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Abstract

Chewing sounds of different types of dry-crisp snacks (two types of potato chips, prawn crackers,
cornflakes and low calorie snacks from extruded starch) were analysed to assess differences in sound
emission patterns. The emitted sounds were recorded by a microphone placed over the ear canal. The first
bite and the first subsequent chew were selected from the time signal and a fast Fourier transformation
provided the power spectra. Different multivariate analysis techniques were used for classification of the
snack groups. This included principal component analysis (PCA) and unfold partial least-squares (PLS)
algorithms, as well as multi-way techniques such as three-way PLS, three-way PCA (Tucker3), and parallel
factor analysis (PARAFAC) on the first bite and subsequent chew. The models were evaluated by
calculating the classification errors and the root mean square error of prediction (RMSEP) for independent
validation sets.

It appeared that the logarithm of the power spectra obtained from the chewing sounds could be used
successfully to distinguish the different snack groups. When different chewers were used, recalibration of
the models was necessary. Multi-way models distinguished better between chewing sounds of different
snack groups than PCA on bite or chew separately and than unfold PLS. From all three-way models
applied, N-PLS with three components showed the best classification capabilities, resulting in classification
errors of 14–18%. The major amount of incorrect classifications was due to one type of potato chips that
had a very irregular shape, resulting in a wide variation of the emitted sounds.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Drake was the first researcher to study food crushing sounds in order to obtain more
information on food texture [1]. He found that the breakdown of the structure of foodstuff during
normal chewing was paralleled by a decline in the average amplitude of successive bursts of
mastication sounds. Crisper products would also produce a louder noise. The team of Malcolm
Bourne and Zata Vickers started to use food crushing sounds as a measure of crispness. Other
than possessing a broad frequency range and very irregular amplitude versus time picture, there
appeared to be no frequency characteristic unique to crisp sound [2]. The crisper samples showed
higher sound amplitude and/or a greater density of sound occurrence. Most of the sound energy
fell in the range of 0–10 kHz [3]. Although they first hypothesized that crispness was an auditory
sensation [2], they later on suggested that the stimulus for crispness might be vibratory [4].

A cellular model was introduced to typify crisp structures: each sound burst corresponds to the
rupture of a cell or group of cells [5]. The mechanism of sound production differs between wet-
crisp and dry-crisp food. Wet-crisp food is comprised of living plant cells, having a certain internal
pressure, the turgor. When a turgid cell bursts, its contents expand rapidly, producing a sound. In
a dry-crisp product, the cells are usually filled with air and the cell walls are brittle. The sound
pressure wave is generated by the snap back of the remainder of the cell walls after they have been
bent and broken. Stiffer or less dense food would have a higher vibration frequency and produce a
typical crisp higher pitched sound.

Lee et al. found significant differences in the sounds produced when eating fresh or stale potato
and tortilla chips [6]. Sounds from fresh samples were typically louder and displayed greater
amounts of higher frequency components. Other authors also found that crisp food generated
high-pitched sounds [5,7,8]. However, in a later study of Lee et al. [9] there were no statistical
differences in the sound levels, although they observed statistical differences in the sensory
evaluations, between fresh and stale samples of potato and tortilla chips. A ‘double hump’
intensity versus frequency spectrum was associated with the first chew of the fresh samples, with
the first hump maximum at 3–4 kHz and the second at about 6 kHz. Although some authors only
consider the frequency range up to 3500 Hz [10], Lee et al. think frequencies up to 8000Hz may
provide useful information. Al Chakra et al. [11] recorded the sound emission of cylindrical pasta
samples compressed with a jack. He filtered the signal in high pass at 100Hz in order to eliminate
low-frequency noises from origins different from the actual rupture sounds and low pass at
20 kHz (audible domain). However, all the information characterizing the signals was located
below 12 kHz.

When studying chewing sounds, it is important to know how characteristics of jaw, teeth and
soft tissues in the mouth influence the perceived sounds. Kapur [12] found that the resonance
frequency of the jaw was about 160Hz. The bone conducted sound travelling through teeth and
jaws to the ear is therefore amplified at this frequency. Drake had also situated the mouth opening
sounds in a broad region around 160Hz [1]. On the other hand the soft tissues in the mouth tend
to absorb or damp especially the higher frequencies of the sound [13]. Dacremont et al. [14]
studied the contribution of air and bone conduction to the transmission of chewing noises to the
inner ear. Each panelist had to reconstitute sounds he truly heard during eating, by mixing the air
and bone conduction records together. It appeared that for a bite, bone and air conduction had a
similar importance, whereas for a chew bone conduction had to be more attenuated to match the
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perceived noise. Both bone and air conduction records had to be attenuated around 160Hz and
air conduction records had to be amplified around 3500Hz.

