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Abstract

In this paper, the derivation method used in (J. Microelectromech. Systems 3 (1994) 105) and the
solutions of dynamic admittance matrix of a piezoelectric device derived from the method are reviewed. By
solving the problem of dynamic responses of a piezoelectric cantilever bimorph with mode analysis method,
an alternative approach in the derivation of the dynamic admittance matrix and other related parameters of
a piezoelectric system, which can be expressed explicitly in terms of series resonance characteristics of the
structure, is presented. It is shown that this form of solutions may offer some conveniences in studying
mechanical and electrical properties of the system in the vicinity of resonance frequencies.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Admittance of an elastic piezoelectric transducer derived from vibration analysis is often used
to calculate the parameters of equivalent circuit model and to study electromechanical coupling
behaviour of the transducer in the vicinity of resonance frequencies. Therefore, considerable
efforts have been made to obtain dynamic admittances of various piezoelectric structures in the
literature [1–5].

For a piezoelectric cantilever bimorph, the analytic expressions of its dynamic admittance
matrix have been obtained and discussed in Refs. [1,2]. The derivation method used in Ref. [1] has
been followed by some researchers to derive admittance matrices of other piezoelectric structures
[5]. In the derivations, the general solutions of dynamic responses are obtained from the governing
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equation of free vibration. The applied force and moment at the free end of the cantilever are
incorporated into the boundary conditions. Therefore, to derive the dynamic responses for different
exciting forces, the respective coefficients in the general solutions have to be determined separately
due to the different boundary conditions defined. For the forces acting on the positions other than
boundaries, specific derivations also need to be taken to obtain corresponding special solutions
added to the general solutions. This kind of treatment is effective for a simple problem discussed,
and exact and concise analytical results can be obtained. For a complex problem, however, this
method may not be effective and convenient. For example, the related analytic special solutions are
usually not easy to be obtained for complex applied forces, and the separate derivations of the
dynamic responses corresponding to the different excitations are not suitable for unified treatments,
which are important for the problems with complex applied forces or structures.

In addition, since the solutions in Ref. [1] are not expressed explicitly based on resonance
properties of the structure, it may not be very convenient to be used for the discussion of
resonance behaviours of the structure. Additional treatments usually have to be taken to study
mechanical and electrical properties of the transducers in the vicinities of the resonance
frequencies [6].

In view of the discussions mentioned above, the mode analysis method, or mode summation
method, is used in this paper to derive the dynamic admittance matrices by taking piezoelectric
cantilever bimorph as an example. In the derivations, the natural frequencies and corresponding
normal modes of the cantilever bimorph are obtained first through mode analysis of free
vibration. Since the vibrations of the dynamic system for different applied forces are studied under
the same boundary conditions, the corresponding responses of the system can then be treated
uniformly and can be expressed in unified general form based on the summation of the
contributions of the series normal modes. This treatment may be more convenient as long as a
problem with complex structure or applied forces is involved. From the general solutions, the
dynamic admittance matrix of the piezoelectric cantilever bimorph can be determined following a
standard procedure. Although the solutions obtained by the mode summation method are not as
concise as those given in Ref. [1], the resonance properties of the structure, however, are included
into the expressions explicitly. Since the dynamic properties at resonance frequencies are of most
interest for a piezoelectric transducer or a piezoelectric resonator, it would be convenient with the
form of the solutions to discuss mechanical and electrical properties of the transducers in the
vicinity of the resonance frequencies.

