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Abstract

This paper is concerned with the system governed by the sine-Gordon equation without damping. From
a practical point of view, velocity may not be measured precisely. The global stabilization of the system
governed by the sine-Gordon equation without damping is investigated in the case where any velocity
feedback is not available. In such cases only position feedback cannot asymptotically stabilize the system. A
parallel compensator is effective. The stabilizer is constructed by a proportional controller for the
augmented system which consists of the controlled system and a parallel compensator. The asymptotic
stability of the closed-loop system is proved.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The sine-Gordon equation is used to model the dynamics of a Josephson junction driven by a
current source [1,2]. For a single junction the governing equation is an ordinary differential
equation similar to the pendulum equation. A coupled system of such equations appears when we
consider a family of coupled junctions, and the continuous case is modelled by the sine-Gordon
equation.

We consider the system governed by the sine-Gordon equation without damping on the domain
[0, 1]. The linearized system has an infinite number of poles and zeros on the imaginary axis. From
a practical point of view, velocity may not be measured precisely. In this paper we investigate the
global stabilization of the system governed by the sine-Gordon equation without damping in the
case where any velocity feedback is not available. In such cases only position feedback cannot
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asymptotically stabilize the system. A parallel compensator is effective. We construct the stabilizer
by a proportional controller (P-controller) for the augmented system which consists of the
controlled system and a parallel compensator. We show the asymptotic stability of the closed-loop
system using LaSalle’s invariance principle.

2. System description

The equation
Zu(x, 1) + azix, 1) — zyx(x, £) + Bsinz(x, ) =0, xe(0,1), >0, (1)

is called the sine-Gordon equation. It is known that the system governed by Eq. (1) with initial
and boundary conditions

2(x, 0) = 2°(x), z(x,0) = z'(x), x€(0,1), ®)

2(0,1) = z(1,£) =0, >0, (3)

is globally well posed and stable for « > 0 in appropriate function spaces [2,3]. Moreover in the
case where || <n?/4, the system is globally asymptotically stable [3].

In this paper we consider stabilization of the system governed by the sine-Gordon equation
without damping

Zu(x, 1) — zyx(x,8) + Bsinz(x, 1) = 0, xe(0,1), >0, 4)
2(x,0) = 2°(x),  z(x,0) = z'(x), x€(0,1), (5)
20,0 =0, z(1,0) = u(t), t>0, (6)

) =z(1,1), t>0, (7)

where f is a constant, u(7) is a control input and y(7) is the output.

The linear system without the term f sin z(x, ) has an infinite number of poles and zeros on the
imaginary axis. The open-loop system given by Egs. (4)—(6) is not asymptotically stable. In such
cases only position feedback cannot asymptotically stabilize the system. In order to
asymptotically stabilize the system given by Egs. (5) and (6), velocity feedback or a parallel
compensator such that

d¢
T= O b, 0 =6, ®)
is necessary.

In this paper we shall show that the stabilizer without velocity feedback can be constructed by a
P-controller for the augmented system which consists of the controlled system and a parallel
compensator.
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3. Design of stabilizer

We first introduce a parallel compensator

© — —at0 ). 0 =0, ©)

where a>0, b > 0. For the augmented system given by Egs. (5), (6) and (9) we apply a controller
u(t) = — k(@) + <)),

= —ky:(t), k>0. (10)
The resulting closed-loop system becomes

Zu(X, 1) — zyy(x, £) + fsinz(x, 1) = 0, xe€(0,1), >0, (11)

2(x,0) = 2°(x),  z(x,0) = z'(x), xe(0,1), (12)

20,0) =0, z(1,1) = —k[z(1,1) + &(1)], 1> 0, (13)

i—f = —[a + bk]E(r) — bkz(1,1),  £(0) = 0. (14)

In this paper we use only standard notations, as in Ref. [4]. Sometimes, a function z = z(x, ¢)
will simply be denoted by z(#), when the x-variable is not in consideration. Our analysis is based
on two Hilbert spaces L>(0, 1) and H'(0, 1). Here L*(0, 1) is the Lebesgue space of scalar-valued
square-integrable functions z(x) defined for 0<x< 1. The space H'(0, 1) is the Sobolev space of
scalar-valued square-integrable functions z(x) defined for 0<x<1 such that z,(x) is also square-
integrable. The class of linear bounded operators from a space X into a space Y is denoted by
L(X,Y).

