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Abstract

In this paper, the use of free- or fixed-interface modes in exact substructure displacement expansions is
briefly summarized. Then the substructural displacements are expressed exactly in terms of mixed modes,
i.e., the displacements consist of linear combinations of fixed- and free-interface modes. This yields a new
exact mixed-mode substructure method. It is demonstrated that the exact substructure methods with fixed
or free interfaces are two limiting cases of this new mixed-mode exact method. Thus, the exact substructure
method variants with free-interface, fixed-interface or mixed modes form a systematic theory of
substructure methods, which is unified by the new mixed-mode variant. This new exact variant not only
has this important theoretical significance but also has great practical significance because it can lead to new
approximate methods and to a deeper understanding of existing ones, e.g., quasi-comparison function
methods, dynamic condensation methods or substructure modal synthesis methods.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

The substructure modal synthesis (SMS) method is one type of substructure method and is a
modelling technique, which permits a complex structure to be represented by a reduced number of
d.o.f. through modal transformation. SMS techniques are well known and popular in structural
dynamic analysis and are very useful when solving large complex structural dynamic problems,
especially for structures consisting of several obviously distinct substructures. They have been
used widely in the aerospace and automotive industries and involve the structure as an assembly
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of substructures, which are then assembled together by satisfying compatibility and equilibrium at
their interfaces.
Since Hurty presented his paper [1] on SMS in 1965, numerous variants of the SMS method

have been presented. The Rayleigh–Ritz procedure permits them all to be described easily, but
there are different substructure displacement representations, which need to be introduced by
means of different mechanics analysis processes.
Due to the lack of a systematic framework, the variants of the SMS method were developed

individually. The framework needed to unify them is now presented in this paper.
Compared to SMS, the exact substructure method (ESM) is another class of substructure

methods, in which the number of d.o.f. of the structure is not reduced, thus giving the entire exact
modes of the whole structure, i.e., the modes which would be obtained by using a direct analytical
method.
There are three different forms of exact substructure displacement expansion expressions,

namely the free-interface modes form, the fixed-interface modes form first presented in Ref [2],
and the mixed modes form proposed in this paper. Hence, there are three different forms of
dynamical analytical methods based on these.
A review of ESM with either free or fixed interfaces is presented in Sections 2.1 and 2.2. It is

shown that the variants of SMS with either free or fixed interfaces are essentially different
approximations to the ESM with free or fixed interfaces. This relationship between the variants of
ESM and SMS gives new insights into the substructure method and is necessary for the
systematization of such substructure methods. Hence, if new ESM variants can be constructed,
related new SMS variants could be set up in terms of both the substructural displacement
approximations and the synthesis procedures.
Using this approach, a new ESM variant using mixed modes is constructed in Section 3. By

analytical means, the exact displacements are expressed exactly, as mixed modes consisting of
linear combinations of the fixed- and free-interface modes. The exact results for the original whole
structure, which would be obtained by using a direct analytical method, can instead be obtained
exactly by using the new ESM proposed. This is proved by strict analytical derivation and
demonstrated by numerical examples. It is also demonstrated that ESM with fixed or free
interfaces are two limiting cases of this new ESM variant. Thus, the ESM variants using free, fixed
or mixed modes form a systematic theory of substructure methods.
As already stated, the new mixed-mode ESM variant has great practical as well as theoretical

significance. Hence, it is shown to have the capacity to lead to some new approximate methods or
to a better understanding of existing ones, e.g., the assumed modes method using quasi-
comparison functions [3,4], new dynamic condensation and new SMS variants. One of these,
which was published recently [5], approximates the new ESM presented here by ignoring higher
order mixed modes.

2. Three exact displacement expansion expressions

The equation of motion of each undamped substructure is

m .X þ kX ¼ f ð1Þ
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where m, k, X and f are, respectively, the mass and stiffness matrices and the displacement and
force vectors. This equation can be partitioned into

mii mij

mji mjj

" #
.Xi

.Xj

" #
þ

kii kij

kji kjj

" #
X i

X j

" #
¼

0

f j

" #
; ð2Þ

where the subscripts i and j indicate internal and boundary d.o.f., respectively, and fi=0, i.e. the
forces corresponding to interior d.o.f., are all zero for the eigenvalue problem.

2.1. Exact displacement expansion expression using free-interface modes

The free vibration equation of any substructure with its interface free is Eq. (1) with f ¼ 0: The
corresponding eigenvalue matrix KE ; normal mode matrix UE and the relationships of
orthonormality satisfy the equations

UT
EmUE ¼ I ; UT

EkUE ¼ KE ð3Þ

in which

KE ¼

0

KEl

KEh

2
64

3
75;UE ¼ UER UEI UEh½ �;

KEl ¼ l2E1; l
2
E2;y; l2EL

	 

; KEh ¼ l2EðLþ1Þ; l

2
EðLþ2Þ;?; l2EðLþHÞ

h i
;

ð4Þ

where subscript E indicates elements associated with free-interface substructures, UER is the
matrix of rigid-body modes, KEl is the diagonal matrix which comprises the L lowest non-zero
eigenvalues l; the diagonal matrix KEh comprises the remaining H (higher) eigenvalues l and UEl

and UEh contain the modes corresponding to KEl and KEh:
From Eq. (1), the exact representation of modal co-ordinates for the substructure displace-

ments X can be obtained analytically as

X ¼ ðk � mo2Þ�1f ¼ UEðKE � o2IEÞUT
E f

¼ XER þ XEl þ XEh ¼ UER qER þ UElqEl þ UEhqEh ¼ UE %qE ; ð5Þ

where

qER ¼ �o�2UT
ER f ; qEl ¼ ðKEl � o2IElÞ

�1UT
El f ;

qEh ¼ ðKEh � o2IEhÞ
�1UT

Eh f ; XER ¼ UERqER; XEl ¼ UElqEl ;