2. Forced vibration of cantilever beam

Consider a piezoelectric cantilever bimorph acted by a moment M at the tip, a force F at the
tip, a distributed force p; and a voltage V ; respectively, as shown in Fig. 1. The geometries of the
bimorph are length L; width b; and thickness of each strip h: The constitutive equations of
the strips are given by [1]

S1 ¼ sE
11T1 þ d31E3;

D3 ¼ d31T1 þ eT
33E3; ð1Þ
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where S1 and T1 are the strain and stress in length direction of the piezoelectric strips; D3 and E3

are the electric displacement and electric field; sE
11; d31 and eT

33 are the compliance at constant
electric field, the piezoelectric strain constant, and dielectric constant under constant stress,
respectively. The equation of motion for the lateral vibration of the bimorph beam, including the
effect of damping, can be written as

EI
@4uðx; tÞ
@x4

þ c
@uðx; tÞ

@t
þ rA

@2uðx; tÞ
@t2

¼ f ðx; tÞ; ð2Þ

where uðx; tÞ is the transverse displacement, f ðx; tÞ the applied force, r the density of the material,
c the equivalent damping coefficient, A ¼ 2bh the cross-sectional area of the bimorph, and EI the
bending rigidity of the bimorph, which is given by

EI ¼
2

3

bh3

sE
11

: ð3Þ

In Eq. (2), the damping force is assumed to be proportional to the particle velocity in the
piezoelectric material [7,8].

In addition to the form of the solutions given in Ref. [1], the general solutions of the motion of
Eq. (2) can also be obtained following mode summation method often used in mechanical and
structural engineering [9].

According to mode summation method, the general solutions of Eq. (2) can be expanded based
on normal modes of the cantilever, which are obtained from its mode analysis of free vibration [9].
By applying orthogonal conditions of the normal modes, the uncoupled ordinary differential
equations for the generalized co-ordinates, qiðtÞ; can be obtained as

.qiðtÞ þ 2zioi ’qiðtÞ þ o2
i qiðtÞ ¼ fiðtÞ; i ¼ 1; 2;y; ð4Þ

where oi is the ith order natural frequency of the cantilever; zi is defined as damping factor, Mi the
generalized mass, and fiðtÞ the generalized force, which are given by

zi ¼
c

2rAoi

; Mi ¼
Z L

0

rAj2
i ðxÞ dx ¼ rAL; fiðtÞ ¼

1

Mi

Z L

0

f ðx; tÞjiðxÞ dx: ð5Þ

In Eq. (5), jiðxÞ is the normal mode corresponding the natural frequency, oi; and have the form

oi ¼
ðliLÞ

2

L2

ffiffiffiffiffiffiffi
EI

rA

s
; jiðxÞ ¼ cosh lix � cos lix � biðsinh lix � sin lixÞ; ð6Þ
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Fig. 1. The cantilever bimorph and applied forces [1].
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and the series eigenvalues liL for the cantilever are obtained as l1L ¼ 1:875; l2L ¼ 4:694; etc. The
constants bi in jiðxÞ are given in Eq. (A.1) of Appendix A. It is noted that the solutions given in
Ref. [1] can only provide approximate mode shapes as the applied frequencies approach series
resonance frequencies [2]. It cannot determine the mode shapes, or normal modes, exactly at the
resonance frequencies since the solutions are infinite at these frequencies.

If, instead of distributed loads, a concentrated force F ða; tÞ and a concentrated moment Mða; tÞ
are acted at some point x ¼ a; the generalized force for such loads is

fiðtÞ ¼
1

Mi

½Fða; tÞjiðaÞ þ Mða; tÞj0
iðaÞ�: ð7Þ

Therefore, the dynamic responses of the system can be treated uniformly for different applied
forces.

For harmonic excitation f ðx; tÞ ¼ *fðxÞe jot with the exciting frequency o; the generalized force
fiðtÞ can be further written as

fiðtÞ ¼ *fie
jot; *fi ¼

1

Mi

Z L

0

*fðxÞjiðxÞ dx: ð8Þ

Substituting Eq. (8) into Eq. (4), the steady state response qiðtÞ can be obtained as

qiðtÞ ¼
*fi

o2
i

HiðoÞe jot ¼ Qie
jðot�aiÞ; ð9Þ

where

HiðoÞ ¼
1

1� ðo=oiÞ
2 þ j2zio=oi

¼ jHiðoÞje�jai ; ai ¼ arctan
2zio=oi

1� ðo=oiÞ
2
; ð10Þ

jHiðoÞj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1� ðo=oiÞ
2�2 þ ð2zio=oiÞ

