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Abstract

The general, high-frequency response of a panel with attached masses is approximated using a transient
form of asymptotic modal analysis (AMA). This method is derived by applying asymptotic simplifications
to classical solutions in both the time and frequency domains. These relations are applied to a panel with
one or more attached masses that is excited by impulsive loads. Predictions are made of the mean-squared,
transverse displacement histories as well as localized responses near the added masses. It is shown that the
latter compare well with experimental data when the masses are separated by more than the mean
wavelength of the frequency band. The approximate solutions are shown to require relatively little
computational time and memory and are applicable to general forms of excitation.
© 2002 Elsevier Ltd. All rights reserved.

1. Introduction

High-frequency structural vibration is often a source of workplace irritation and damage to
sensitive electrical equipment. While there are methods available to predict such vibrations when
they are periodic or even ergodic [1-4], there are few alternatives for transient excitation sources
such as collisions or impacting components [5]. Finite elements are extremely useful at low
frequencies, but become cumbersome and inaccurate at high frequencies, say above 1000 Hz,
where the problem is essentially modelled as wave propagation.

There have been efforts to relax the ergodic assumptions of statistical energy analysis (SEA) in
order to provide some predictive capability for the transient regime [6-8]. However, results vary
depending upon the assumptions made and are usually order-of-magnitude estimates.
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A re-formulation of asymptotic modal analysis (AMA) for transient vibration has been shown
to be effective for simple elastic systems such as a panel [9]. This method has been extended to the
more complex geometry of a panel with attached masses [10] and this development is summarized
here and verified with experimental data.

2. Governing equations

The equation of motion for a thin elastic panel with external, point forces may be written in
non-dimensional form as

yW+§K+1ﬁW+2ﬁW+2ﬁW
o2 oy a&t  Tafon? "ot
= P(&,n,7) + 406 — 1p)o(& — &o) + A1o(n — )& — &) + -+, (1)

where the non-dimensionalized parameters are: the transverse displacement W =
displacement/thickness; the co-ordinates, ¢ = x/thickness and # = y/width (cf. Fig. 1); time
12 = panel-bending stiffness/(density—thickness—length’>~width?); the panel aspect ratio y =
length/width; the structural damping, C; the applied load P at (¢/,7,); and /; are the loads
applied by R the added masses, M;, attached to the panel at the positions (;,#;).

A typical solution procedure is to apply Galerkin’s method with an assumed displacement of
the form

W(E ) =Y g n). )
n=1
This yields the uncoupled, single-mode equations
2
%+2C”wn%+w2qn:Qn; n=12,..., (3)
ot? ot
where {, is the modal damping ratio, Q, the generalized force, and w, is the natural frequency
2
%:<Tﬁ@+@ﬂ. (4)

Here n¢ and n, are the modal indices in the co-ordinate directions.

2.1. Classical solution for a point excitation

Now for the sake of clarity, consider a localized load at the point (¢r,7,). The applied pressure
becomes P(E,n,t) = f(1)0(¢ — r)d(n — ny) (cf. Fig. 1), and the generalized force can be written as

_ S (P + 400,04, + 210¢,0y, + -+ W, d4 )
Jatnda

:f‘//nf + oW + Ay + o
>

On

: (6)
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Fig. 1. Geometry of a panel, load and a single, attached mass.

where {---) indicates the spatial average and the modal function at the ith mass, W¥(&;,7,), 1s
abbreviated as y,;. This is used to determine the modal coefficients from

1) = [ e =)0, . ™
0
where /i, is the standard impulse response function,

e 4o sin(wyy /1 — 1)

hy(7) = (8)
Wy \/ 1 - Cf,
In this case, the modal coefficients are
1
qn(t) = m{hn(f)*[f(f)%f + 20 + 21 (O] + -} )

where * indicates the convolution. The Lagrange multipliers, 4;, are found from the equations of
motion for the added masses, M;,