XEh ¼ UEhqEh; UE ¼ UER UEl UEh

	 

;

%qE ¼ qTER qT
El qTEh

	 
T
: ð6Þ

According to classical modal theory, the complete set UE of free-interface modes is the
complete set of substructure displacements and constitutes the complete space, while Eq. (5)
represents the modes expansion theorem and %qE are the modal co-ordinates.
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Applying Eq. (5) to substructures enables the synthesis equation of exact free-interface
substructure methods to be derived. Thus, the publications of Hou [6], MacNeal [7], Ruben [8],
Craig and Chang [9], Wang et al. [10], Qiu and Tan [11] and Ying et al. [12] construct a systematic
logical progression of SMS variants, which essentially are different approximations to the ESM
variant which uses free-interface modes. Thus, this ESM formulation is the theoretical basis of all
practical approximate SMS variant methods which use free interfaces.

2.2. Exact displacement expansion expression using fixed-interface modes

For a fixed interface denoted by j, the displacement vector is

Xb ¼
Xbi

Xbj

( )
¼

Xbi

0

( )
ð7Þ

and so Eq. (2) simplifies to

mii
.Xbi þ kiiXbi ¼ 0; mji

.Xbi þ kjiXbi ¼ f bj; ð8Þ

where the subscript b indicates that the element is associated with a fixed-interface substructure
and f bj is the force vector at the fixed interface. The corresponding eigenvalue matrix Kb; normal
mode matrix Ub and relationships of orthonormality satisfy the equations

UT
b kUb ¼ UT

bikiiUbi ¼ Kb; UT
b mUb ¼ UT

bimiiUbi ¼ Ib ð9Þ

in which, with yd e denoting a diagonal matrix,

Kb ¼
Kbl 0

0 Kbh

" #
Ub ¼

Ubi

0

" #
¼ Ubl Ubh

	 

;

Kbl l2b1; l
2
b2;yl2bL

� �
;Lbh ¼ l2bðLþ1Þ; l

2
bðLþ2Þ;y; l2bðLþHÞ

l m
; ð10Þ

where the diagonal matrices Kbl and Kbh involve, respectively, the L lowest eigenvalues and the
remaining H (higher) eigenvalues and Ubl and Ubh contain the corresponding modes.
The next step is to use an analytical method to obtain an exact expression for the substructural

displacements, as follows. If the interfaces had not been fixed, the first row of Eq. (2) would give

ðkii � o2miiÞX i þ ðkij � o2mijÞX j ¼ 0: ð11Þ

Therefore, the displacements X i at the internal d.o.f. i and X can be expressed exactly in terms of
the boundary displacements X j as

X i ¼ tciX j; X ¼
X i

X j

" #
¼ TcX j;

Tc ¼
tci

I

" #
; tci ¼ � %Rðo2Þðkij � o2mijÞ;

ð12Þ
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%Rðo2Þ ¼ ðkii � o2miiÞ
�1 ¼ ðkii � o2miiÞ

�1ðkii � o2mii þ o2miiÞk
�1
ii

¼ ½I þ o2ðkii � o2miiÞ
�1mii�k�1

ii ¼ k�1
ii þ o2 %Rðo2Þmiik

�1
ii : ð13Þ

Here Tc and %Rðo2Þ are the exact constraint mode and dynamic flexibility matrix of the
constrained substructure. Substituting Eq. (13) into Eq. (12) and using Eq. (9) gives exact
constraint modes, for use with the complete set of fixed-interface normal modes as follows

tci ¼ �k�1
ii kij þ o2UbiðKb � o2IbÞ

�1UT
b mUc0; ð14Þ

Tc ¼ Uc0 þ o2UbðKb � o2ITb Þ
�1UT

b mUc0; ð15aÞ

Uc0 ¼
tc0

I

" #
; ð15bÞ

tc0 ¼ �k�1
ii kij : ð15cÞ

Substituting Eq. (15a) into Eq. (12) gives the exact displacements X in terms of the complete set
of fixed-interface normal modes as

X ¼ Xc0 þ Xbl þ Xbh ¼ UB %qB; ð16Þ

where

Xc0 ¼ Uc0X j; Xbl ¼ Ublqbl ; Xbh ¼ Ubhqbh;

UB ¼ Uc0 Ubl Ubh

	 

; %qB ¼ XT

j qT
bl qTbh

h iT
;

qbl ¼ o2ðKb � o2IbÞUT
blmUc0X j; qbh ¼ o2ðKb � o2IbÞUT

bhmUc0X j;

ð17Þ

Eq. (16) means that the static constraint modes Uc0; plus the complete set Ub of fixed-interface
normal modes, form the complete set of substructure displacements X and %qB are modal co-
ordinates, so that the space constituted is complete, as was also true for the alternative exact
expansion expression of Section 2.1.
Applying Eq. (16) to substructures enables the synthesis equation of fixed-interface ESMs to be

derived. Thus, the publications of Hurty [1], Craig and Bampton [13] and Qiu et al. [2] build a
systematic logical progression of methods, which essentially involve different approximations to
the ESM variant which uses fixed-interface modes. Hence, the fixed-interface variant of ESM is
important because it is the theoretical basis of all practical approximate fixed-interface modal
synthesis methods.