2
q ; Qi ¼

*fi

o2
i

jHiðoÞj:

Therefore, the general steady state response of the cantilever excited by either mechanical or
electric forces with the applied frequency o can be written as

uðx; tÞ ¼
X

i

jiðxÞqiðtÞ ¼
X

i

*fi

o2
i

HiðoÞjiðxÞe
jot ¼

X
i

QijiðxÞe
jðot�aiÞ: ð11Þ

It is noted that the general solution (11) has satisfied the boundary conditions of the cantilever
bimorph without any unknowns to be determined. For an exciting force, the corresponding
response can be obtained simply by substituting the force into Eq. (8) to determine *fi: Therefore,
the method is suitable for systematic treatments for any type of applied forces.

If the applied frequency is very close to one of the natural frequencies of the beam, say om;
solution (11) can be approximated as

uðx; tÞ ¼
*fm

o2
m

HmðoÞjmðxÞe
jot ¼

*fmjmðxÞe
jot

o2
m � o2 þ j2zmoom

: ð12Þ
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If the damping effect is not considered, Eq. (12) can be further simplified as

uðx; tÞ ¼
*fmjmðxÞe

jot

o2
m � o2

: ð13Þ

It should be pointed out that solutions (11) are essentially same as the expressions obtained
by analytical method in Ref. [1] but with different forms. They are expressed explicitly based on
the expansion of the normal modes at resonance frequencies. In addition, the solutions can also be
approximated as a simple form (12) or (13) in the vicinity of a resonance, which contains the
dynamic parameters of the system only at the resonance. Therefore, it is convenient to discuss
the resonance behaviour and to derive the equivalent circuit parameters of the transducer with
the expressions.

3. Admittance matrix

In this section, the elements of the admittance matrix B defined in Ref. [1] are derived with the
general solutions given in the preceding section. The derivations are proceed under the following
applied forces:

* cantilever bimorph subjected to a concentrated moment M ¼ M0e
jot at x ¼ L;

* cantilever bimorph subjected to a concentrated force F ¼ F0e
jot at x ¼ L;

* cantilever bimorph subjected to a distributed force qðxÞ ¼ q0e
jot;

* cantilever bimorph subjected to an electric voltage V ðxÞ ¼ V0e
jot:

3.1. Cantilever bimorph subjected to mechanical forces

If a cantilever bimorph is excited by a dynamic moment M ¼ M0e
jot at its tip, the related

generalized force *fi can be determined from Eqs. (8) and (7) as

*fi ¼
1

Mi

M0j0
iðLÞ ¼

M0

rAL
j0

iðLÞ: ð14Þ

Substituting Eq. (14) into the general solution (11), the deflection of the cantilever acted under the
moment at the tip can be obtained as

uðx; tÞ ¼
1

rAL

X
i

HiðoÞ
o2

i

j0
iðLÞjiðxÞM0e

jot; ð15Þ

where jiðxÞ;j
0
iðLÞ and HiðoÞ are given by Eqs. (6), (A.2) and (10), respectively.

By using the relations given in Appendix A, the deflection d at the tip of the cantilever due to
the action of the moment is obtained as

d ¼ uðL; tÞ ¼
1

rAL

X
i

HiðoÞ
o2

i

j0
iðLÞjiðLÞM0e

jot

¼
4

rAL

X
i

libi

o2
i

HiðoÞM0e
jot: ð16Þ
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Similarly, the slope a at the tip is given by

a ¼
duðx; tÞ

dx

����
x¼L

¼
1

rAL

X
i

HiðoÞ
o2

i

j0
iðLÞj

0
iðLÞM0e

jot

¼
4

rAL

X
i

l2i b
2
i

o2
i

HiðoÞM0e
jot ð17Þ

and the volume displacement n can be obtained by

n ¼
Z b

0

Z L

0

uðx; tÞ dx dy ¼
1

rAL

X
i

HiðoÞ
o2

i

j0
iðLÞFiðLÞM0e

jot

¼
4b

rAL

X
i

biZi

o2
i

HiðoÞM0e
jot: ð18Þ

Therefore, expressions (17), (16) and (18) fill up the elements (1,1), (2,1) and (3,1) of the
admittance matrix B:

The elements of the admittance matrix corresponding to the tip force and the distributed force
can be obtained similarly. The results are listed in Appendix B.