We introduce the real Hilbert state space X = HL(0,1) x L*(0,1) x R with the inner product

{(z1(x), v1(x), &), (22(x), v2(x), &) > x
1
=Ammmmnmmmmw

+ saG k) + Gl + & (15)
and the induced norm. Here HL(0,1) = {ze H'(0,1),2(0) = 0}. Define a non-linear operator
A :DA)cX - X by

A(z(x), v(x), &) = (v(x), Zxx(x) — B sin z(x), —bkz(1) — (a + bk)C), (16)
with
D(A) = {(z(x), v(x), &) e H'(0,1) x H'(0,1) x R|z(0) = 0, v(0) =0, zy(1) + kz(1) + k& = 0}.

It is easily seen that D(A) is dense in X.
Then the system given by Egs. (11)—(14) can be written as a non-linear evolution equation on X:

Z(t) = AZ(1), Z(0)=Z°, (17)
where Z(t) = (z(x, 1), z2(x, 1), (7).
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We shall show that the operator A defined by Eq.(16) generates a non-linear strongly

continuous semigroup on X.
The operator A is closed. For Z;, Z, e D(A) by a simple calculation we have

(AZy - AZy), 2 - 25

1
——p [ lsinz1(0) ~ sin 200l (0 - 2200 dx - Jfé - P
0

1 1
< |ﬁ|\/ / 1Z(x)? dX\/ /0 IZ(x)]> dx — %[(a + bk)E + bkz(1)]?

1
'ﬁ | [ / 12(x)]? dx + / 15(x)? dx} — %[(a + bk)E + bkz(1)?

1
<'2ﬂ[ /0 moPdxs [ IE(X)IZdX]—%[(a+bk)§+bkz(l)]2, (18)

where zZ = z; — 25, & = & — &. Thus the operator A — (|f]/2)I is dissipative in X.
Next, we show that R(AI — A) = X for any 4> +/|fB]. It is sufficient to show that for any
A>7v (y is some positive constant) and any (f, g,r)€ X, there exists (z,v, )€ D(A) such that

(A = A)(z(x), v(x), &) = (f(x), g(x),r), (19)
that is,
Az(x) —v(x) = f(x), kbz(l)+(A+a+kb) =, (20)
and z satisfies
— Zux(X) + B sin z(x) + Av(x) = g(x),

z(0) =0, z(1)= —kz(1) — k¢. (21)
If we define operators 4 and B by
Az = —zyy(x),
D(4) = {ze H*(0, 1)|2(0) = z,(1) = 0},
B*z = z(1), (22)

the operator A4 is unbounded and self-adjoint in L?(0,1). The operator B can be identified with
d(x — 1) [4]. If we consider the space V = H'(0, 1) and its dual space V. Then it can be shown that
Be LR, V"), Ae L(V, V") [5]. Since

1
z(x) =z(1) — / z(x) dx,

2 1 2 5 : 2 d
Z(x)<(1+5>z (H+@a+ )/0 z3(x) dx.

1 1 1
/zz(x)dx<<1+—>22(1)+(1+5)/ 22(x) dx,
0 0 0

From this
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for any 6 > 0. We obtain

1
(A +kBB*)z,z) = —/ Zeez dx 4+ kZ2(1)