2.3. Relationships between rigid-body modes and static constraint modes

From Eq. (15), Uc0 is the modal matrix associated with the so-called static constraint modes,
while tc0 is the static displacement matrix corresponding to the internal d.o.f., i, of which the lth
column is the displacement vector due to X j having a unit value as its lth element, with all its other
elements assumed to be zero. Now the interface constrained force f c0j can be expressed as

f c0j ¼ kjj � kjik
�1
ii kij ; ð18Þ
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so that

kUc0 ¼
0

f c0j

" #
: ð19Þ

For any substructure with fixed interfaces, the number of interface d.o.f., j, cannot be less than the
number of rigid-body d.o.f., R, of the substructure with its interfaces free. There are statically
determinate constrained modes UcR and redundant constrained modes Ucc: Let

Uc0 ¼ UcR Ucc

	 

; ð20aÞ

f c0j ¼ f cRj f ccj

	 

: ð20bÞ

The interface force f cRj of the statically determinate constrained modes must satisfy the static
equilibrium equations

f cRjLR ¼ 0; ð21Þ

where there must exist an R 
 R matrix LR and a J 
 R matrix LJ ;

LJ ¼
LR

0

" #
: ð22Þ

The f c0j of the RHS of Eq. (19) must satisfy the equilibrium equations, which are also of order R.
Hence, using Eqs. (20b)–(22) gives

0

f c0j

" #
LJ ¼

0

f c0jLJ

" #
¼

0

f cRjLR

" #
¼ 0: ð23Þ

Substituting Eq. (19) into Eq. (23) gives

kUc0LJ ¼ kUER ¼
0

f c0j

" #
LJ ¼ 0; ð24Þ

where, see Eqs. (20a), (22) and (24),

UER ¼ Uc0LJ ¼ UcR Ucc

	 
 LR

0

" #
¼ UcRLR ð25Þ

which shows that UER must, by definition, be rigid-body modes. Hence, Eq. (25) shows that the
rigid-body modes UER can be represented as a linear combination of the statically determinate
constrained modes.
From Eq. (25),

UcR ¼ UER %qcR; ð26aÞ

%qcR ¼ LT
RðLRLT

RÞ
�1: ð26bÞ

Substituting Eqs. (20a) and (26a) into Eq. (16) gives another form of the exact displacement X as

X ¼ UBEqBE ; ð27Þ
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where

UBE ¼ UER Ucc Ubl Ubh

	 

; qBE ¼ qT

ER XT
cj qT

bl q
T

bh

h iT
;

Xc0 ¼ Uc0X j ¼ UcR Ucc

	 
 XRj

Xcj

( )
¼ UER Ucc

	 
 qER

Xcj

( )
; qER ¼ %qcRXRj: ð28Þ

Eq. (27) is equivalent to the statement that the complete set of substructure displacements X is
equivalent to the complete set Ub of fixed-interface normal modes, plus rigid-body modes UER

and redundant constrained modes Ucc:

2.4. Exact displacement expansion expression using mixed substructure modes

Because it implies the modes expansion theorem, Eq. (5) can be used to represent any
substructure displacements. Thus, the fixed-interface modes can be expressed exactly in terms of
the free-interface modes as

Ucc Ubl

	 

¼ UERqbER þ UElqbEl þ UEhqbEh: ð29Þ

For any substructure, the lower modes are usually obtained more easily than the higher ones,
whether from test data or from numerical analysis. Therefore, it is easier to find the redundant
constrained modes Ucc and the lower fixed-interface modes Ubl than to find the higher free-
interface modes UEh: Let HE be the number of higher free-interface modes UEh for a substructure,
while Lc is the total number of redundant constrained modes Ucc and lower fixed interfacial
modes Ubl retained. If the number of higher modes is chosen so that Lc ¼ HE ; to ensure that the
total number of modes used equals the number of substructure d.o.f. (=N), Eq. (29) gives exactly

UEh ¼ ð Ucc Ubl

	 

� UERqbER � UElqbElÞqch ð30aÞ

qch ¼ qT
bEhðqbEhqTbEhÞ

�1 ð30bÞ

i.e., the higher free-interface modes have been expressed in terms of some lower mixed modes.
Substituting Eq. (30a) into Eq. (5) gives Eq. (31) and then substituting Eqs. (20a) and (25) into
Eq. (31) gives Eq. (32):

X ¼UERqER þ UElqEl þ ð Ucc Ubl

	 

� UERqbER � UElqbElÞqchqEh

¼UERqR þ Uccqc þ Ublqb þ UElqE ; ð31Þ

X ¼ Uc0qc0 þ UElqE þ Ublqb ð32Þ

where

qCE ¼ qchqEh; qR ¼ qER � qbERqCE ; qE ¼ qEl � qbElqCE

qCE ¼
qc

qb

" #
; qc0 ¼

LRqR

qc

" #
ð33Þ

Hence, the substructural displacement X has been expressed exactly in terms of lower mixed
modes, i.e. as a linear combination of the static constraint modes Uc0; the lower free-interface
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modes UEl and the lower fixed-interface modes Ubl : This is a third possible exact expansion
expression, in addition to those of Sections 2.1 and 2.2.
If Ra0 and j ¼ R; i.e., the number of rigid-body d.o.f. equals the number of interfacial d.o.f.,

then the redundant constrained modes Ucc vanish. Hence Eq. (31) simplifies to

X ¼ UERqR þ UElqE þ Ublqb ð34Þ

3. New ESM mixed-mode variant

3.1. Substructure dynamic equation for mixed-modes ESM

Eq. (32) can be written as

X ¼ Uq ð35aÞ

U ¼ Uc0 UEl Ubl

	 

; ð35bÞ

q ¼ qT
c0 qT

E qT
b

	 
T
; ð35cÞ

Then substituting Eq. (35a) into Eq. (1) and pre-multiplying by UT leads to the exact substructure
dynamic equation of the new method