3.2. Cantilever bimorph subjected to an electric voltage V ðxÞ ¼ V0e
jot

The effect of the applied electric voltage can be equivalent to a moment acted at the end section
of the cantilever bimorph [1]:

M ¼ �2b

Z h

0

d31

sE
11

E3z dz ¼
bhd31

2sE
11

V ; ð19Þ

where the electric field E3 has been replaced by the relation

E3 ¼ �
V

2h
: ð20Þ

By replacing the mechanical moment in expression (15) by the equivalent moment (19), the
deflection of the cantilever under the electric voltage can be obtained as

uðx; tÞ ¼
bhd31

2sE
11

1

rAL

X
i

HiðoÞ
o2

i

j0
iðLÞjiðxÞV0e

jot: ð21Þ

The corresponding slope a; deflection d; and volume displacement n are obtained as

a ¼
bhd31

2sE
11

1

rAL

X
i

HiðoÞ
o2

i

j0
iðLÞj

0
iðLÞV0e

jot

¼
bhd31

sE
11

2

rAL

X
i

l2i b
2
i

o2
i

HiðoÞV0e
jot; ð22Þ
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d ¼
bhd31

2sE
11

1

rAL

X
i

HiðoÞ
o2

i

j0
iðLÞjiðLÞV0e

jot

¼
bhd31

sE
11

2

rAL

X
i

libi

o2
i

HiðoÞV0e
jot; ð23Þ

n ¼
bhd31

2sE
11

1

rAL

X
i

HiðoÞ
o2

i

j0
iðLÞFiðLÞV0e

jot

¼
bhd31

sE
11

2b

rAL

X
i

biZi

o2
i

HiðoÞV0e
jot: ð24Þ

The electric charge Q in the electrodes is given by

Q ¼
Z b

0

Z L

0

D3 dx dy; ð25Þ

in which the electric displacement D3 can be determined from the constitutive relations (1)

D3 ¼
d31

sE
11

S1 �
d2
31

sE
11

E3 þ eT
33E3; ð26Þ

where the strain S1 on the surface the bimorph is given by

S1 ¼ �h
@2u

@x2
: ð27Þ

By substituting Eqs. (20), (21), (27) and (26) into Eq. (25), the electric charge Q in the electrodes
due to the action of the voltage is obtained as

Q ¼ �
bhd31

sE
11

Z L

0

@2u

@x2
dx þ bL eT

33 �
d2
31

sE
11

� �
E3

¼ �
bL

2h
eT
33 �

d2
31

sE
11

� �
þ

1

2

bhd31

sE
11

� �2
1

rAL

X
i

HiðoÞ
o2

i

j0
iðLÞj

0
iðLÞ

" #
V0e

jot

¼ �
bL

2h
eT
33 �

d2
31

sE
11

� �
þ

bhd31

sE
11

� �2
2

rAL

X
i

l2i b
2
i

o2
i

HiðoÞ

" #
V0e

jot: ð28Þ

Expressions (22)–(24) and (28) fill up the elements (1,4), (2,4), (3,4) and (4,4) of the admittance
matrix B: Due to the symmetry property, the elements (4,1), (4,2) and (4,3) in the matrix are same
as the elements (1,4), (2,4) and (3,4), respectively. Therefore, all elements of the dynamic
admittance matrix B defined by

fa; d; n;QgT ¼ BfM;F ; p;VgT ð29Þ

have been obtained.
By comparing with the expressions given in Ref. [1], the elements of the matrix obtained here

are expressed explicitly according to the summation of the dynamic properties of the structure,
and the damping effects are also included. With the expressions, it might be easier to study
mechanical and electrical properties of the transducer in the vicinities of series resonance
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frequencies. Furthermore, since the damping effects can be included into the expressions
conveniently, the resistance in equivalent circuit model can also be determined.