2T, Einmy) = —M; W(éiani) (10)
=M  Gu(tW (11)

where the dots indicate derivatives with respect to non-dimensional time, 7. The §,(t) are
determined by differentiating Eq. (9) twice with respect to 7. Substituting this into Eq. (11) results
in a series of implicit, simultaneous equations for the 4; in terms of the forcing, f(r), and the modal
impulse response functions, 4,(t). However, an explicit relation for the forces may be obtained by
transforming them to the frequency domain and employing the convolution theorem.
Performing this substitution and transformation using the common form of the convolution
theorem, Z (f *g) = /217 (f) - Z(g)," it is helpful to employ the transform relation Z[,(t)] =

"The Fourier transform is used here rather than the Laplace for numerical efficiency. It is

Glw) = Flg()] = —— / e % (x) dr. (12)

N
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—w?+\/2nH, (). Using the notation Ay(w) = F[iy(1)], H,(w) = F[h,(1)], and F(w) = Z[f (1)), this
yields the transformed Lagrange multipliers for the ith mass,

Ao, &) = = MY <‘fh L {F(w)wn,(l — oV 2nH, ()
+ Z A, &y (1 — wwznﬂn(w»}. (13)
=0
This system of equations may be rearranged in the more convenient form
AAd =M, (14)
where the elements of the symmetric A are
ar =1+ M, Y V(1 0?2 (), (15)
P>
Z‘””"‘”’”’(l 21 H (), (16)
b
and the elements of M are
m; = —F(o)M; ) ’/;’”f”;f (1 — 0>/ 2nH (o). (17)

We emphasize again that Eq. (14) is explicit for the A,—the transformed Lagrange multipliers. Its
solution provides the multipliers for the transformed modal coefficients (i.e., the transform of

Eq. (9)),
V2 H ()
>

This may be inverted and substituted into Eq. (2) to determine the transverse panel deflection.
Restricting attention to a range of frequencies Aw that contains AM modes yields the classical,
band-limited response

R
F(qn) = [F(wmf +> A, nj)wn,] : (18)
Jj=0

AM—
W(é’ n, T) Z [ nF( )lpnf + Z kn/l (T él’ 77 )lpm] s (19)
P <w >
where
knr(x) = F [V 21 H,(0)F ()], (20)
knn (T, &) = F WV 2nH (@) A, €, )] (1)

The spatial mean-squared response, { W?(1t))», can be found by first squaring Eq. (19)
(neglecting the cross-terms as they are small) and spatially averaging this over the panel. This
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procedure yields

2

M®w+2@uwwm,, (22)

M+AM—1 1

W2(t)) =
(W)Y Z; W

which describes the mean temporal response of the entire panel.

2.2. Asymptotic solution for a point excitation

While these solutions are straightforward, they require solving for the eigenvalues and
eigenvectors of the system—a non-trivial task at high frequencies. It is far more practical to note
that the modal density is quite large at high frequencies and that the response is, therefore, a result
of the aggregate of the modal responses. This suggests that an asymptotic limit for the modal
behavior may be a useful and more easily calculated alternative.

If the frequency range Aw contains enough modes with a sufficient modal density, then several
simplifications may be applied to the classical solutions of Egs. (19) and (22). These steps
eliminate the need to solve the eigenproblem and substantially reduce the size of the summations.
The result is an approximate solution that is simpler to evaluate, requires much less detailed
information about the system and retains the essential character and magnitude of the response.

Begin with the summation in the diagonal elements of A (cf. Eq. (15)). For the frequency band
from modes M to M + AM this is

M+AM

§j<Jga @ Hy()). (23)
m=M

Within the frequency range Aw note that H,,(w) is not slowly varying over the range of the
summation and cannot be removed from the summation. Thus, the asymptotic modal
approximations used for the smooth panel [2,9] cannot be applied here. However, two useful
observations are

® The scaling factor lpml ranges from zero to one throughout the frequency range.