ðkn � x2mnÞq ¼ f n; ð36Þ

where

kn ¼

k0 k0E 0

kE0 KEl kEb

0 kbE Kbl

2
64

3
75; mn ¼

m0 m0E m0b

mE0 IEl mEb

mb0 mbE Ibl

2
64

3
75; f n ¼

Ic0 f j

UT
Elj f j

0

2
664

3
775;

k0 ¼UT
c0kUc0; kEb ¼ kT

bE ¼ UT
ElkUbl ; kE0 ¼ kT

0E ¼ UT
c0kUEl ;

m0 ¼UT
c0mUc0; m0E ¼ mT

E0 ¼ UT
c0mUEl ;

mEb ¼mT
bE ¼ UT

ElmUbl ; m0b ¼ mT
b0 ¼ UT

c0mUbl : ð37Þ

3.2. Whole structure dynamic equation for mixed-mode ESM

For simplicity, attention is restricted to cases with only adjacent substructures a and b; but the
extension to more general cases is not difficult. Using Eq. (36) for both substructures gives

kna 0

0 knb

" #
� x2 mna 0

0 mnb

" # !
qa

qb

" #
¼

f na

f nb

" #
: ð38Þ

From Eq. (35) and the interface compatibility relationship X ja ¼ X jb;

qc0a ¼ N1Q; Q ¼ qT
Ea qT

ba qT
c0b qT

Eb qT
bb

h iT
ð39Þ
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so that

qab ¼ NQ; ð40Þ

where

N1 ¼ �UElja 0 I jb UEljb 0
	 


;

qab ¼ qT
a qT

b

h iT
; N ¼

N1

I

" #
: ð41Þ

Substituting the transformation of Eq. (40), pre-multiplying by NT; and using the interface
equilibrium equation, f ja þ f jb ¼ 0; transforms Eq. (38) into the exact whole structure dynamic
equation of the new exact mixed-mode variant of ESM, i.e.,

ðK � x2MÞQ ¼ 0; ð42Þ

where

K ¼ NT kna 0

0 knb

" #
N ; M ¼ NT mna 0

0 mnb

" #
N : ð43Þ

Eq. (42) is a linear dynamic equation for the whole structure and includes completely the
contribution of all the higher modes. So this new ESM variant not only gives exact results but also
has a simple form with linear synthesis equations.

3.3. Case of statically determinate interface for mixed-mode ESM

If the number of interface d.o.f., j, equals the number of rigid-body d.o.f., R, the substructural
displacements have been shown to be given in terms of the mixed modes UEl ;UER and Ubl by
Eq. (34), i.e., by

X ¼ %U%q; ð44aÞ

%U ¼ UER UEl Ubl

	 

; ð44bÞ

%q ¼ qTR qTE qT
b

	 
T
: ð44cÞ

Substituting Eq. (44a) into Eq. (1) and pre-multiplying by %U
T
leads to the exact substructure

dynamic equation

ð %kn � x2 %mnÞ%q ¼ %fn: ð45Þ

Here, proceeding exactly analogously to the derivations of Eqs. (36)–(43), the exact whole
structure dynamic equation is

ð %K � x2 %MÞ %Q ¼ 0; %Q ¼ qTEa qT
ba qTRb qT

Eb qTbb

h iT
ð46Þ

and by using Eqs. (3), (9) and (24),

%kn ¼
0 0

0 KEb

" #
; KEb ¼

KEl
%kEb

%kbE Kbl

" #
;

ARTICLE IN PRESS

J.-B. Qiu et al. / Journal of Sound and Vibration 266 (2003) 737–757 745



%mn ¼

IR %mRE %mRb

%mER IEl %mEb

%mbR %mbE Ibl

2
64

3
75; %fn ¼

UT
ERj f j

UT
Elj f j

0

2
664

3
775;

%kEb ¼ %k
T

bE ¼ UT
ElkUbl ; %mRE ¼ %mT

ER ¼ UT
ERmUEl ;

%mRb ¼ %mT
bR ¼ UT

ERmUbl ; %mEb ¼ %mT
bE ¼ UT

ElmUbl ;

%K ¼ %N
T

%kna 0

0 %knb

" #
%N ¼

KEca 0 0

0 0 0

0 0 KEcb

2
64

3
75; %M ¼ %N

T %mna 0

0 %mnb

" #
%N;

%N1 ¼ U�1
ERja �UElja 0 UERjb UEljb 0

	 

; %N ¼

%N1

I

" #
;

%qab ¼ qT
Ra qTEa qT

ba qTRb qT
Eb qTbb

h iT
; %qab ¼ NQ: ð47Þ

4. Numerical example for new mixed-mode ESM

4.1. Example 1

Consider axial vibration of the mathematical model of the whole bar shown in Fig. 1(a). This
uniform free–free bar can be divided into two substructures, each of which is further divided into
two identical bar elements, see Fig. 1(b) and (c). Hence, N=3 and the stiffness and mass matrices
of each bar element are

K ¼ k
1 �1

�1 1

" #
; M ¼ m

1 0

0 1

" #
: ð48aÞ
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In order to enable the accuracy of the proposed exact method to be checked, the
exact eigenvalues and eigenvectors of the whole mathematical model of the bar were
obtained as

o2 ¼ 0;
2�

ffiffiffi
2

p
2

k

m
;

k

m
;
2þ

ffiffiffi
2

p
2

k

m
; 2

k

m
; ð48bÞ

U ¼
1

2
ffiffiffiffiffiffiffi
2m

p
1

ffiffiffi
2

p ffiffiffi
2

p
�

ffiffiffi
2

p
1

1 1 0 1 �1

1 0 �
ffiffiffi
2

p
0 1

1 �1 0 �1 �1

1 �
ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
1

2
66666664

3
77777775
: ð48cÞ

These solutions are the datum results.
For substructure 1, the exact eigenvalues and modes with its interface fixed were obtained as

o2 ¼
2�

ffiffiffi
2

p
2

k

m
;
2þ

ffiffiffi
2

p
2

k

m
ð49aÞ

Ub ¼ Ubl Ubh

	 