4. Parameters of equivalent circuit model

With the dynamic admittance matrix of the cantilever bimorph obtained, the corresponding
resonance and antiresonance properties as well as parameters of the lumped-element equivalent
circuit model can be calculated.

If the frequency of the applied dynamic voltage o is very close to one of the natural frequencies,
om; of the cantilever bimorph, the cantilever is nearly under the resonance vibration of the mode.
In the case, the electric charge (28) in the electrodes can be reduced to

Q ¼
bL

2h
eT
33 �

d2
31

sE
11

� �
þ

2

rAL

bhd31

sE
11

� �2l2mb
2
m

o2
m

HmðoÞ

" #
V0 e

jot: ð30Þ

Therefore, the total current flowing into the electrode surface is

I ¼
@Q

@t
¼ joQ; ð31Þ

and the admittance is given by

Y ¼
I

V0e jot
¼ joC; ð32Þ

where

C ¼
bL

2h
eT
33 �

d2
31

sE
11

� �
þ

2

rAL

bhd31

sE
11

� �2l2mb
2
m

o2
m

HmðoÞ; ð33Þ

is the dynamic capacitance of the bimorph. The first term of Eq. (33) is the capacitance when the
applied frequency is far from the resonant frequencies of the bimorph

C0 ¼
bL

2h
eT
33 �

d2
31

sE
11

� �
: ð34Þ

To determine other parameters of the equivalent circuit model, the complex frequency response
HmðoÞ in Eq. (33) should be simplified first. Since the applied frequency o is very nearly equal to
the resonant frequency om; by defining Dom ¼ om � o; we have

1

o2
m

HmðoÞ ¼
1

o2
m � o2 þ j2zmoom

E
1

2om

Dom � jzmom

Do2
m þ z2mo2

m

: ð35Þ

By substituting Eq. (35) into Eq. (33) and defining

km ¼
1

rAL

bhd31

sE
11

� �2 l2mb
2
m

om

; W ¼ zmom ¼
c

2rA
; ð36Þ
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the admittance related to the dynamic part, Ym; in Eq. (32) can be written as

Ym ¼ jokm
Dom � jW

Do2
m þ W2

: ð37Þ

The reciprocal of the admittance Ym is the impedance Zm; which is

Zm ¼
1

Ym

¼
1

okm

ðW� jDomÞ: ð38Þ

Therefore, the resistance is given by [7]

Rm ¼ ReðZmÞ ¼
W

omkm

¼
cL

2b2h2

sE
11

d31lmbm

� �2

: ð39Þ

The reactive part of Zm is given by

Xm ¼ ImðZmÞ ¼ �
Dom

omkm

¼ �
2rL

bh

sE
11

d31lmbm

� �2

Dom: ð40Þ

On the other hand, the reactance of a circuit consisting of L and C in series is [7]

X ¼ oL �
1

oC
¼

o2LC � o2
0LC

oC
¼

ðoþ o0Þðo� o0ÞL
o

E� 2DoL: ð41Þ

With the relation, the reactance Xm behaves as if it were an inductance Lm having the value

Lm ¼
rL

bh

sE
11

d31lmbm

� �2

; ð42Þ

in series with a capacitance having the value

Cm ¼
1

o2
mLm

¼
3b

hL

d2
31

sE
11

b2
m

l2m
: ð43Þ

Therefore, the parameters of the equivalent circuit model have been obtained. They are given by
Eqs. (34), (39), (42) and (43), respectively.