® The term (1 - Hm(a))) is a frequency-dependent function in two senses. First, for any value
of m, it is multiplied by a continuous function of w. Also, the m subscript indicates a
dependence upon the natural frequency of the mth mode.

The first observation suggests that npml may be eliminated by approximating its scaling effect on
the H,, terms. If AM is large enough then we only need to sum a few, say AM*, representative
terms of the complete summation. This will be true if H,, is a well behaved and smoothly varying
function throughout the range of the summation.

This leads us to the second observation: that the natural frequency content of H,, must be
considered in any attempt to remove specific eigensolution references from the summation. The
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transform of H,, is
1
(0 — 0?) = jQ2Lw,)

where j = \/—_1 and w,, is the natural frequency of the mth mode. Note that this is a smooth
function of w,, and w. Thus, the frequency dependence of the complete summation may indeed be
approximated by summing a few functions, H,(w), that are based on chosen frequencies, w,,
distributed throughout Aw rather than the natural frequencies.

To summarize the process:

H(w) =

(24)

1. Extract :pﬁu. / (Y*> from each term and scale the complete summation by its mean
value, y2,..

2. Reduce the number of terms in the summation from AM to some fraction of it, AM™ = aAM,
where o is a chosen parameter (typically 0.1-0.2), and scale the sum accordingly.

3. Replace the natural frequency dependence of H,, with specified frequencies that span the
frequency range Aw in some sense.

With these modifications the summation becomes

M+AM wlzm ) | MM ,
gM 70#2 >(1 - Hm(a)))z& EM (I — w"Hy(w)), (25)
m= m p=

where the AM™ = aAM chosen frequencies replace the natural frequencies in H,(w) and we
observe that the spatial average of a mode squared is equal to the mean value of a summation of
modes squared at any location (i.e., (¢, n,) ~ < > >). Relations for estimating AM are available
in the literature for many continuous structures [1].

The validity of the approximations in Eq. (25) may be seen by comparing both sides of the
equation for a representative system. Fig. 2 presents a comparison of two sides of Eq. (25): the
CMA and AMA solutions or left and right hand sides, respectively. These calculations were made
using a value of & = 0.1 or with 10% of the estimated number of modes in Aw.” The transforms of
the summations have been inverted so that the comparison can be made in the time domain. It
should be noted that the AMA approximation required only 7% of the computational time
necessary for the CMA calculation.

Now consider the different summations in the off-diagonal terms of A in Eq. (16) and the
elements of M in Eq. (17). The summations in these terms have the form

M lpmilpmj 2
> s 0= @ Hn(@)), (26)
m=1 m

The simplifications applied above to the diagonal terms are not applicable here since the
eigenmode scaling is not a mode squared but rather a product of mode functions that are, in
general, evaluated at different locations, ¥,,,,,; = ¥,,,(Ci, nW,,,(¢;,m;)- Clearly this product can be

20ther parameters include v = 0.359,y = 1.21429,{ = 0.001, @i, = 769.64, Aw = 1172.93. The excitation used is a
the strike of an impulse hammer
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Fig. 2. Comparison of the CMA summation on the left side of Eq. (25) (solid line) to the AMA approximation on the
right side of the equation (dashed line). The AMA approximation only uses 10% of the estimated modes in the
frequency range (i.e., « = 0.1).

either positive or negative. Furthermore, the asymptotic limit of the product is zero,
111’1’1 lpml'vbm] (27)

Fortunately, the actual summation is over a finite number of modes and will only be nearly zero.
This is an important distinction for a zero value for this summation would imply that the response
of the plate is independent of the added mass, M;. As this cannot be true, the non-zero value of the
summation in Eq. (26), however small, is crucial.