¼

1

2
ffiffiffiffi
m

p
ffiffiffi
2

p
1

0

ffiffiffi
2

p
�1

0

2
64

3
75 ð49bÞ

whereas with its interface free they were found to be

o2 ¼ 0;
k

m
;
2k

m
; ð50aÞ

UE ¼ UER UEl UEh

	 

¼

1

2
ffiffiffiffi
m

p
1

ffiffiffi
2

p
1

1 0 �1

1 �
ffiffiffi
2

p
1

2
664

3
775: ð50bÞ

The displacement of substructure 1, i.e., X1; can be represented exactly in terms of the above two
kinds of modes, i.e., the mixed modes %U1; as

X1 ¼ %U1 %q1 ð51Þ

for which the interface displacement X1j is

X1j ¼
1

2
ffiffiffiffi
m

p ð�
ffiffiffi
2

p
qE1 þ qR1Þ; ð52Þ

where the mixed modes %U1 consist of two kinds of lower modes of substructure 1, being the rigid-
body mode UER and the lowest mode UEl with free interface, see Eq. (50b), and the lowest mode
Ubl with interface fixed, see Eq. (49b), so that the number of modes used is equal to number
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of d.o.f. N (=3) and

%U1 ¼ UER UEl Ubl

	 

¼

1

2
ffiffiffiffi
m

p
1

ffiffiffi
2

p ffiffiffi
2

p
1 0 1

1 �
ffiffiffi
2

p
0

2
664

3
775; %q1 ¼ %qR %qE %qb

	 
T
: ð53Þ

From Eq. (36), the vibration equation corresponding to the displacement X1 of substructure 1 is

ð %k1 � o2 %m1Þ%q1 ¼ %f1; %f ¼
0

f 1j

" #
; ð54Þ

where the generalized stiffness, mass and force matrices are given, using Eqs. (37) and (53), by

%k1 ¼ %U
T

1 k1
%U1; %m1 ¼ %U

T

1 m1
%U1; %f1 ¼ %U

T

1 f : ð55Þ

Similarly, for substructure 2, the vibration equation is

ð %k2 � o2 %m2Þ%q2 ¼ %f2; X2j ¼
1

2
ffiffiffiffi
m

p ð�
ffiffiffi
2

p
qE2 þ qR2Þ;

%k2 ¼ %k1; %m2 ¼ %m1; ð56aÞ

%f2 ¼
0

f 2j

" #
2

: ð56bÞ

Combining Eqs. (38), (54) and (56a) gives the vibration equation for the mathematical model of
the whole bar as

%K12 � o2 %M12

� �
%q12 ¼ %F12; ð57Þ

where, see Eqs. (38) and (41),

K12 ¼
%k1 0

0 %k2

" #
; %M12 ¼

%m1 0

0 %m2

" #
; %F12 ¼

%f1
%f2

" #
;

q12 ¼ qTR1 qT
E1 qTb1 qT

R2 qTE2 qTb2
	 
T

: ð58Þ

The compatibility and equilibrium relationships between the interface displacements and
interface forces of substructures 1 and 2 are

X1j ¼ X2j; ð59aÞ

f 1j þ f 2j ¼ 0: ð59bÞ

Eqs. (52), (56b) and (59a) give

qR1 ¼
ffiffiffi
2

p
qE1 þ qR2 �

ffiffiffi
2

p
qE2 ð60Þ
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and so Eqs. (39)–(41) give the transformation as

%q12 ¼ %N12
%Q; ð61aÞ

%N12 ¼

ffiffiffi
2

p
1

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

�
ffiffiffi
2

p
0

0

0

1

0

0

0

0

0

0

1

2
6666666664

3
7777777775
; ð61bÞ

%Q ¼

qE1

qb1

qR2

qE2

qb2

2
6666664

3
7777775
: ð61cÞ

Substituting Eq. (61a) into Eq. (57) and pre-multiplying by %N
T

12 gives the exact vibration equation
for the mathematical model of the whole bar as

ð %K � o2 %MÞ %Q ¼ %F ¼ 0; ð62Þ

where, from Eq. (43),

%K ¼ %N
T

12
%K12

%N12; %M ¼ %N
T

12
%M12

%N12: ð63Þ

The eigenvalue equation is

%K � o2 %M
�� �� ¼ 0: ð64Þ

Substituting Eq. (63) into Eq. (64) and expanding gives

o2 o4 � 2o2 k

m
þ 0:5

k2

m2

� �
o2 �

k

m

� �
o2 � 2

k

m

� �
¼ 0 ð65Þ

which generates exactly the answers given in Eq. (48b), i.e., the exact eigenvalues for the
mathematical model of the whole bar. Then substituting Eq. (48b) into Eq. (64) generates exactly
the modes given in Eq. (48c), i.e., the exact eigenvectors for the mathematical model of the whole
bar. This shows that the exact eigenvalues and eigenvectors can be obtained by using the new
mixed-mode ESM variant.