The resonant and antiresonant frequencies can be obtained from relation (32). If the damping
effect is not considered, Eq. (32) can be simplified as

Y ¼ jo
bLeT

33

2h
ð1� k2

31Þ þ
bh

rL

eT
33k2

31

sE
11

l2mb
2
m

o2
m � o2

� �
; ð44Þ

where k2
31 is the piezoelectric coupling factor defined by

k2
31 ¼

d2
31

sE
11e

T
33

: ð45Þ

According to the definition of resonance and antiresonance, the resonant frequency can be
determined by letting Y-N; and the antiresonant frequency by Y ¼ 0: Therefore, it can be
found from Eq. (44) that the resonant frequency or is equal to the natural frequency om of the
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bimorph, and the related antiresonant frequency oa is obtained as

oa ¼ o2
m þ

2h2

rL2

k2
31

1� k2
31

l2mb
2
m

sE
11

� �1=2

: ð46Þ

Therefore, for series resonant frequencies om ðm ¼ 1; 2;yÞ; the corresponding antiresonant
frequencies can be determined approximately from Eq. (46) without necessity for solving a related
equation as usually done in the literature.

With one of the definitions for electromechanical coupling coefficient keff defined by [10,8]

k2
eff ¼

o2
a � o2

r

o2
a

; ð47Þ

the electromechanical coupling coefficients of the bimorph at different resonance modes can be
estimated from relation (47).

5. Discussions and concluding remarks

The general expressions of dynamic responses and admittance matrix for a piezoelectric
cantilever bimorph based on mode analysis method are obtained in the present paper. The
solutions can also be regarded as expansion of the form of the solutions given in Ref. [1] with the
infinite series vibration modes of the cantilever. In general, for the problems of which analytical
solutions exist, the two forms of the solutions are essentially same. For the problems without
analytical solutions, however, the approximate solutions obtained by the two methods,
respectively, could be or could not be same depending on the approximate treatments used in
the derivations.

In case that two forms of the solutions are same, which of them are used will depend on the
convenience of the problems discussed. In determining the dynamic responses, for instance, the
concise expressions in Ref. [1] can provide exact results conveniently. For the form of
the solutions expressed by the expansion of infinite series, however, extra efforts have to be taken
to obtain the expressions of the summation of the infinite series.

On the other hand, the solutions of the mode analysis method are expressed explicitly according
to the superposition of series normal mode vibrations, which are the intrinsic characteristics of the
vibration system at resonances. Therefore, it is convenient to use the solutions for the study of
dynamic properties of the system in the vicinity of resonances, which are of most interest for a
piezoelectric transducer working in the range of resonance frequency. For example, the solutions
can be approximated as the simple form (12) or (13) in the vicinity of a resonance. The
corresponding properties such as equivalent circuit parameters and electromechanical coupling
coefficient, which are directly related to the characteristics of the system at the resonance, can be
derived straightforward with the expressions. If the solutions in Ref. [1] are used for the
derivations instead, additional treatments usually have to be taken to write the solutions in terms
of the series resonance frequencies [6].

In addition, by comparing the derivation procedure of the mode summation method with the
method used in Ref. [1], it is found that the mode summation method may offer a more unified
way to obtain the responses of a vibration system subjected to different excitations, and is easier
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for the derivations following regular steps. These properties may show some conveniences in the
derivation of a complex problem.

The method used and the problem solved in the paper is ordinary. With the dynamic analysis of
a piezoelectric cantilever bimorph as an example, this paper is to suggest a different approach in
the derivation of dynamic responses, admittance matrices, and equivalent parameters of
piezoelectric transducers by the mode summation method. This method has been well used in
mechanical and structural engineering for dynamic analysis but relatively less used in electrical
engineering. Although the solutions obtained by the method are essentially same as those
obtained in the literature, the present expressions could be regarded as complementary to the
existing analytic expressions, and as an alternative choice in studying the resonance properties of
the piezoelectric systems.