To approximate this summation we extract ¥,,,\/,,; from each term and multiply the sum by the
mean value of the product over the frequency range, ;. Again, we abbreviate the summation to
AM* = aAM terms that are based on chosen frequencies that span the frequency range Aw.
Together these steps result in the relation

M+AM '»D lﬁ ; l/;j M+M* ,
UERSIUYS g ~—t 1 —w’H ) 28
n; <%>< Hyy()) oWU_ZM( o’ Hy(0)) (28)

Here lﬁi,-% (Y? Y, but must be estimated. For sufficiently large AM one may use the continuous
approximation

A
ZM+ M l//nil/]nj N fNAw l/jm'lp”]'
AM T Naw

where Np, is the number of modes in the frequency range Aw. This is a tedious but
straightforward integration in mode-number space that yields a mean value for the cross-
product for the particular frequency range, Aw. This is discussed more thoroughly in
Appendix A.

Once the A; are known, the time-domain coefficients k;,, are determined and used with Eq. (19)
for the panel displacement or Eq. (22) for { W?). These relations contain summations over the
modes that can also be simplified. Since k;r and k;,, are time varying, they may be approximated
using the asymptotic simplifications used for a smooth panel [9]. Applying these yields the

Vi = (29)
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displacement relation
AM*

W(En )~ <:b P pF(r)w,,f+Z KA & | (30)

Although k,r(7) itself is not different in form than the analogous term in the classical solution of
Eq. (19), the summation is abbreviated and the terms are evaluated at the fewer, chosen
frequencies rather than the full range of natural frequencies.

Eq. (30) contains a series of products of the modal functions at the forcing and mass locations,
Y,y which cannot be evaluated without the eigensolution. Hence the same form of modal
averaging used in Eq. (29) must be applied and attention focused on the response of the panel near
the locations of the masses or the forcing. The response at other locations may be estimated using
the spatial, mean-squared response discussed below. The asymptotic response near the excitation
for R added masses is then

1 M+AM* A w
WAMA(éf:nfsT) = . Z pF(T) + Z kpA (t,&inm; )( ) (31)
p=M <lﬁ >
and near the mass M, is
| Mram*
WAMA(ém 77;1,T) :& Z [k;l/]llfA(Ta éna VIn)
=M
Yy > & A < Vin )]
+k < + i» . 32
O s ,-_;n @ &)\ 77y (32)

The case of a coincident mass and force is easily handled by noting that lﬁ!-f = Y2,
2.3. Asymptotic, mean-squared response

The asymptotic limit of the spatial, mean-squared response is formed in a manner similar to
that of Eq. (32). Squaring Eq. (30) and applying the same asymptotic steps yields

1 M+AM*
QSMIOIETEDY {kﬁFm

p=M

R U
+ Z |:k}3/1,-(f’ 51', 11[) + anF(T)knAi(T’ éi, 771) Oli—él>:|
i=1

Vi
kn is k}’l s 33
+ ,/Elzvé] 4T Cio N)kena, (T, G njw >} (33)

1

The relations described above predict the mean-squared panel response or the panel response at
the locations where a point load is applied or added masses are attached. They require none of the
natural frequencies or modes of the panel and are valid for arbitrary forms of excitation.
Furthermore, they require substantially less computational effort than the classical solutions of
Eqgs. (19) and (22).
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Care is required when selecting the frequency distribution for the asymptotic solution. Evenly
spaced frequencies impose a prominent beat to the response and random frequency spacing is
inappropriate for reasons not the least of which is repeatability. Experience indicates that a
nominally even spacing with a superimposed perturbation (say, 20-30%) is effective.
Furthermore, the same chosen frequencies should not be used for the diagonal and off-diagonal
elements of matrix A as this leads to a trivial solution.

3. Experimental verification

To confirm the asymptotic relations presented above, a simple panel was instrumented with either
an accelerometer alone or an accelerometer with an additional mass attached. These configurations
represented an attached mass of two different sizes. The panel was struck with an impulse hammer
and the transient accelerometer and force data was low-pass filtered and recorded.