4.2. Example 2

Consider axial vibration of the mathematical model of the whole bar shown in Fig. 2(a). This
uniform free-free bar is divided into two unequal substructures, see Figs. 2(b) and (c), then
substructure 1 is further divided into six identical bar elements, so that N1 ¼ 7; and substructure 2
is further divided into eight identical bar elements, giving N2 ¼ 9: Hence, the stiffness and mass
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matrices of the bar elements are

K ¼ 4k
1 �1

�1 1

" #
; M ¼ 0:25m

1 0

0 1

" #
: ð66Þ

Because there were so many d.o.f. an analytical solution was not obtained. Instead a high
accuracy eigenvalue calculation program was used to obtain the datum solution for this example
and also for Examples 3 and 4 below. The results are shown in Table 1, for which exceptionally
high accuracy was used throughout to give the very high accuracy of the table, including in the
free- and fixed-interface mode calculations. Similar accuracy was also used in Examples 3 and 4.
The ESM calculations used the same high accuracy program as was used to obtain the datum
solution and this procedure was also used for Examples 3 and 4.
The N1 (=7) modes used by the ESM calculations for substructure 1 were: one rigid-body mode

(R1=1); the lowest LE1 free-interface modes, and the lowest Lc1 free–fixed interface modes, with
the left-hand end free. Similarly, the N2ð¼ 9Þ modes used by the ESM calculations for
substructure 2 were: one rigid-body mode ðR2 ¼ 1Þ; the lowest LE2 free interface modes and; the
lowest Lc2 free-fixed interface modes, with the right-hand end free. Table 1 gives five different
combinations of LE1;Lc1;LE2 and Lc2; as cases A–E. Hence, it can be seen that the mixed-mode
ESM has LE1 þ Lc1 þ R1 ¼ N1 for substructure 1 and LE2 þ Lc2 þ R2 ¼ N2 for substructure 2.
The errors of the synthesis frequencies for cases A–E are listed in Table 1.
For case A, the lower fixed-interface modes Ubl are absent, Lc1 ¼ Lc2 ¼ 0; LE1 ¼ 6 and LE2 ¼ 8

so that LE þ R ¼ N; i.e., case A is the free-interface ESM case. Similarly, for case E the free-
interface modes UEl are absent, i.e., LE1 ¼ LE2 ¼ 0; Lc1 ¼ 6 and Lc2 ¼ 8; so that Lc þ R ¼ N; i.e.,
case E is the fixed-interface ESM case.

4.3. Example 3

Consider vibration of the mathematical model of the whole beam shown in Fig. 3(a). This
uniform free–free beam, with l=0.5m, can be divided into two substructures of equal length
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Fig. 2. Free–free bar with two substructures, with the length of substructure 1 being 0.75
 length of substructure 2.
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Table 1

Error (%) of synthesis frequencies ðoi ¼ 1; 2;y; 15Þ for the free–free bar of Fig. 2

Free-interface

ESM

Mixed–mode

ESM

Fixed interface

ESM

Datum oð

ffiffiffiffiffiffiffiffiffi
k=m

p
Þ

Case A B C D E

N1(=7) LE1 6 5 3 1 0

Lc1 0 1 3 5 6

N2(=9) LE2 8 6 4 2 0

Lc2 0 2 4 6 8

Error (
 100%) 1 — — — — — 0.334221388864416754097781432086e�15

2 4.20e�31 5.10e–28 2.80e�25 3.40e–29 0.0 0.633366722437185112733758570679

3 3.10e�31 7.90e�27 3.30e�25 1.80e–28 0.0 1.258768490851790419180581796130

4 2.10e�31 3.10e�26 1.60e–23 8.30e–29 0.0 1.868340515139444023041335946636

5 3.50e�31 1.30e�26 5.80e�24 3.70e�28 0.0 2.454417073412801924481543978217

6 1.90e�31 1.10e�26 4.90e�24 1.30e�28 0.31e�30 3.009627912902036810916916473987

7 1.20e�31 9.30e�26 4.60e�24 1.20e�28 0.26e�30 3.526990935159738900257769226702

8 1.20e�14 6.50e�15 1.40e�11 3.00e�28 0.0 4.000000000000000000000000000000

9 1.50e�31 5.50e�26 3.60e�23 1.90e�29 0.20e�30 4.422706743986201768007416708876

10 2.10e�31 3.90e�25 3.00e�22 1.00e�27 0.84e�30 4.789795384552552045228136989966

11 8.70e�32 6.40e�25 1.50e�20 1.10e�28 0.20e�30 5.096649569054138578680564878991

12 5.50e�32 3.80e�24 6.10e�21 1.70e�27 0.73e�30 5.339410428079908986847482609419

13 2.60e�31 2.40e�23 1.00e�19 4.70e�28 0.14e�29 5.515025102974482927641624733981

14 1.00e�31 2.00e�23 1.70e�20 3.60e�27 0.14e�29 5.621285137307053356933797642722

15 1.80e�31 4.20e�23 3.00e�20 4.20e�26 0.12e�29 5.656854249492380195206754896845
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l=0.25m, each of which is further divided into four identical beam elements, see Figs. 3(b) and
(c). Hence, N=10 and the stiffness and mass matrices of the beam elements are

K ¼
EI

l3

12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 22l

6l 2l2 22l 4l2

2
6664

3
7775; M ¼

rAl

420

156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

2
6664

3
7775; ð67Þ

where E is Young’s modulus, r is mass density, I is cross-sectional second moment of area, A is
area and EI=rA ¼ 0:1 m4=s2:
Two rigid-body modes, the lowest five free-interface modes and the lowest three free–fixed

interface modes, were the N(=10) modes used for each substructure, with the left-hand ( right-
hand ) end free for substructure 1 (2). The results are given in Table 2 and again indicate that the
mixed-mode ESM gave the exact results expected.

4.4. Example 4

Consider in-plane vibration of the mathematical model of the whole rectangular plate with free
sides shown in Fig. 4(a), for which length 4a=2m, width 2b=1m and thickness h=0.02m.
Young’s modulus E ¼ 10:5
 109Pa; m ¼ 0:3 and mass density r ¼ 1
 103 kg=m3: The plate was
divided into the two substructures shown in Figs. 4(b) and (c), each of which was treated as a
single square plate element. Hence N=8 and the element stiffness and mass matrices were both
(8
 8) matrices. Further details of the stiffness and mass matrices are not given for reasons of
space, nor are the results tabulated, because it is sufficient to record that the mixed-mode ESM
gave the 12 natural frequencies to an accuracy of, at worst, 8.6
 10�16 % when the N(=8) modes
used were three rigid-body ones, the lowest three free interface ones and the lowest two fixed
interface ones.
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Fig. 3. Free–free beam with two substructures of equal length.
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Fig. 4. Free plate with two substructures of equal length.

