: Ji is a ð3� 3Þ-matrix. Its diagonal
elements are the mass moments of inertia and the off-diagonal elements the mass products of
inertia. When the latter are zero, the former are called the principal moments of inertia and the
body co-ordinate axes of Qi become the principal axes.
Mi; Ci and Ki are the mass matrix, the damping matrix and the stiffness matrix of body Qi

which correspond to the finite element modelling of Qi: These matrices are given by

Mi ¼
Xmi

j¼1

Z
Vij

UijU
T
ijrij dVij ; ð25Þ

Ci ¼
Xmi

j¼1

LT
ijCijLij; ð26Þ

Ki ¼
Xmi

j¼1

LT
ijKijLij; ð27Þ
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Lij is called the locator (or label) matrix [38] (or Boolean matrix since its elements only consists of
0 or 1). Lij relates the nodal co-ordinates of finite element j with the nodal displacement vector ui:

Since ½mb�; J andM are symmetric matrices, it is obvious thatMse ¼MT
se which is in accordance

with the basic principles of kinetics.
When only rigid-body motion is considered, nodal co-ordinates vanish and Eq. (17) becomes

½drT dpT�
½mb� BT

B J

" #
.r

’x

" #( )
� ½dW df þ dW cf � ¼ 0: ð28Þ

Neglecting rigid-body motion results in the equation

M.uþ C’uþ Ku ¼ dW df þ dW cf ð29Þ

which is the equation of motion of a mechanical system in structural dynamics.

5.2. Derivation of expressions for the forces acting on a mechanism

A force of i; acting on a body Qi can be divided into a dynamic part ofdi ðtÞ and a static part ofo
i :

The three components of ofd
i are known time functions (except for the spring-damper hinge forces

which are functions of the generalized co-ordinates q and u or their derivatives) and should be
small, to assure a linear rigid-body motion and/or elastic deformation of Qi: In addition, any
product of a nodal or Lagrangian generalized co-ordinate with a dynamic force always vanishes as
it concerns here an infinite small quantity of higher order.

Static forces have a constant and finite magnitude and a fixed direction with regard to a body
reference frame or to the absolute reference frame. From this, it is obvious that the product of ofo

i

with one or more nodal or Lagrangian generalized co-ordinates, which may not be neglected, can
manifest in the equations of motion (see, e.g., the vertical pendulum).

All forces can further be partitioned in distributed forces (body or surface forces) and
concentrated forces (internal hinge forces and external forces). These forces are known with
regard to a body reference frame (hinge forces, etc.) or with regard to the absolute reference frame
(gravitational forces, etc.).

In the following sections distributed forces, concentrated hinge forces (translational spring–
damper–actuator) and concentrated absolute and relative forces which are mostly used, will be
treated.

5.2.1. External distributed forces

The virtual work executed by the distributed body forces oFbij
and the distributed surface forces

oFsij
in element j of Qi can be expressed as [41]

dW
df
ij ¼

Z
Vij

dopTij
oFbij

ðtÞ dVij þ
Z

Sij

dopTij
oFsij

ðtÞ dSij ; ð30Þ

Vij and Sij are the volume and the surface area of element j in Qi: If oFbij
ðtÞ and oFsij

ðtÞ are known
with regard to the floating reference frame of Qi; a summation of Eq. (30) over all finite elements
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of all bodies in the mechanism gives [38]

dW df ¼ ½dqT duT� MT
21 M

T
11

O

I

" #" # fb þ fs

nb þ ns

Fb þ Fs

2
64

3
75; ð31Þ

O is a square zero matrix in which the number of rows corresponds with the number of
components in q and I is a unit matrix with equal number of rows as the number of components in
u: The vectors in the right hand side of Eq. (31) are

fb ¼ ½fTb1
y fTbi

y fTbn
�T; nb ¼ ½nTb1

y nTbi
y nTbn

�T; Fb ¼ ½FT
b1

y FT
bi

y FT
bn
�T;

fs ¼ ½fTs1 y fTsi
y fTsn

�T; ns ¼ ½nTs1 y nTsi
y nTsn

�T; Fs ¼ ½FT
s1

y FT
si

y FT
sn
�T;

in which

fbi
¼

Xni

j¼1

Z
Vij

Fbij
dVij ð32Þ

is the resultant force of all distributed body forces acting on Qi with regard to the floating
reference frame of Qi;

nbi
¼

Xni

j¼1

Z
Vij

*sijFbij
dVij ð33Þ

is the resultant moment of all distributed body forces acting on Qi with regard to the origin of the
floating reference frame of Qi;

Fbi
¼

Xni

j¼1

Z
Vij

UijFbij
dVij : ð34Þ

By replacing the right subscript b with s and integrating over Si for all i; expressions for fs; ns and
Fs are immediately deduced.