Different parameters have been used with varying success to judge a chewing sound. This
includes the number of sound bursts n in a bite or chew, the mean height or amplitude of the
bursts A, and the product n.A and n.A/duration [15]; the frequency spectrum by fast Fourier
transformation (FFT) followed by data reduction and averaging of different spectra [6,11];
frequency contents in a combination of different frequency bands [16]; mean sound pressure,
pressure level and intensity in different frequency ranges [10]; fractal analysis [16–19]. Vickers
mentions that the number of sound bursts provided most of the information useful for indicating
crackliness [15]. Edminster and Vickers found that log n.A showed the largest correlation with
auditory crispness judgements [20]. Vickers [21] and Seymour and Hamann [10] stated that the
combination of mechanical and acoustic parameters provided the best correlation with sensory
crispness of dry-crisp products. Duizer et al. [19] collected acoustic recordings of the sound
produced during biting an extruded snack food. According to this research, sensory
characteristics of crispness, pitch and crumbliness were significantly correlated to the fractal
dimensions of the amplitude–time data. However, in research on Royal Gala apples De Belie et al.
[16] found that changes in fractal dimension could not be correlated with the sensory crispness.

An alternative way of analyzing the dataset is through exploration using advanced multivariate
techniques (chemometrics). The general objectives of these techniques are data reduction and
easier interpretation [22]. They are appropriate to extract information from extensive data sets
(e.g. a 22050 point FFT on a sound of 1 s registered at a sampling rate of 22050Hz results in a
power spectrum with 11025 frequency components), showing a high degree of covariance. De
Belie et al. [23] have shown that application of principal component analysis (PCA) on the
logarithm of the power spectra allowed them to distinguish groups of Cox’s Orange Pippin apples,
which showed crispness differences due to storage under different conditions.

In the current research chewing sounds of different types of dry crisp snacks (potato chips,
prawn crackers, cornflakes and low calorie snacks of extruded starch) were investigated with PCA
and with more advanced multi-way techniques including N-way partial least squares (N-PLS),
multi-way PCA (Tucker3), and PARAFAC (parallel factor analysis) on the first bite and
subsequent chews.

2. Materials and methods

2.1. Dry-crisp products

Chewing sounds of different types of commercially obtained dry-crisp snacks (two types of
potato chips, prawn crackers, cornflakes and low calorie snacks from extruded starch) were
recorded to assess differences in sound emission patterns. The first type of potato chips (type A),
the prawn crackers and the extruded snacks were regularly shaped and they could be placed
between the incisors in a standard way for recording of the first bite. The second type of
potato chips (type B) was irregularly shaped and large chips with an average mass of 1.30 g (range
1.06–1.48) were selected for the experiment. Potato chips, prawn crackers and extruded snacks
were bitten in half with the incisors and than chewed with the molars. The bite and different chews
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were recorded at a chewing rate of one chew per second. This chewing rate could be easily
controlled with a stopwatch and was also used by Lee et al. [9]. For the cornflakes, 1.7–1.8 g of
material was placed in the mouth and chewed immediately. Two researchers each tested 20
samples of each of the different snacks, except for the cornflakes, which were only chewed by the
first researcher and the extruded snacks, which were only chewed by the second researcher.

2.2. Sound recording

The chewing sounds were recorded by placing a microphone (ECM-2005, Monacor) over the
ear canal at the side where the snacks would be chewed. The sampling rate amounted to 22050
samples per second and sampling size was 16 bits. An example of a time spectrum for potato chips
type A is shown in Fig. 1. Different sound bursts can be discerned in the bite, which is typical for a
dry crisp product. The first bite and the first subsequent chew were selected from the signal in the
Creative Wave Studio programme (Creative Technology Ltd.). The selected sound waves were
imported in a program written using Matlabs and a 22050 ð¼ NÞ point FFT was performed. This
implies that for sound waves shorter than 22050 samples (1 s), the wave was padded with trailing
zeros to length 22050. The frequency resolution was therefore 1Hz for all sound waves. The
power spectrum was obtained by squaring the magnitude of the first 11025 ð¼ N=2Þ frequency
components. As the Fourier transformation of a real signal is symmetric, the power at a positive
frequency is the same as the power at the corresponding negative frequency (contained in the
second half of the original Fourier spectrum). To eliminate the DC component and low-frequency
noises from the signal, only the frequencies larger than 100Hz were considered for further
processing.
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Fig. 1. Time signal for potato chips type A.
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2.3. Principal component analysis