Table 2

Synthesis frequencies ðfi ¼ 1; 2;y; 18Þ for free–free beam of Fig. 3 ðo ¼ 2pf Þ

i Mixed–mode ESM Datum

f (Hz) Error (%) f (Hz)

1 0 0

2 0 0

3 45.50214540 1.97e�13 45.50214540

4 125.4914907 2.01e�13 125.4914907

5 246.3890073 5.05e�15 246.3890073

6 408.6039666 2.94e�14 408.6039666

7 613.6316784 3.34e�16 613.6316784

8 862.6159881 3.97e�14 862.6159881

9 1144.350291 3.82e�14 1144.350291

10 1603.172312 1.80e�13 1603.172312

11 2020.985894 4.57e�12 2020.985894

12 2547.696916 3.55e�15 2547.696916

13 3190.630241 8.96e�11 3190.630241

14 3973.896293 1.17e�11 3973.896293

15 4909.563874 3.52e�09 4909.563874

16 5922.807511 2.77e�10 5922.807511

17 7765.700339 5.02e�09 7765.700339

18 7818.807397 3.68e�10 7818.807397
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5. Discussion of the importance of the new mixed-mode ESM

5.1. Two limiting cases of the new mixed-mode ESM

R is the number of rigid-body modes, Lc is the number of redundant constrained modes Ucc and
lower fixed-interface modes Ubl ; and LE is the number of lower free-interface modes UEl for a
substructure with N d.o.f. Therefore, the mixed-mode ESM has LE þ Lc þ R ¼ N: When the
redundant constrained modes Ucc and the lower fixed-interface modes Ubl are both absent, Lc ¼ 0
and so LE þ R ¼ N: Then Eqs. (31) and (42) reduce to the substructure displacement Eq. (5) and
the whole structure dynamic equation of free-interface ESM. Alternatively, if the free-interface
modes UEl are absent, LE ¼ 0 and so Lc þ R ¼ N: Then Eqs. (32) and (42) reduce to the
substructure displacement Eq. (16) and the whole structure dynamic equation of fixed interface
ESM. Therefore, ESM using either free- or fixed-interface modes are limiting cases of the new
mixed-mode ESM, which is thus a unifying theory for understanding and systematizing all ESM
variants.
Obviously, all SMS variants are essentially different approximations to ESM. Hence, an

important aspect of the new mixed-mode ESM is that it enables new approximate methods to be
developed that also use mixed modes or approximations to them, e.g., see Qiu et al. [5] and the
assumed modes method using quasi-comparison functions [3,4] briefly described in the next sub-
section.

5.2. Assumed modes method using quasi-comparison function

The new mixed-mode ESM includes two types of finite series of modes in the substructural
displacement X, see Eqs. (31) and (32). If these two types of mode are replaced by two types of
admissible function, the result is the assumed modes method using quasi-comparison functions
[3,4], as described further below.
Meirovitch and Kwak [3] demonstrated that the usually used form of the classical Rayleigh–

Ritz method could have impaired convergence characteristics due to the following implicit flaw. If
the eigenvalue problem is formulated as a variational problem, the Rayleigh–Ritz method consists
of constructing a sequence of approximate solutions from the space of admissible functions. These
admissible functions can be expressed in the form of a series of trial functions and the accuracy of
the sequence of approximations is improved by increasing the number of terms in this series. The
trial functions are commonly taken as members of the same family of functions, but unfortunately
solutions thus obtained are often characterized by poor convergence. The cause is that natural
boundary conditions are often very difficult to satisfy when using relatively few admissible
functions. The fact that Rayleigh–Ritz theory guarantees convergence provided the admissible
functions are from a complete set is small comfort in computational work, where good accuracy is
required from as few terms as possible.
To overcome this predicament, Meirovitch and Kwak [3] proposed constructing the

approximating sequence from the space of quasi-comparison functions, instead of merely from
the space of admissible functions. Quasi-comparison functions are linear combinations of
admissible functions that act like comparison functions. The aim is to select admissible functions,
which are able to satisfy the natural boundary conditions. This involves using several different
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types of admissible function. It is this variety of admissible functions that permits accurate
satisfaction of the natural boundary conditions while using only relatively few terms.
Meirovitch and Kwak [4] state that the concept of quasi-comparison functions is particularly

powerful in substructure synthesis using assumed modes, such that when they are used to
approximate the motion of substructures the connection conditions between substructures can be
satisfied to any required accuracy by only a finite number of terms. Hence, eigensolutions
obtained by using quasi-comparison functions as the assumed modes exhibit superior
convergence.

