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Abstract

The present paper is concerned with the dynamic problem of a homogeneous isotropic half-space with
voids subjected to a set of normal point sources. The integral transforms have been inverted by using a
numerical technique to obtain the normal force stress, normal displacement, tangential couple stress and
volume fraction field in the physical domain for the two different sources. The expressions of these
quantities have been given and illustrated graphically to depict the effect of micropolarity and voids.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

The linear theory of elastic materials with voids is one of the generalization of the classical
theory of elasticity. This theory has practical utility to investigate various types of geological,
biological and synthetic porous materials for which the elastic theory is inadequate. This theory is
concerned with elastic materials consisting of a distribution of small pores (voids), in which the
voids volume is included among the kinematics variables, and in the limiting case of volume
tending to zero, the theory reduces to the classical theory of elasticity. The presence of voids is
known to affect the estimation of the physical-mechanical properties of the composite and also
weaken the bond as these pores get spread over a wide area. The intended applications are to the
materials like rock, soil and to manufactured porous materials.
It is commonly accepted that the mechanical behavior of granular masses is strongly affected by

their microstructure, namely the relative arrangement of voids and particles, i.e., the granular
fabric. Therefore, parameters which characterized the granular are of paramount importance in a
fundamental description of overall macroscopic stresses and deformation measures. The study of
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deformations in granular materials is important in many areas of sciences and technology, such as
powder metallurgy and earthquake engineering. In recent years, dynamic compaction of powders
has been used to manufacture advanced composites. A granular medium is composed of a large
number of distinct particles as well as some heterogeneous inclusion and voids. The inclusions
consists of materials with higher or lower acoustical impedance, and the voids may be filled with
gas or liquid. At the boundaries of these discontinuities and mismatch and incident wave will
produce both transmission and reflection waves of different modes. Wave propagation
phenomenon in such a media not only depends on the microstructure, but on the existence of
inclusion and voids.
Following some basic ideas of previous papers on granular materials by Goodman and Cowin

[1,2], Nunziato and Cowin in Ref. [3] set-up a continuum theory in which porosity is modelled by
assigning an additional degree of freedom to each particle of the material structure, namely, the
fraction of volume which is possibly found void of matter. Lewis and Isaak [4] discussed the voids
of minimum stress concentration. Later, Cowin and Nunziato [5] developed a theory of linear
elastic materials with voids, for the mathematical study of the mechanical behavior of porous
solids in which the skeletal or matrix material is elastic and the interstices are void of materials.
They considered several applications of the linear theory by investigating the response of the
materials to homogeneous deformations, pure bending of a beam and small amplitudes acoustic
waves. Pouget and Maugin [6,7] established non-linear elastoacoutic equations for piezoelectric
powders and discussed continuum approach to electroacoutic echoes in piezoelectric powders.
Piezoelectric ceramics and composites have been extensively used in many engineering
applications such as sensors, actuators, intelligent structures, etc. The problems of quasi-static
plane strain and plane stress for a linear elastic material with voids was studied by Cowin [8]. Puri
and Cowin [9] studied the behavior of plane harmonic waves in a linear elastic material with voids.
Iesan [10] developed the basic theories of linear thermoelastic materials with voids.
Chandersekharaiah [11] studied the plane wave in a rotating elastic solid with voids.
Chandersekharaiah and Cowin [12], obtained the field equations governing two different
continuum theories, namely the theory of thermoelasticity and Biot’s theory of poroelasticity. The
problem of complete solutions in the theory of isotropic elastic materials with voids was discussed
by Chandrasekharaiah [13]. A domain of influence theorem in the linear theory of elastic materials
with voids was discussed by Dhaliwal and Wang [14]. Scarpetta [15] proved some theorem of
uniqueness for linear elastic materials with voids.
The particles of a classical elastic materials have transnational degree of freedom only, and