The power spectra of the different bites and chews were analyzed with different multivariate
analysis techniques, in order to evaluate if clear differences in chewing sounds exist between
different snack groups. First, PCA was carried out on the pure power spectra of bite and chew
separately, as well as on their logarithm. Algebraically, principal components (PCs) are linear
combinations of the original variables (e.g., the frequency values) so that the largest part of the
variance is concentrated on the first PCs. These first few PCs can then be used to replace the
original variables, leading to data reduction and easier interpretation without much loss of
information. The spectra were split into a training set and a validation set, one-fourth of the
spectra being located in the validation set. Both training and validation set contained equal
numbers of spectra from the different snacks groups. All spectra were mean-centered by
subtraction of the average spectrum of the training set and normalized to compensate for possible
differences in recording volume, for instance due to slightly different positions of the microphone
in the ear during different recordings. Therefore, differences in total sound level will not take part
in the PCA, and only relative differences between sound levels at different frequencies will have an
influence. PCA was carried out on the mean-centered and normalized training set data. Scree plots
were made as a useful visual aid to determine the appropriate number of principal components.
With the eigenvalues ordered from largest to smallest, a scree plot is a plot of the magnitude of an
eigenvalue (¼ the variance of the PC) versus its number. The number of components can be taken
to be the point at which a distinct bend in the scree plot occurs, such that the remaining
eigenvalues are then relatively small and all about the same size. Both training and validation set
spectra were then expressed in terms of those principal components. The nominal variable
referring to the groups was for this analysis to be replaced by a binary coding system. If it is
known for the snacks in the training set to which ‘group’ they belong, a calibration matrix can be
generated, based on the PCs. The calibration matrix provides the best possible prediction of group
belonging or crispness value for the data in the training set. The existence of an independent
validation set then permits the performance of a calibration to be evaluated.

2.4. Multi-way data analysis

The data under consideration can be regarded as three-way data, with the sample number as the
first mode, the frequency as second mode, and the number of bite or chew in one chewing
procedure as third mode. Therefore, the chewing sounds of the second researcher (of whom bite
and chew were available for four different snack groups) were also explored with the multi-way
methods PARAFAC, Tucker3, and N-PLS. Kiers [24] shows that PARAFAC can be considered
as a constrained version of Tucker3, and Tucker3 a constrained version of two-way PCA. Any
data that can be modelled adequately by PARAFAC can thus also be modelled by Tucker3 or
two-way PCA, but PARAFAC uses the fewest degrees of freedom [25]. In the sense that it uses
most degrees of freedom the PCA model can be considered the most complex and flexible model,
while PARAFAC is the most simple and restricted model. The reason for using multi-way models
is not to obtain better fit, but rather more adequate, robust and interpretable models. A
characteristic feature of PARAFAC is the uniqueness of the solution, i.e., there is no problem of
rotational freedom. This means that, if the data is indeed tri-linear, pure spectra can be recovered.
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The advantage of Tucker3 is that different numbers of components can be retained in each mode
[26]. N-PLS in turn is an extension of PLS to multi-way data. The most important feature of PLS
and N-PLS is that the decomposition is accomplished such that the successively computed score
vectors have the property of maximum covariance with the unexplained part of the dependent
variable [27], which is in this case the snack type. Multi-way data analysis was performed using the
N-way toolbox for Matlab [28].

Because it resulted from the PCA, and also from former analysis on chewing sound spectra [23],
that a better classification was obtained when working with the logarithm of the power spectra,
the multi-way analysis was performed on the logarithmic data. It is also known that human
hearing can be characterized by a logarithmic scale.

It appeared that the multi-way algorithms could not handle the original spectra with 10 926
frequency components for both bite and chew. Therefore, the spectra were smoothed with a
Savitsky–Golay smoothing algorithm applying a second order polynomial and a filter width of 11
points. Then data reduction was carried out by selecting one out of every 10 values. The reduced data
set had dimensions 80� 1093� 2, the three modes representing the 80 samples (20 replicates � 4
snack groups), 1093 frequencies (from 101 to 11025Hz in steps of 10Hz) and bite/chew. PARAFAC
was carried out on the complete data set to track outliers, which were deleted. To allow evaluation of
the classification capabilities of the different applied models, the data were split into a training set
containing 12 samples from each snack group (48 samples in total), and a validation set containing
seven samples from each group (28 in total). The calculations were made with two different selected
training sets. The training set was used to construct the best possible regression between the response
variable (binary coded snack groups) and the loadings of the first mode (samples). This regression
was afterwards used to calculate the loadings for the samples (scores) in the validation set and predict
their group belonging. The data were centered across the first mode. Centering was performed on the
training set and the calculated mean values were used to preprocess the validation set.