5.3. New mixed-mode SMS variants

Because higher modes of substructures are usually harder to obtain than lower ones, it is harder
to find the higher mixed modes than to find the lower ones. However, the higher modes are usually
of little value in practical engineering, and so by ignoring them the new ESM degenerates easily
into a recent SMS [5]. The main difference between the two methods is that LE þ Lc þ R ¼ N for
the exact method, whereas LE þ Lc þ RoN for the approximate method.
For this recent SMS, when the lower free-interface modes UEl are absent LE ¼ 0 and Lc þ

RoN; so that the substructure displacements of Eq. (32) become those of the Craig and Bampton
method. In contrast, Eq. (31) reduces to give the substructure displacements of Hurty. Hence the
Craig–Bampton and Hurty methods are both limiting cases of the new SMS. Alternatively, if the
redundant constrained modes Ucc and the lower fixed-interfacial modes Ubl are both absent,
Eq. (31) reduces to give the substructure displacements of Hou’s method, which is therefore
another limiting case of the new SMS.
Some earlier authors, e.g., Craig and Chang [9] and Wang et al. [10], presented synthesis

methods using Rubin’s representation, the exact free-interface modal synthesis technique [11,12]
and the exact fixed-interface one [2]. These all involve non-linear synthesis formulas based on
using only lower modes in the synthesis process. The resulting non-linear equations are then
solved iteratively, and this may require considerable computer time if the required precision is
high. In contrast, the new SMS proposed in Ref. [5] only uses linear whole structure dynamic
equations, even though the contributions of some or all of the higher modes have been included.
The fact that the new SMS not only has a simple form with linear synthesis equations, but also
gives high precision and efficiency, is demonstrated by recent numerical examples [5].

5.4. Convergence characteristics of the new mixed-mode ESM and mixed-mode SMS variants

Because the new mixed method has LE þ Lc þ R ¼ N; the substructural displacement X of
Eqs. (31) or (32) is expressed accurately in terms of some lower mixed modes. The new mixed mode
ESM includes two types of finite series of lower order modes in the substructural displacement X.
The error caused by neglecting the higher modes can be compensated for by selecting lower order
modes from the other type of finite series. Therefore, the result is always accurate. As Example 2
proves, the five different cases are all ESM and they are all able to produce the result to an
accuracy of at least 19 significant figures in Table 1, except for the eighth mode.
For any substructure, the lower modes are usually easier to obtain than the higher ones,

whether from test data or from numerical analysis. Because the calculation of the higher
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free-interface modes UEh; or the higher fixed-interface modes Ubh; is very complicated, it is not
easy to apply free- or fixed-interface ESM. Therefore, it is easier to find the redundant constrained
modes Ucc and the lower fixed-interface modes Ubl than to find the higher free-interface modes
UEh: Alternatively, it is easier to find the lower free-interface modes UEl than to find the higher
fixed-interface modes Ubh: Hence the new mixed modes method does not need to calculate the
higher free-interface modes, and therefore is much simplified. This is the advantage of this new
method. The criterion for selecting the substructure modes used is to select those that are the
easiest to calculate.
For all of the mixed-mode SMS variants, the more they differ from the above method, i.e., the

fewer the number of modes selected, the greater the inaccuracy of the result. Because the
approximate methods all have LE þ Lc þ R5N; the substructural displacement X of Eqs. (31) or
(32) is only expressed approximately in terms of some lower mixed modes. Eqs. (31) or (32) both
contain two finite series of modes and so the two important parameters are the truncation
frequencies fENð¼ oEN=2pÞ and fbNð¼ obN=2pÞ of, respectively, the lower free-interface modes
UEl and the lower fixed-interface modes Ubl : When the frequency f ð¼ o=2pÞ of the structure is
less than fEN and fbN ; X can be represented relatively accurately by Eqs. (31) and (32). Suppose
that the truncation frequencies fEN and fbN for all substructures are the same and that fbNpfEN :
Numerical examples [5] demonstrate that: when fpfbNðpfENÞ the substructural displacements X
can be approximated well by Eqs. (31) or (32), so that the accuracy of the system synthesis
frequencies f are very good; when fbNpfpfEN ; the accuracies of the synthesis frequencies f are
also good and; in contrast, for fENof the error increases rapidly as f increases.
The fact that good synthesis frequencies are found when fpfbNðpfENÞ is a very important and

useful result in practical engineering. In the recent SMS [4], the truncation frequencies fEN and fbN

are determined for all substructures and then the lowest of these values are used. The number of
lower free- and fixed-interface modes required is not large, being chosen to ensure that fbNpfEN

and fpfEN : Hence, the linear synthesis equations of this recent SMS give a synthesis procedure
that is very easy, reliable and computationally efficient.

7. Conclusions

There are three different forms of structure displacement representation: the usual form of
Eq. (5); Eq. (16) as first presented in Ref. [2], and Eq. (31) or (32), as proposed in this paper.
Hence, there are three different forms of dynamical analytical methods and three different forms
of ESM (with free interfaces, fixed interfaces and using mixed modes) associated with them.
In this paper, ESM variants with fixed interfaces and free interfaces have been reviewed and are

significant because the usual variants of SMS are essentially different approximations to them,
involving dynamic condensation.
This paper expresses substructural displacements exactly as mixed modes consisting of linear

combinations of the fixed- and free-interface modes, leading to a new ESM using mixed modes.
The key point of this ESM variant is that the higher free-interface modes are expressed in terms of
some lower mixed modes by means of an exact expression. This new ESM has been proved by a
strict analytical derivation and demonstrated by numerical examples. It has also been
demonstrated that ESM with fixed or free interfaces are its two limiting cases. Thus, ESM with
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free interface, fixed interface or mixed modes form a systematic framework of ESMs which are
unified by the new mixed-mode ESM.
It has been demonstrated that all variants of SMS are essentially different approximations to

these ESM variants. This makes the unifying function of the new mixed-mode ESM particularly
important, e.g., it relates together the assumed modes-method using quasi-comparison functions
and some new SMS variants, involving dynamic condensation. The new mixed-mode ESM may
also make possible the development of new SMS methods and hence give new insights. For
example, a recent mixed-mode SMS [6] is limited to the methods of Craig and Bampton and of
Hurty when the lower free-interface modes UEl are absent and to Hou’s method when instead the
redundant constrained modes Ucc and the lower fixed-interfacial modes Ubl are both absent.
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