The panel used was aluminum with the physical parameters: length = 0.864 m, width =
0.711 m, (y = 1.214), thickness = 0.00318 m, and a modal damping of approximately { = 0.005
was used to account for the structural and acoustic losses. The elastic modulus was 73 GPa, the
density was 2800 kg/m?, and the Poisson ratio v = 0.359. The accelerometer mass alone was
2.1 g (Mo =236 x 10~%) and with an additional mass was a total of 14.6 g (M, = 1.64 x 1073).
The mass was attached to the panel at the location (&g, ) = (%, %) and the impulse hammer strike
was approximately at the location of the masses.

The response was sampled and band-pass filtered in the frequency domain using a flat, acausal
filter. Two frequency ranges are considered: 1020-2653 Hz (125-325 non-dimensional Hertz) and
1837-3470 Hz (225-425 non-dimensional Hertz). Each of these ranges contained approximately
100 modes. These data were compared to AMA predictions of the local panel acceleration
calculated using the force data that was captured from the impulse hammer. Thus, the forcing
functions for both experiment and AMA prediction were the same. The comparisons of these
responses are shown in Figs. 3-6.
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Fig. 3. Comparison of the asymptotic modal analysis prediction of panel accelerations, { W?> (solid line), with
experimental data (dashed line). An added mass to the panel was given an impulsive excitation at M, = 2.36 x 10~* and
was attached at the point of excitation, (f,vr) = (%, %). The frequency range of the data is 125-325 non-dimensional
Hertz and the AMA approximation only used 10% of the estimated modes in the frequency range (i.e., « = 0.1).
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Fig. 4. Comparison of the asymptotic modal analysis prediction of panel accelerations, { W?» (solid line), with
experimental data (dashed line). An added mass to the panel was given an impulsive excitation at M, = 1.64 x 1073 and
was attached at the point of excitation, (r,vy) = (%, %). The frequency range of the data is 125-325 non-dimensional
Hertz and the AMA approximation only used 10% of the estimated modes in the frequency range (i.e., « = 0.1).
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Fig. 5. Comparison of the asymptotic modal analysis prediction of panel accelerations, { W?» (solid line), with
experimental data (dashed line). An added mass to the panel was given an impulsive excitation at M, = 2.36 x 10~ and
was attached at the point of excitation, (r,v) = (%, %). The frequency range of the data is 225-425 non-dimensional
Hertz and the AMA approximation only used 10% of the estimated modes in the frequency range (i.e., « = 0.1).

Fig. 3 displays the comparison of AMA and experimental values for the panel acceleration in
the low-frequency range (125-325 non-dimensional Hertz). It shows that the AMA approxima-
tion quite accurately predicts the amplitude and general shape of the panel response. It should be
noted that the experimental data does not start at W = 0 as one might expect due to distortion
from the acausal filter used. This filter was used because it preserved most of the initial magnitude
information of the signal. Several common, causal filters were also tried, but they distorted the
signal far too much to be useful. This was particularly evident near ¢ = 0 where the amplitude is
largest and, therefore, of the greatest importance. The behavior of the filters was evaluated using
classical solutions alone before being compared to the AMA solutions.

The other difference between the solutions occurs near ¢ = 0.0055 where the AMA prediction
overestimates the response. This is a beat phenomenon that results from the limited number of
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Fig. 6. Comparison of the asymptotic modal analysis prediction of panel accelerations, { W?> (solid line), with
experimental data (dashed line). An added mass to the panel was given an impulsive excitation at M, = 1.64 x 10~ and
was attached at the point of excitation, (f,vr) = (%, %). The frequency range of the data is 225-425 non-dimensional
Hertz and the AMA approximation only used 10% of the estimated modes in the frequency range (i.e., « = 0.1).

frequencies used in the AMA summations. This was noted earlier and is a periodic error that is
easily identified in the response [9,10].