PARAFAC models with one to eight components were constructed. In fact only two real tri-
linear components can be extracted from the data, since the third mode of the data array equals
two. However, more (non-trilinear) components can be used to explain additional variation in the
data. To evaluate the validity of the model as a function of the number of components, the core
consistency, sum of squared residuals (SSR), explained variation and Tucker congruence
coefficient were evaluated [28]. Three-way and unfold PLS with one to 10 components were
calculated. For Tucker3 the explained variation as a function of the model dimensionality was
investigated for all possible combinations of one to 10 components in mode 1 (samples) and mode
2 (frequency) and one to two components in mode 3 (chew and bite). All models were used to
predict validation set classes. Also the root mean square error of prediction (RMSEP) was
calculated as the sum of squares of deviations from 1 in the correct class and from 0 in the other
classes. The multi-way models were compared with unfold PLS and principal component
regression (PCR) on the same training and validation sets.

3. Results and discussion

On a linear scale, humps could be seen in the power spectra around 200Hz and, especially for
the bites, around 900Hz. Only the frequencies below 2000Hz were of any importance. However,
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since the sensation of the human ear is proportional to the logarithm of the intensity, higher
frequencies can also be important for crispness evaluation. On a logarithmic scale for the first
chewer a minimum occurred between 5000 and 6000Hz, followed by a maximum at about
7000Hz. For the second chewer the minima and maxima were located between 6000 and 7000Hz
and around 8200Hz, respectively. In previous experiments on apples in which researcher one
acted as chewer [23], high amounts of frequency components between 700 and 900Hz were partly
attributed to general chewing movements and teeth contact. The presence of a minimum in the
spectra around 3000 Hz, which was noticed in the previous experiments and attributed to the
damping properties of the soft tissues in the mouth [13,14,16,23], was less obvious in the current
tests.

On average for the bite, on a linear scale the power spectra of the chips type A showed,
compared to the other snacks, a lower amount of frequency components below 500Hz
and a higher amount of components above this value, resulting in a higher pitched sound.
On a logarithmic scale (for the higher frequencies), both types of potato chips showed the same
typical spectrum, with a pronounced hump around 7000 or 8200 Hz depending on the chewer.
This hump was on average less pronounced for prawn crackers and extruded snacks. For the
chew, the amount of frequency components below 500Hz decreased from cornflakes, extruded
snacks and prawn crackers over chips type B to chips type A, while the amount of frequency
components above 500Hz decreased from cornflakes and chips type A over chips type B
and extruded snacks to prawn crackers. The mean bite power spectra of researcher two are shown
in Fig. 2.

3.1. Principal component analysis

The first 15 principal components calculated from the power spectra explained together about
65% of the total training set variance for chewer one. Using those 15 PCs implied a large data
reduction from the original 11 025 variables. A distinct bend occurred in the scree plot at the
second PC, indicating that PC1 has a major influence on the total population variance, explaining
about 19%. For the chew, the first 15 PCs and PC1 alone explained 65% and 23% of the variance,
respectively. Similar results were found for chewer two. In Fig. 3 the first two PC values are
plotted for the different bite power spectra of chewer 2. It appeared that prawn crackers and
extruded snacks could be relatively well separated from the chips, especially when the logarithm of
the power spectra was used in the PCA. However, the two types of chips were difficult to
distinguish from each other. Prediction of group belonging, using a calibration matrix based on
the first 15 PCs, gave also much better results for the logarithmic data, than when the original
signals were used (Table 1) and for both researchers more information was obtained from the bite
than from the chew sound wave. Using the logarithm of researcher one’s bite spectra, chips type A
and prawn crackers were all correctly classified, but three out of five type B chips in the validation
set were incorrectly attributed to the type A chips group. Application of the logarithm of
researcher two’s bite spectra resulted in correct classification of all type A chips and extruded
snacks, while one prawn cracker and again three type B chips were incorrectly classified. The
irregular shape of the type B chips apparently resulted in a wide variation of emitted sounds,
which made it very difficult to separate them from acoustic emissions of other snacks. It was clear
from comparison of the raw spectra that different people produced different chewing sounds, and