0
1 ks 1
> (1 —/«3)/0 zidx+m/0 2% dx.
If 0<o<1/k, then it holds that for some o > 0
(A +kBB*)z,z) =023 (23)
From Egs. (20) and (21)
[43 + (a + kb)2* + (A + kBB*) + (a + kb)A + akBB*)z
+ (A+a+kb)pfsinz =L+ a+ kb)(Af + g) — kBr. (24)
Define I'(1) by
I(2) =2+ (a+ kb)2*> + (A + kBB*) + a(A + kBB*) + kbA,
we have from Eq. (24)
(T(A)z,2) =[2° + (a + kb)2* + a(h + a)ll|z|3.
Thus I'(Z)e L(V, V') is bounded invertible and self-adjoint in L*(0, 1). Eq. (24) can be written as
z=—Q+a+kb)pr'(A)sinz
+ (A4 a+ kb)Y A)Of + g) — kI '(J)Br = F(z). (25)
For every zy,z; in V and for any 4 > 0, we have
IF(z1) = F(z2)l| = (2 + a + kb)BIIT " (2)(sin z; — sin z)]|
< - mms%nzl ~ 2l
where / is the first eigenvalue of A4 [2].

If 2>1/|pl/+/41, then F(z) is a strict contraction mapping in V' = H?(0,1) and F(z) has a
unique fixed point z in V [6], which implies that Eq. (21) admits a solution. Thus X c R(AI — A)

for any 4> \/|[3|/\/71.

The Crandall-Liggett theorem [7,8] gives the following existence and uniqueness result.

Theorem 1. The operator A defined by Eq. (16) generates a unique nonlinear strongly continuous
semigroup on X. Thus Eq. (17) admits a unique solution Z(t) such that for each Z° e D(A)

ZeC'([0, T]; X)n C([0, T]; D(A)),

where C™"([0,T];X) is the space of n times continuously differentiable functions from [0, T]
into X.

Theorem 1 says that the closed-loop system given by Egs. (11)—(14) is well posed. For
asymptotic stability of the closed-loop system we can show the following theorem.
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Theorem 2. Suppose that |p|<n’/4. Then the closed-loop system given by Egqs. (11)—(14) is
asymptotically stable.

Proof. Define energy-like (Lyapunov-like) functions for the system given by Egs. (11)—(14)

1
B0 =5 [ (a7 + 2] dy

1
k
4B [ 1 cosznldy + 57 607 + 5707 (26)
0 2b 2
Here, since from the Poincaré inequality [2]
1 1 1
/ (1 —cosz) dxgl/ 7 dxsg/ zi dx, 27)
0 2 Jo nJo

E()=0 for = — n*/4.
Along the solution of the system given by Eqgs. (11)—(14), we obtain

1 1
E(t):/ Z1Zy dx+/ ZyZy dx
0 0

1 4 .
+ ﬁ/o z;sin zdx + b EDE() + kye()ye(t)

1 1 1
= / ZiZ AX — /3/ z;sinzdx + / ZyZy dx
0 0 0

1 4 _
+ ﬁ/o z;sin zdx + 5 EME() + kye()ye(t)

=z/(1,0)z:(1,1) — z/(0, )z(0, 1) — /0 l ZxiZx dX + /0 l ZxZy dx
+ S ED&0) + kye (o)

= — ka1 e(0) + 5 DD + kye(3(0) + k(&)

= % E()a&() + bkye(1)]

R
= - ;o (28)

We have a dynamical system on X with all orbits bounded. For the space Y = D(A) with the
graph norm, the operator A has a compact resolvent and the bounded set of Y is precompact in X
[3]. So each orbit is precompact in X.

According to LaSalle’s invariance principle [3,9], all solutions of Eqgs. (11)—(14) asymptotically
tend to the maximal invariant set of the following set:

S =1{(z%9E =0},

if the solution trajectories for >0 are precompact in X.
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From E =0 it results in &(f) = 0. Since £(0) =0, &(7) =0, u(f) = 0. Thus system (11)—(14)
reduces to

Zu(x, 1) — zyx(x, 1) + Bsinz(x, 1) = 0,
2(0,7) = z(1,1) = z(1,1) = 0. (29)

To prove that all solutions of the system given by Egs. (11)—(14) asymptotically tends to zero, it is
sufficient to show that system (29) has only the zero solution. This is the observability problem for
the controlled system given by Egs. (4)—~(7).