transmission of the load across a differential element of the surface is described by a force vector
only. The polycrystalline materials do not confirm this. These materials are fibrous and composite
in nature and display size effects. These materials have additional micro-deformational degree of
freedom, i.e., they possess a microstructured whose size cannot be neglected in comparison with
length scales of interest. Various degrees of freedom of a microstructure were considered by
different authors. Notable among them are Cosserat and Cosserat [16], Eringen and Suhubi [17]
and Mindlin [18]. Each one has given an independent set of governing equations. The force at a
point of a surface element of bodies of these materials is completely characterized by a stress
vector and a couple stress vector at that point. In the classical theory of elasticity, the effect of
couple stress is neglected. Eringen [19] has modified his earlier theory and renamed it as the
‘‘Linear Theory of Micropolar Elasticity’’.
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Iesan [20] studied shock waves in micropolar elastic material with voids. Scarpetta [21] worked
on the fundamental solutions in micropolar elasticity with voids. Marin [22] obtained the
existence and uniqueness of solutions for boundary value problem in elasticity of micropolar
materials with voids. Marin [23] discussed generalized solutions in elasticity of micropolar bodies
with voids. Marin [24] derived a temporally evolutionary equation in micropolar elastic body with
voids.

2. Formulation of the problem

We consider a homogeneous, isotropic, micropolar elastic half-space with voids. The cylindrical
polar co-ordinate system ðr; y; zÞ having the z-axis pointing vertical into the medium is introduced.
A normal Delta distribution or continuous point source is assumed to be acting at the origin of
the cylindrical polar co-ordinates.
Following Eringen [25] and Iesan [20], the constitutive relations and the field equations in

micropolar elastic solid with voids without body forces and body couples can be written as

tij ¼ luk;kdij þ mðui;j þ uj;iÞ þ Kðuj;i � eijkfkÞ þ dijb
nq; ð1Þ

mij ¼ afk;kdij þ bfi;j þ gfj;i ð2Þ

and

ðlþ mÞrðr:uÞ þ ðmþ KÞr2uþ Kr� / þ bnrq ¼ r
@2u

@t2
; ð3Þ

ðaþ bþ gÞrðr:/Þ � gr� ðr� /Þ þ Kr� u� 2K/ ¼ rj
@2/
@t2

; ð4Þ

anr2q � znq � on@q

@t
� bnr:u ¼ rKn@

2q

@t2
; ð5Þ

where l; m; K ; a; b; g are material constants, r is the density, j is the micro inertia, u is the
displacement vector, / is the micro rotation vector, tij is the component of force stress, mij is the
component of the couple stress, q is the volume fraction field and an; bn; zn; on; Kn are material
constants due to the presence of voids.
For axial symmetric problem, we take

u ¼ ður; 0; uzÞ and / ¼ ð0;fy; 0Þ

We define the non-dimensional quantities as

r0 ¼
r

h
; z0 ¼

z

h
z; u0r ¼

ur

h
;

u0z ¼
uz

h
; t02 ¼

m
rh2

t2; f0
y ¼

m
rj %o2

fy;

t0ij ¼
tij

m
; m0

ij ¼
mh

gK
mij; q0 ¼

bnKn

an
q; ð6Þ
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where

%o2 ¼ K=rj; c21 ¼ ðlþ 2mþ KÞ=r

and h is a parameter of dimension of length.
Due to axial symmetry about z-axis, the quantities are independent of y: With these

considerations and using dimensionless quantities given in expression (6), the system of equations
(3)–(5) may be recast into the dimensionless form (after suppressing the primes) as