ARTICLE IN PRESS

N. De Belie et al. / Journal of Sound and Vibration 266 (2003) 625–643 631



that the system will have to be trained separately for all possible ‘chewers’. However, once the
model is calibrated for another person, his chewing sounds can be used successfully for evaluation
of dry-crisp snacks.
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Fig. 2. Average logarithm of the bite power spectra of researcher two for chips type A (top left), prawn crackers (top

right), chips type B (bottom left), extruded snacks (bottom right).
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From the PC-loadings, Fig. 4, it can be seen that especially the frequencies between 100 and
500Hz (with a peak for PC1 around 200Hz) contributed to PC1 and PC2 derived from the power
spectra. This could be expected from the peaks in the power spectra, which are more or less
located at those frequencies. The PC-loadings derived from the logarithm of the power spectra
were less clear indicating the importance of certain frequencies and nearly the whole spectrum was
taken into account.
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Table 1

Classification errors for dry-crisp snacks based on PCA of chewing sounds for researcher one: number of sound waves

incorrectly attributed to another snack group on a total of 15 training (T) and five validation (V) samples per snack

group

Chips A Chips B Prawn crackers Cornflakes

Bite spectra

T 2 7 3

V 0 3 2

Chew spectra

T 1 3 2 1

V 0 4 3 1

Log bite spectra

T 0 1 0

V 0 3 0

Log chew spectra

T 3 7 0 0

V 0 4 0 1
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Fig. 4. Loadings of the first two principal components for researcher two, calculated on the pure power spectra (left)

and on their logarithm (right).
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3.2. PARAFAC

A PARAFAC model with three components on the complete non-centered data set showed that
there were two outliers: samples 31 and 63, Fig. 5. Plotting of the spectra confirmed that sample 63
was an outlier for the bite and sample 31 for the chew. These outliers were deleted. Also one
sample from each of the two other snack groups was deleted (to allow easier data processing).
A new PARAFAC with three components was carried out on the remaining 76 samples (non-
centered). The core consistency equalled 100% and the model was able to explain 91.6% of
the overall variation with a sum of squared residuals (SSR) of 31 438. The loadings are shown in
Fig. 6. The first two components seem to show a high correlation, especially in the first mode.
However, calculation of Tuckers congruence coefficient did not point at any real problems,
indicating that this is a valid model. In the frequency mode these components look like actual bite/
chew spectra, while the third component may represent deviations from these spectra for the
different snacks. A four-component PARAFAC model explained 92.04% of the total variance. It
therefore gives only little improvement compared to a three-component model, taking also the
increased complexity of the model into account. Furthermore, Tuckers congruence coefficient
showed that some factors in this model were highly correlated.

To judge the classification capabilities of PARAFAC, models with one to eight components
were calculated on the centered training set data. Different parameters giving an indication of the
value of the model are presented in Table 2. It appeared that a model with three components
was not to be preferred in this case because of the low core consistency and values in the
Tucker congruence coefficient that were close to –1. However, when the number of components
increased to four or five, these problems seemed to be eliminated and the explained variation of
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four or five-component models were respectively, 6.2% and 8.1% higher than that of the two-
component model.

It could also be seen that by centering the data the variance explained by a three-component
PARAFAC model is reduced from 91.6% to 39.4%. This is due to the offset in the non-centered
data, accounting for a major part of the variation. This offset can be easily explained by one of the
PARAFAC components, thereby increasing the explained variation. It should be taken into
account that the total variance of the raw non-centered data equaled 381840, while the total
variance of the centered data just equaled 30098. This implied that the residual variance left in the
three-component PARAFAC model of the non-centered data (SSR=31438) was actually larger
than the total variance in the centered data, which emphasizes the need for centering.

Table 3 shows the classification errors amongst others for the different PARAFAC models. The
PARAFAC model with five components clearly provided the best prediction with only 14% of
the validation set samples classified in the wrong snack group. For the training set (not shown) the
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Table 2

Core consistency (Corco), sum of squares of residuals (SSR), explained variation (Explv) and TCC, which is the value in

the Tucker congruence coefficient that is closest to –1 (values close to –1 indicate degenerate solutions)

Number of PARAFAC components

1 2 3 4 5 6 7 8

Corco (%) 100 100 31 97 98 25.21 86.76 38.32

SSR 21420 19504 18232 17636 17062 16615 16230 15898

Explv (%) 28.8 35.2 39.4 41.4 43.3 44.8 46.1 47.2

TCC 1.00 –0.30 –0.93 –0.81 –0.59 –1.00 –0.90 –0.93
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Table 3

Prediction of 28 validation samples by different multivariate models in function of the number of model components,

showing the number of incorrect classifications per snack type, the total classification error (Err) and the mean RMSEP