5.2.2. Internal concentrated hinge forces

In Fig. 2, a translational spring–damper–actuator, built in hinge aa is attached to Qi and Qj

through the contact points J and K :
For the virtual work, executed by a hinge force ofra; the following sign convention is introduced

[44]: when two contiguous bodies are drifting (obviously, the variation of the length jjolrajj ¼ lr
a of

the device is positive) and the force is tending to pull the bodies together, then f r
a is taken positive.

Consequently, the virtual work done on the bodies by ofr
a is negative as the angle between dolra and

ofr
a is 180
: By this, a negative sign should be introduced in the expression of the virtual work

dW r
a ¼ �dlr

af r
a : ð35Þ

Consequently, for a translational spring–damper–actuator in hinge aa; one can write

dW r
a ¼ �dlr

afkr
aðl

r
a � lro

a þ dro

a Þ þ cr
a
’lra þc f r

ag: ð36Þ

The first term in Eq. (36) is the spring force (kr
a ¼ spring constant), the second term represents the

damping force (cr
a ¼ damping coefficient), and the third term is the actuator force that contains a
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dynamic part cf
rd

a and a static part cf
ro

a : lr
a; which is always X0; is the distance between the

attachment points J and K on time t; whereas lro

a describes the same distance in static equilibrium
position of the mechanism. dro

a represents the static deformation of the spring. Without dynamic
forces kr

ad
ro

a and cf
ro

a keep the system in a static equilibrium. Through Eq. (36), the total virtual
work dW r ¼

Pn
a¼1 dW r

a done by all hinge forces in the multibody, can be transformed into

dW r ¼ �dlr
T

fKrðlr � lr
o

þ dro

Þ þ Cr’lr þ cf
rg; ð37Þ

Kr ¼ diag½ðkr
aÞa�; ð38Þ

Cr ¼ diag½ðcr
aÞa�; ð39Þ

lr ¼ ½lr
1 y lr

a y lr
n�

T; lr
o

¼ ½lro

1 y lro

a y lro

n �
T;

’lr ¼ ½’lr1 y ’lra y ’lrn�
T;

dro

¼ ½dro

1 y dro

a y dro

n �
T; cf

r ¼ ½cf
r
1 y cf

r
a y cf

r
n �

T:

Through a Taylor series expansion about q ¼ o and u ¼ o; Eq. (37) can be expressed as a linear
function in q and u [39]:

dW r ¼ � ½dqT duT�
BrT

GrT

" #
oEro

k ½B
r Gr�

q

u

" #
þ oEro

c ½B
r Gr�

’q

’u

" #( )

� ½dqT duT�
BrT

GrT

" #
foEro

ðKrdro

þcf
rÞg: ð40Þ

Explicit expressions for the matrices in Eq. (40) for a general multibody configuration are found
in [39].

5.2.3. External concentrated forces

Generally, any external force ofei acting on body Qi (Fig. 2) can be split in a dynamic part ofe
d

i ðtÞ
and a static part ofeo

i : The virtual work done by the external force ofei is

dW e ¼
Xn

i¼1

dW e
i ¼

Xn

i¼1

fdore
T

i
ofei g ¼ dore

Tofe; ð41Þ

ore ¼ ½ore
T

1 y
ore

T

i y
ore

T

n �T; ofe ¼ ½ofe
T

1 y
ofe

T

i y
ofe

T

n �T:

From Fig. 2 and after some manipulations, dore becomes [39]

dore ¼ BedqþGeduþHeðq; uÞ
dq

du

" #
: ð42Þ

The elements of the matrix Heðq; uÞ are linear functions in the nodal and Lagrangian generalized
co-ordinates. After neglecting all products of any generalized co-ordinate with the dynamic part
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of all external forces, for linear time invariant systems dW e will become

dW e ¼ ½dqT duT�
BeT

GeT

" #
ofed

þHe
1ð

ofeo

Þ
q

u

" #( )
; ð43Þ

ofe
d

¼ ½ofe
dT

1 y
ofedT

i y
ofe

dT

n �T; ofe
o

¼ ½ofe
oT

1 y
ofeoT

i y
ofe

oT

n �T:

Again, explicit expressions for the matrices used in Eq. (43) can be derived. If a force ofei acting on
Qi is known or can be described with respect to an arbitrary body Qk (e.g., the gravity force of any
body is described in Q0),

ofe
d

i and ofeo

i in Eq. (43) should be replaced by kAoT
i f

ed

i and kAoTfe
o

i : The
matrix kAo

i is the co-ordinate transformation matrix between Qi and Qk when the mechanical
system is in static equilibrium or kAo

i describes the initial orientation of Qi with regard to Qk:
Because the components of ofeo

are finite quantities, products of components of this vector with
nodal or Lagrangian generalized co-ordinates are not negligible, leading to the second part of the
right hand side of Eq. (43). He