Fig. 4 displays a similar comparison using the heavier attached mass. Again the large, initial
response is well predicted by the AMA relations and the general decay of the two responses are
similar. As with any structural dynamic calculation, the decay envelope is highly dependent upon
the damping values chosen. Thus, to predict longer period motions, it is important to have a good
estimate of the damping losses for the system of interest.

Figs. 5 and 6 compare the results of the small mass and large mass tests with their AMA
predictions within the higher-frequency range of 225425 non-dimensional Hertz.

Similar tests and calculations were performed on panels with up to three attached masses and
they showed similar agreement.

4. Conclusions

Relations for the band-limited, high-frequency response of a panel with attached masses were
summarized and verified by experiment. These relations describe the transverse displacement (velocity,
etc.) of a panel when it is given a localized, impulsive excitation. These relations provide a reasonable
approximation of the panel behavior in frequency ranges with significant modal content (i.e. high
frequencies). The relations include the local panel response near an added mass or the load as well as
the spatially averaged, mean-squared response. These relations are much simpler to evaluate than
their classical counterparts and typically require 85-95% less computer memory and time.

Acknowledgements

The first author appreciates the help of the Institute of Mechanics, Moscow State University,
Moscow, Russia for acting as host during part of this work. Support for this work was provided



844 R.R. Reynolds et al. | Journal of Sound and Vibration 266 (2003) 833-846

by NSF Division of International Programs under grant 9803043, Susan Parris, Program Director
and by the Arkansas Science and Technology Authority under grant 98-B-02, Herbert L.
Monoson, Vice President of Research.

Appendix A. The mean, modal cross-product: lﬁl]

The mean value for the cross-product of modes at different locations, t/;y was introduced in
Eq. (29). This may be estimated without solving the eigenproblem by using sinusoidal panel mode
shapes and recognizing that away from the panel edges the boundary conditions have little effect
at high frequencies. The continuous approximation is made by replacing the discrete mode
summation with a continuous integration in mode number space,

. [ sin (nyné,,) sin (nymn,,;) sin (nyné,,) sin (nymn,;) dA
v [, d4 ‘

The integrand may be recast into a more useful sum of cosine functions and integrated on the
region shown in Fig. 7. It is easiest to perform the integral in n, first as this can be done
analytically. The limits of integration are determined by using the frequency-mode number
relation (4) and the appropriate values of w. The domain has two portions: to the left and right of
n. Thus the limits of integration are

(A.1)

omn 12\ 2 1) n\ '/
min " max '
(yn2 - y—;) <n, < ( = y—z‘) D nye<nl, (A.2)
» l’l2 1/2
1<n, < ( y’;‘;x — y—;‘) Dny >t (A3)

where n* is determined from Eq. (4) with n, = 1 and @ = w;,. The first integration in n, yields

- fn\» (lpny,l + l/;ny,Z) dnx
Yij =

(A.4)

f Ny f ny d}’ly dl’lx

nX
—

1 Nyx n><,max

Fig. 7. The frequency range Aw as seen in mode number space, n,—7,.
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and
- cos(n,mé;) cos (n mé;)
iin = is Nis Wmax
W) vl n(n; — n)0; + 1) [Y(nj 1 )
- Y(ﬂi, 77_/', U)max) - Y(’/]js U CUmin) + Y(n[a ’7]-, wmin)], (AS)
- cos (nyné;) cos (nymé;)
(lpl'j)ny,Z = — ‘
n(n; — n)m; +n;)
+ [n; cos (an;) sin (nn;) — n; cos (an;) sin (7n;)
+ Y(nja 7];‘, wmin) - Y(ni, nja a)max)]a (A6)
where

(A.7)

Eq. (A.4) must then be integrated over n, and, while it appears to be intractable analytically, the
integrand is very well-behaved and can be done easily using a rudimentary numerical integration
over the following limits:

for Ypp1: 1<n,<n®, (A.8)

YWOmax 2:| 1/2

I . k
for yo: nx<nx<[ o

(A.9)

The trivial case of two coincident points is simply V; = Y2~ (y? ).
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