No. of components No. of incorrect classifications per snack type Err (%) Mean RMSEP

Chips A Prawn crackers Chips B Extruded snacks

PCA bite

1 7 0 7 0 50 0.4660

2 2 0 7 0 32 0.4172

3 0 0 4 0 14 0.3863

4 1 0 5 0 21 0.3939

5 1 0 4 0 18 0.3951

15 1 0 4 0 18 0.3926

PCA chew

1 2 0 7 7 57 0.4819

2 2 1 7 0 36 0.4484

3 2 0 7 0 32 0.4210

4 2 0 7 0 32 0.4178

5 2 0 7 0 32 0.4141

15 2 0 7 0 32 0.4138

PARAFAC

1 2 0 7 7 57 0.4752

2 3 0 7 0 36 0.4493

3 1 0 7 0 29 0.4027

4 2 0 6 0 29 0.4099

5 0 0 4 0 14 0.3839

6 0 0 4 0 14 0.3813

7 1 0 3 0 14 0.3834

8 1 0 4 0 18 0.3875

Tucker3

2 2 1 2 1 7 0 36 0.4252

2 2 2 3 0 7 0 36 0.4493

3 3 1 1 0 4 0 18 0.3885

3 3 2 1 0 7 0 29 0.4029

4 4 1 2 0 4 0 21 0.3890

4 4 2 1 0 6 0 25 0.3998

5 5 1 2 0 4 0 21 0.3877

10 10 1 2 0 3 0 18 0.3897

10 10 2 1 0 4 0 18 0.3916

15 15 2 1 0 4 0 18 0.3881

N-way PLS

1 2 0 7 7 57 0.4759

2 1 0 7 0 29 0.4221

3 1 0 3 0 14 0.3878

4 0 0 4 0 14 0.3820

5 2 0 4 0 21 0.3854

6 2 0 4 0 21 0.3878
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classification error amounted to 8% for the five-component model and was further reduced for
models with six, seven or eight components to 4%, 4% and 2%, respectively. However, increasing
the number of components did not improve the classification error or RMSEP for the validation
set, showing that the extra components only describe training set noise.

A plot of the residuals of the five-component model showed that there was no obvious structure
remaining. For the validation set the error was entirely due to misclassification of the potato chips
type B: three type B chips were classified as type A chips and one as extruded snack. As stated
higher the irregular shape of this snack, resulting in a high variation between spectra, was mainly
responsible for the difficult classification. The RMSEP pointed in the same direction. Although
the RMSEP of type B chips was the same as for the other snacks for the training set (0.37), it was
significantly higher for the validation set (0.48 for chips B compared to 0.36, 0.37 and 0.33 for
chips A, prawn crackers and extruded snacks, respectively). It can also be remarked that the
classification of the validation set samples obtained with the ‘degenerate’ three-component model
was as good as a for a four-component model.

In comparison to the PCA on the first bite only, no improvement of the prediction was obtained
by using the PARAFAC model. This would indicate that little extra information is comprised
within the first chew.

3.3. Tucker3

A steady increase in explained variation in function of the model dimensionality was observed,
with no clear steps indicating large improvements in explained variation. To begin with, Tucker3
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Table 3 (continued)

No. of components No. of incorrect classifications per snack type Err (%) Mean RMSEP