1ð
ofe

o

Þ is a matrix whose elements are linear functions of the
components of ofeo

:

Example. A vertical pendulum (Fig. 3) consisting of a point mass m mounted at the tip of a
massless pendulum rod with length l; has one rotational degree of freedom represented by the
Lagrangian generalized co-ordinate y: Forces acting on the point mass are the constant gravity
force ofe

o

¼ ½0 �mg�T and a small dynamic force ofed

ðtÞ ¼ ½of ed

x ðtÞ of ed

y ðtÞ�T: After some small
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calculations, the virtual work performed by these two forces is expressed as

dW e ¼ dyflof ed

x ðtÞ þ mglyg ð44Þ

or written in the form of Eq. (43):

dW e ¼ dyf½l o�ofe
d

ðtÞ þ ½o �l�ofe
o

yg: ð45Þ

5.3. The equation of motion of an elastic multibody

Since dW cf ¼ dW r þ dW e; a substitution of Eqs. (2), (5), (7), (9), (31), (40) and (43) in Eq. (17)
leads to a vector second order system expressed in hybrid co-ordinates:

Ms

.q

.u

" #
þ Cs

’q

’u

" #
þ Ks

q

u

" #
¼ VsvþWsw; ð46Þ

where Ms is the mass matrix, Cs the damping matrix, Ks the stiffness matrix, Vs the control
distribution matrix, Ws the disturbance distribution matrix, v the vector of generalized control
forces, and w the vector of generalized disturbance forces.

To develop control algorithms, it is necessary to split all forces acting on the multibody into
control force vectors (e.g., the actuator forces cf

r) which can be manipulated in feedback or
feedforward systems, and disturbance force vectors which cannot be changed by control actions
or human operators. The control and disturbance force vectors are collected into the vectors v and
w respectively. v and w consist of forces and/or torques.

The vectors v and w still contain generalized static forces which are cf
ro

; Krdro

; fob; f
o
s ; n

o
b; n

o
s ; F

o
b;

Fo
s ; f

eo

: It is clear that in these cases q; u; v and w in Eq. (46) should be replaced by qþ qo; uþ uo;
vþ vo and wþ wo: When the mechanism is in static equilibrium, Eq. (46) becomes

Ks

qo

uo

" #
¼ Vsv

o þWsw
o ð47Þ

which indicates that the sum of all static forces ¼ 0 when the multibody is in static equilibrium.
After elimination of Eq. (47) in Eq. (46), the latter equation still holds for linear systems in

which qo ¼ o; uo ¼ o and only dynamic forces have to be taken into account.
After the rigid-body equations of motion, described by Lagrangian generalized co-ordinates

and the flexible body equations of motion, described by nodal co-ordinates, are joined together in
Eq. (46), it can happen that some rigid-body motions are counted twice, once by the finite element
formulation and once by the rigid-body formulation. The superfluous rigid-body nodal co-
ordinates should be eliminated from the finite element formulation by introducing as many
constraint equations as there are rigid-body nodal co-ordinates. The constraint equations express
a linear relationship between the rigid-body nodal co-ordinates and the Lagrangian generalized
co-ordinates and are used to eliminate the rigid-body nodal co-ordinates from Eq. (46). After the
substitution process, Eq. (46) should be reduced by elimination of appropriate rows and columns
such that each Lagrangian generalized co-ordinate occurs only once.
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6. Conclusions

A modelling methodology has been proposed to derive the linear equation of motions of
complex mechanisms, executing combined non-gyroscopic small rigid-body motions and elastic
deformations. The final equation of motion (46) is presented in hybrid co-ordinates. Lagrangian
generalized co-ordinates describe the rigid-body motions of the mechanism while nodal co-
ordinates from a finite element analysis are used to describe the elastic deformations of the
mechanism.

The application of hybrid co-ordinates has advantages even when rigid-body motions of the
mechanism are approximated by linear equations:

(1) A clear distinction exists between flexible body and rigid-body motions: the former is
described by independent nodal or co-ordinates, the latter by independent Lagrangian
generalized co-ordinates.

(2) The elastic multibody can easily be separated into main operating groups or individual
components. Each sub-system is then studied, tested and modelled separately.

(3) Active elements with mechanical, electric or hydraulic devices, controlled by a regulator are
easily built in.

(4) The number of degrees of freedom for the whole mechanism can be reduced, which is an
essential premise for utilizing control algorithms.