Here introduce another energy-like functions such that

1
Wﬂ)z%A[@@Jﬁ+¢A&0ﬁdx

1
+ ﬁ/o [1 — cos z(x, 1)] dx, (30)

V(t)= W(t)+eg(t), e>0, (31)

where ¢(7) is a multiplier function given by

1
g(t) = /0 xzd(x, H)zy(x, 1) dx. (32)

First from W(f) = 0 it follows that W(¢) = const. Let us estimate g(f). Since

1
/ Xz;z, dx
0

1 1 1 5 1 1 5
< |z |lzxldx <z | zydx+5 [ zidx,
0 2 Jo 2)y

lg(t)|<gpW(t) for any =0, (33)

it follows from Eq. (27) that

where gg = 1 for >0 and g5 = (z*> — 4|p|)/=* for 0> > —n? /4.
Thus for 0<e<1/gp the function V satisfies

0<(1 — egp) W()S V(D) <(1 + egp) W(1) for all 1>0, (34)

which implies that V(0)>0 if 0<e<1/gp.
On the other hand,

1
g(t) = / X(zyzy + Zi2ye) dx
0

1 1 1
= / XZxyzZydx — f / Xz, sinzdx + / Xz:Zy dx.
0 0 0
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For each term on the right side

1 1 1 1 1
/ XZyxZy dXx = —/ (xz)zc)x dx — —/ Zi dx
0 2 Jo 2 Jo

1 1
— / Xzysinzdx = / x(cos z), dx
0 0

1
=cosz(l,1) — / coszdx
0

1
=1 —/ coszdx
0

1
= / (1 —cosz)dx
0

1 1
<= / 22 dx
2Jo
2 1
<p / 22 dx
0
the last inequality 1s due to the Poincare inequality .
he last i lity is d he Poi S 1 lity [2
Using these relations we obtain

1 1 1
g(t) = —l/ 22 dx—l/ zf dx+ﬁ/ (1 —cosz)dx. (35)
2J)o * 2 Jo 0

First let us consider the case where §> 0. For ¢ > 0 it holds that

1, 1/,
g(t):—z/o Zxdx—i/o z; dx

1 1
— 5/3/0 (1—cosz)dx—i—(l—i—é)ﬁ/0 (1 —cosz)dx

L 20408 [, 1/1 )
S e -
[2 = }/0 zydx 2, z; dx

1
— 5[3/0 (1 —cosz)dx.
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If 0<B<nr?/4, there exists 6 > 0 such that
s :min{l _Ad+op 5} >0, (36)

2
and
g(< — CgW(p).
Next consider the case where f<0. For ¢ > 0 it holds that

g(nH< —%/Olzidx—%/olzfdx—éﬁ/ol(l —cosz)dx.
If f<0, there exists 0 > 0 such that
Cp =min{l,é} >0, (37)
and
J()< — C (1),

Thus if f<n?/4, there exists a positive constant Cy such that

g()< — CgW(t) for all 1=0. (38)

Lastly, since from Egs. (34) and (38)
V(1) = W(t) + eg(1)

< — eCpW (1)
< -9y =K1, (39)
1+ egp

we have
0< V()< V(0)e X for all £>0.
Again from Eq. (34) we obtain

0< W (1)< V(0)e %! for all ¢>0. (40)

1 —egp
This implies that W (¢) = const. = 0, from which it follows that z,(x, 1) = 0, z,(x, {) = 0. Moreover,

since z(0,¢) = 0 for all />0 and
X 1 1
/ zodx|< / |z dx < / z2 dx,
0 0 0

we conclude that z(x, 7) = 0. We have proved the theorem.

|2(x, )] =

4. Conclusion

In this paper we have considered global asymptotic stabilization of the system governed by the
sine-Gordon equation without damping on the domain [0, 1], in the case where any velocity
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feedback is not available. The linearized system has an infinite number of poles and zeros on the
imaginary axis. In the case where any velocity feedback is not available, a parallel compensator
plays an important role. The stabilizer has been constructed by a P-controller for the augmented
system which consists of the controlled system and a parallel compensator. The asymptotic
stability of the closed-loop system has been proved using LaSalle’s invariance principle.
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