Chips A Prawn crackers Chips B Extruded snacks

7 2 0 3 0 18 0.3883

8 1 0 3 0 14 0.3854

9 2 0 3 0 18 0.3878

10 2 0 3 0 18 0.3878

Unfold PLS

1 2 0 7 7 57 0.4746

2 2 0 7 0 32 0.4199

3 2 0 4 0 21 0.3923

4 1 0 4 0 18 0.3848

5 1 0 5 0 21 0.3850

6 1 0 5 0 21 0.3862

7 1 0 5 0 21 0.3865

8 2 0 5 0 25 0.3858

9 2 0 5 0 25 0.3852

10 1 0 5 0 21 0.3856

For each type of model the preferred number of components is indicated in bold.
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models with simple core dimensions such as (2 2 1), (3 3 1) and (2 2 2) were chosen for further
investigation. The (2 2 1) Tucker3 model explained 32.3% of the variation, while the (3 3 1) and (2
2 2) Tucker3 models explained 34.3% and 35.2%. For the models with only one component in the
third mode the core was diagonal and no rotation was necessary. The (2 2 2) model core was
rotated to obtain maximum diagonality, but this did not result in major changes of the core, since
one entry (1 1 1) in the core was much more important than all the other entries (Table 4). The
performance of these Tucker3 models for snack classification can be judged from Table 3. The
RMSE for prediction of the snack type for the training samples was higher for the (2 2 2) Tucker3
model (chips A: 0.41, prawn crackers: 0.40, chips B: 0.50, extruded snacks: 0.44) compared to the
(3 3 1) Tucker3 model (chips A: 0.31, prawn crackers: 0.39, chips B: 0.38, extruded snacks: 0.39).
A similar trend can be seen for prediction of the 28 validation samples with RMSEP = 0.45, 0.41,
0.51, 0.42 in the (2 2 2)-model and RMSEP = 0.37, 0.39, 0.46, 0.34 in the (3 3 1)-model for the
four snack types, respectively. This indicated a better prediction for the (3 3 1)-model compared to
the (2 2 2)-model, which was also confirmed by the classification errors of the different snack types
(Table 3). Again the high RMSEP of chips B in the validation set draws the attention, as well
as the high amount of misclassifications of this snack. From the score plot of the (3 3 1)-model
(Fig. 7) the large overlap of sound spectra from the two chips groups can also be seen.

We also wanted to see if higher order Tucker3 models would give better classification of the
validation set. Therefore Tucker3 models with (4 4 1), (5 5 1), (4 4 2), (10 10 1), (10 10 2) and (15
15 2) components were constructed. The explained variance increased with model dimensionality
(Table 5). The significance of the (1 1 1) entry of the core decreased with increasing
dimensionality, but even for the (15 15 2) model the (1 1 1) entry of the core was more than 6
times larger than the second most important entry. The core for these higher dimensionalities was
not rotated. The RMSEP for the training set decreased with increasing dimensionality. The
RMSEP for the validation set was more or less constant for all models (0.39–0.40) and
comparable with the value obtained for the (3 3 1) model (Table 3). The utilization of the higher
dimensionality models did not improve the classification of the validation samples compared to
the (3 3 1) model. The (10 10 1), (10 10 2) and (15 15 2) models resulted in an equal amount of
incorrect classifications as the (3 3 1) model (18%). Of all Tucker3 models a (3 3 1)-model should
therefore be preferred as being the simplest model providing the best classification (Table 3).
However, it should be noted that overall the best Tucker3 model gave results somewhat inferior to
the five-component PARAFAC model.
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Table 4

The four most important elements in the core for (2 2 1), (3 3 1) and (2 2 2) Tucker3 models and for a (2 2 2) model with

the core rotated to obtain maximum diagonality, with their explained variation (Explv)

(2 2 1) core (3 3 1) core (2 2 2) core (2 2 2) maxdia core

Core entry Explv (%) Core entry Explv (%) Core entry Explv (%) Core entry Explv (%)

(1 1 1) 89.2 (1 1 1) 84.0 (1 1 1) 81.0 (1 1 1) 80.9

(2 2 1) 10.8 (2 2 1) 10.2 (2 1 2) 12.8 (2 1 2) 10.6

(2 1 1) 0 (3 3 1) 5.7 (2 2 1) 2.9 (2 2 2) 5.2

(1 2 1) 0 (3 1 1) 0 (2 2 2) 2.4 (2 2 1) 2.4
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3.4. N-PLS and unfold PLS

The three-dimensional data array was also modelled with N-PLS (three-way PLS in this case).
Models with one to 10 components were compared for modelling centered as well as non-centered
data. The percentage variation of the measured and response variables (spectra and snack groups)
captured by the models is shown in Table 6. As for PARAFAC, it was expected that the explained
variation would decrease after centering. For the centered data, the explained variation of the
response variable increased quite a lot up to five components, to approach asymptotically to a
value of about 75% for more than five components. For the training set the amount of incorrectly
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Fig. 7. Score plot of component one versus two for the training and validation samples, resulting from a (3 3 1) Tucker3

model; grouping of chips, prawn crackers and extruded snacks is indicated.

Table 5

The variation explained by Tucker3 models with higher dimensionality (explv) and the three most important elements in

the core with their explained variation

Model dimensions (4 4 1) (5 5 1) (4 4 2) (10 10 1) (10 10 2) (15 15 2)

Explv (%) 35.8 36.8 41.4 41.2 49.4 54.4

Core entries with explv (%) (1 1 1) 80.6 (1 1 1) 78.4 (1 1 1) 68.8 (1 1 1) 69.9 (1 1 1) 57.8 (1 1 1) 52.5