Appendix A

Define the eigenvalue related constants

bi ¼
sinh liL � sin liL

cosh liL þ cos liL
; gi ¼

sinh liL sin liL

cosh liL þ cos liL
;

Zi ¼
cosh liL sin liL þ sinh liL cos liL

cosh liL þ cos liL
: ðA:1Þ

From (10), we have

jiðLÞ ¼ 2gi; j0
iðLÞ ¼ 2liZi; FiðLÞ ¼

Z b

0

Z L

0

jiðxÞ dx dy ¼
2b

li

bi: ðA:2Þ

Therefore, by using the relation cos liL cosh liL þ 1 ¼ 0; the following expressions can be
obtained:

j2
i ðLÞ ¼ 4; jiðLÞj

0
iðLÞ ¼ 4libi; j0

iðLÞj
0
iðLÞ ¼ 4l2i b

2
i ;

jiðLÞFiðLÞ ¼
4b

li

bigi; j0
iðLÞFiðLÞ ¼ 4bbiZi; F2

i ðLÞ ¼
4b2

l2i
b2

i : ðA:3Þ

Appendix B

For the cantilever bimorph excited by a concentrated force F ¼ F0e
jot at its tip, the related

generalized force *fi can be determined from Eq. (8) as

*fi ¼
1

Mi

F0jiðLÞ ¼
F0

rAL
jiðLÞ: ðB:1Þ

Substituting (B.1) into the general solution (11), the deflection of the cantilever under the action of
the force at the tip can be obtained as

uðx; tÞ ¼
1

rAL

X
i

HiðoÞ
o2

i

jiðLÞjiðxÞF0e
jot: ðB:2Þ
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The corresponding slope a; deflection d; and volume displacement n are obtained as

a ¼
1

rAL

X
i

HiðoÞ
o2

i

jiðLÞj
0
iðLÞF0e

jot ¼
4

rAL

X
i

libi

o2
i

HiðoÞF0e
jot; ðB:3Þ

d ¼
1

rAL

X
i

HiðoÞ
o2

i

jiðLÞjiðLÞF0e
jot ¼

4

rAL

X
i

1

o2
i

HiðoÞF0e
jot; ðB:4Þ

n ¼
1

rAL

X
i

HiðoÞ
o2

i

jiðLÞFiðLÞF0e
jot ¼

4b

rAL

X
i

bigi

lio2
i

HiðoÞF0e
jot: ðB:5Þ

Expressions (B.3), (B.4) and (B.5) fill up the elements (1,2), (2,2) and (3,2) of the admittance
matrix B:

Similarly, for the cantilever bimorph excited by a distributed force qðxÞ ¼ q0e
jot; the related

generalized force *fi can be determined from Eq. (8) as

*fi ¼
1

Mi

Z b

0

Z L

0

q0jiðxÞ dx dy ¼
q0

rAL
FiðLÞ: ðB:6Þ

Substituting Eq. (B.6) into the general solution (11), the deflection of the cantilever under the
action of the distributed force can be obtained as

uðx; tÞ ¼
1

rAL

X
i

HiðoÞ
o2

i

FiðLÞjiðxÞq0e
jot: ðB:7Þ

The corresponding slope a; deflection d; and volume displacement n are obtained as

a ¼
1

rAL

X
i

HiðoÞ
o2

i

FiðLÞj0
iðLÞq0e

jot ¼
4b

rAL

X
i

biZi

o2
i

HiðoÞq0e
jot; ðB:8Þ

d ¼
1

rAL

X
i

HiðoÞ
o2

i

FiðLÞjiðLÞq0e
jot ¼

4b

rAL

X
i

bigi

lio2
i

HiðoÞq0e
jot; ðB:9Þ

n ¼
1

rAL

X
i

HiðoÞ
o2

i

FiðLÞFiðLÞq0e
jot ¼

4b2

rAL

X
i

b2
i

l2i o
2
i

HiðoÞq0e
jot: ðB:10Þ

Expressions (B.8), (B.9) and (B.10) fill up the elements (1,3), (2,3) and (3,3) of the admittance
matrix B:
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