Appendix A. Nomenclature

cr
a damping coefficient of the damper in aa ðN s=mÞ
fbi

resulting force of all distributed body forces
acting on Qi with regard to (ix; iy; iz; io) (N)

fei external concentrated force acting on Qi (N)
fe

o

i static part of fe
i (N)

fe
d

i dynamic part of fei (N)
ofr

a internal concentrated hinge force in aa (N)

cf
r
a actuator force in aa (N)

fsi
resulting force of all distributed surface forces
acting on Qi with regard to (ix; iy; iz; ioÞ (N)

of i force acting on Qi (N)
ofd

i ðtÞ dynamic part of of i (N)
ofo

i static part of of i (N)
hi number of flexible d.o.f. in Qi

kr
a spring constant of the spring in aa (N/m)

mi number of finite elements in Qi

mbi
total mass of Qi (kg)

lr
a spring–damper–actuator length in aa (m)

lro

a initial spring–damper–actuator length in aa (m)
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n number of bodies in the mechanism
nbi

resulting moment of all distributed body forces
acting on Qi with regard to ðix; iy; iz; ioÞ ðN mÞ

nsi
resulting moment of all distributed surface forces acting on Qi with regard
to ðix; iy; iz; ioÞ (Nm)

opij inertial position vector of point Pij (m)
dopij inertial virtual displacement vector of Pij (m)
o .pij inertial acceleration vector of Pij ðm=s2Þ
q overall vector of Lagrangian generalized co-ordinates
qa vector of Lagrangian generalized co-ordinates in hinge aa

qai Lagrangian generalized co-ordinate i in hinge aa

ri inertial position vector of the origin of the floating reference frame of Qi (m)
rei position vector of the point of action of fei (m)
sij rigid-body displacement vector in Qi (m)
tij variable element displacement vector in Qi (m)
u overall vector of independent nodal co-ordinates in Q
ui overall vector of independent nodal co-ordinates in Qi

v vector of generalized control forces
w vector of generalized disturbance forces
ðox; oy; oz; ooÞ (absolute) reference co-ordinate system
ðix; iy; iz; ioÞ floating reference co-ordinate system of Qi

ðijx; ijy; ijz; ijoÞ intermediate element reference co-ordinate system of finite element j in Qi

ðij #x; ij #y; ij #z; ij #oÞ element reference co-ordinate system of finite element j in Qi
oAi co-ordinate transformation matrix from (ix; iy; iz; io) to (ox; oy; oz; oo)
Bi inertia coupling between the translation and rotation of Qi

C damping matrix of Q from a finite element modelling
Ci damping matrix of Qi from a finite element modelling
Cs damping matrix of Q

Ei inertia coupling between the translation and elastic deformation of Qi
oFbi

resultant body force acting on Qi (N)
oFbij

body force acting on finite element j of Qi ðN=m3Þ
oFsi

resultant surface force acting on Qi (N)
oFsij

surface force acting on finite element j of Qi ðN=m2Þ
Gi inertia coupling between the rotation and elastic deformation of Qi

Ji inertia tensor of Qi with respect to ðix; iy; iz; ioÞ
K stiffness matrix of Q from a finite element modelling
Ki stiffness matrix of Qi from a finite element modelling
Ks stiffness matrix of Q
Lij locator matrix for finite element j in Qi

½mb� mass matrix for the rigid-body part of the multibody
M mass matrix of Q from a finite element modelling
Mi mass matrix of Qi from a finite element modelling
Ms mass matrix of Q
O matrix of zeros

ARTICLE IN PRESS

J. Anthonis et al. / Journal of Sound and Vibration 266 (2003) 553–572 569



Pij selected point in dVij

Q multibody
Qi body i in Q
Sij surface of finite element j in Qi ðm2Þ
Vij volume of finite element j in Qi ðm3Þ
dVij selected elementary volume in Vij ðm3Þ
Vs control distribution matrix of Q
Ws disturbance distribution matrix of Q

Vij volume of finite element j in body Qi ðm3Þ
dW cf the virtual work executed by all concentrated forces in Q ðN mÞ
dW

cf
ij the virtual work executed by all concentrated forces in dVij ðN mÞ

dW df the virtual work done by the external distributed body and surface forces on
Q ðN mÞ

dW
df
ij the virtual work done by the external distributed body and surface forces on

dVij ðN mÞ
dW e virtual work done by the external concentrated forces in Qi ðN mÞ
dW e

i virtual work done by all external concentrated forces in Q ðN mÞ
dW r

a virtual work executed by the internal concentrated hinge forces in aa ðN mÞ
dW r virtual work executed by all hinge forces in Q ðN mÞ
eij strain vector defined in (ijx; ijy; ijz; ijo)
dro

a initial deformation in aa (m)
deij virtual strain vector defined in (ijx; ijy; ijz; ijo)
yðtÞ; fðtÞ; cðtÞ Tait–Bryan angles representing body roll, pitch and yaw
p overall vector of small angular displacements of Q

pi vector of small angular displacements of Qi

rij density of the elementary volume element dVij ðkg=m2Þ
rij normal stress vector (ijx; ijy; ijz; ijo) (N/m)
Uij matrix of shape fuctions
x overall angular velocity vector of Q
xi angular velocity vector of Qi
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