(2 2 1) 9.8 (2 2 1) 9.5 (2 1 2) 9.4 (2 2 1) 8.4 (2 1 2) 8.3 (2 1 2) 7.6

(3 3 1) 5.5 (3 3 1) 5.3 (3 2 1) 4.4 (3 3 1) 4.8 (3 2 1) 3.8 (3 2 1) 3.5
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classified samples decreased steadily with an increasing number of components, to reach 0% for a
model with five or more components. The RMSEP for the training set was similar for all snack
groups. It evolved from 0.46 for a one-component model to 0.28 for a five-component model and
then approached a value of 0.25 for a 10-component model. For the validation set the average
RMSEP stabilized around 0.38–0.39 for models with three or more components (Table 3).
Considering the amount of incorrect classifications a three-component model should be preferred
as being the simplest model with a minimum number of classification errors. The errors were
again mainly due to misclassification of the chips type B. The four-component N-PLS gave in fact
exactly the same errors as the five-component PARAFAC model, the same chips B being classified
as chips A and extruded snacks. On the other hand, these two models were able to completely
distinguish all chips type A, prawn crackers and extruded snacks from each other. In Fig. 8 the
components in the first mode of a three-component N-PLS model are plotted against each other.
Especially in the plot of component three versus component two, clustering of the different snack
groups can be seen.

Also unfold PLS models with one to 10 components were created and the classification results
were compared with those from N-way PLS. It appeared that the training samples were classified
in exactly the same way by the two models, with only very minor differences in the RMSEP. The
number of classification errors for the validation set was always higher or the same for unfold PLS
than for N-PLS (Table 3), the best unfold PLS model being the one with four components (18%
classification error).

3.5. Change of training and validation set

The same models were constructed for a different choice of training and validation set. The
results will not be discussed here in detail, but the classification errors and RMSEP of the models
with optimum number of components are summarized in Table 7. Except for the PCA on the first
chew only, the same number of components as previously was selected for all models, which
points out the consistency of the optimum number. In comparison with the first choice of
training/validation set higher classification errors were obtained with all models. However, in this
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Table 6

Percentage variation captured by an N-PLS model on non-centered and centered data

Non-centered Centered

Number of components Measured variable Response variable Measured variable Response variable

1 86.67 24.95 28.10 14.95

2 90.10 40.11 32.25 34.45

3 90.73 59.34 34.34 54.21

4 91.00 79.17 37.57 57.99

5 91.77 83.02 38.77 68.21

6 91.91 92.70 39.58 72.00

7 92.02 96.37 40.65 73.34

8 92.18 97.81 41.51 74.23

9 92.34 99.08 42.72 74.55

10 92.46 99.56 43.74 74.78
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Fig. 8. Score plot of a three-component N-PLS model for the training and validation samples; clustering of the four

snack groups is shown.

Table 7

Prediction of 28 validation samples by different multivariate models with optimum number of components for the

second choice of training/validation set, showing the number of incorrect classifications of the different snack types, the

total classification error and the mean RMSEP

Model Number of

components

Chips A Prawn

crackers

Chips B Extruded

snacks

Classification

error (%)

Mean

RMSEP

PCA bite 3 1 2 4 3 36 0.4152

PCA chew 4 2 0 6 2 36 0.4255

PARAFAC 5 0 2 3 2 25 0.3995

Tucker3 (3 3 1) 1 1 3 1 21 0.3972

N-way PLS 3 1 1 2 1 18 0.3898

Unfold PLS 3 1 1 3 2 25 0.3986
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case it becomes clear that the multi-way models distinguish better between chewing sounds of
different snack groups, than PCA on bite or chew separately and than unfold PLS, which
combines information from bite and chew, but not in a three-way structure. From all models,
N-PLS showed the best classification capabilities, with a classification error of 18%. This could be
expected since the algorithm produces score vectors that in a tri-linear sense have maximum
covariance with the unexplained part of the dependent variable [27].

4. Conclusions

The sounds emitted during chewing of dry-crisp snacks could be successfully applied to
distinguish different snack groups, such as potato chips, prawn crackers, corn flakes, snacks from
extruded starch, using FFT and multivariate data analysis techniques. The classification was
improved by taking the logarithm of the power spectra for further analysis. Different people
produced different sound spectra, which makes recalibration of the model necessary when a new
chewer is used as ‘measuring instrument’. A procedure for transfer of calibrations would therefore
be helpful. Multi-way models distinguished better between chewing sounds of different snack
groups than PCA on bite or chew separately and than unfold PLS. From all three-way models
applied, N-PLS with three components showed the best classification capabilities, resulting in
classification errors of 14–18%. The major amount of incorrect classifications was due to one type
of potato chips that had a very irregular shape, resulting in a wide variation of the emitted sounds.
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