@e

@r
þ a1 r2 �

1

r2

� �
ur � a2

@fy

@z
þ a3

@q

@r
¼ a4

@2ur

@t2
; ð7Þ

@e

@z
þ a1r2uz þ a2

1

r

@ðrfyÞ
@r

þ a3
@q

@z
¼ a4

@2uz

@t2
; ð8Þ

r2 �
1

r2
� b1

� �
fy þ b2

@ur

@z
�

@uz

@r

� �
¼ b3

@2fy

@t2
; ð9Þ

r2 � s1 � s2
@

@t

� �
q � s4e ¼ s3

@2q

@t2
; ð10Þ

where

a1 ¼
ðmþ KÞ
ðlþ mÞ

; a2 ¼
K2

ðlþ mÞm
; a3 ¼

an

Knðlþ mÞ
; a4 ¼

m
ðlþ mÞ

;

b1 ¼
2Kh2

g
; b2 ¼

h2m
g
; b3 ¼

jm
g
;

s1 ¼
znh2

an
; s2 ¼

onh

an

ffiffiffi
m
r

r
; s3 ¼

Knm
an

; s4 ¼
b*2Knh2

a*2

and

e ¼
1

r

@ðrurÞ
@r

þ
@uz

@z
; r2 ¼

@2

@r2
þ
1

r

@

@r
þ

@2

@z2
: ð11Þ

With the aid of the expressions relating displacement components urðr; z; tÞ; uzðr; z; tÞ and
rotational component fyðr; z; tÞ to the scalar potential function c1ðr; z; tÞ; c2ðr; z; tÞ and tðr; z; tÞ in
dimensionless form as

ur ¼
@c1
@r

þ
@2c2
@r@z

; uz ¼
@c1
@z

� r2 �
@2

@z2

� �
c2; fy ¼ �

@t
@r
; ð12Þ

in Eqs. (7)–(10), we obtain

ð1þ a1Þr2 � a4
@2

@t2

� �
c1 þ a3q ¼ 0; ð13Þ

a1r2 � a4
@2

@t2

� �
c2 þ a2t ¼ 0; ð14Þ
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r2 � b1 � b3
@2

@t2

� �
t� b2r2c2 ¼ 0; ð15Þ

r2 � s1 � s2
@

@t
� s3

@2

@t2

� �
q � s4r2c1 ¼ 0: ð16Þ

We define the Laplace and Hankel transforms as

%fðr; z; pÞ ¼
Z

N

0

f ðr; z; tÞe�pt dt;

#fðz; z; pÞ ¼
Z

N

0

%fðr; z; pÞrJnðrzÞ dr: ð17Þ

Applying the Laplace and Hankel transforms defined by Eq. (17) on Eqs. (13)–(16), and then
eliminating #t and #q from the resulting expressions, we obtain

d4

dz4
þ A

d2

dz2
þ B

� �
½ *c1
 ¼ 0; ð18Þ

d4

dz4
þ E

d2

dz2
þ F

� �
½ *c2
 ¼ 0; ð19Þ

where

A ¼ � ½ð1þ a2Þð2z
2 þ s1 þ s2p þ s3p

2Þ þ a4p
2 � a3s4
=ð1þ a1Þ;

B ¼ z4 þ ½ðð1þ a2Þðs1 þ s2p þ s3p
2Þ þ a4p

2 � a3s4Þz
2

þ ðs1 þ s2p þ s3p
2Þa4p2
=ð1þ a1Þ;

E ¼ � ½a1ð2z
2 þ b1 þ b3p

2Þ þ a4p
2 � a2b2
=a1;

F ¼ ½z4 þ ða1ðb1 þ b3p
2Þ þ a4p

2 � a2b2Þz
2 þ ðb1 þ b3p

2Þa4p2
=a1: ð20Þ

The solution of Eqs. (18) and (19), satisfying the radiation conditions as z tends to infinity, are

#c1 ¼ A1e
�l1z þ A2e

�l2z; ð21Þ

#q ¼ R1A1e
�l1z þ R2A2e

�l2z; ð22Þ

#c2 ¼ A3e
�l3z þ A4e

�l4z; ð23Þ

#t ¼ R3A3e
�l3z þ R4A4e

�l4z; ð24Þ
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where l21;2 and l23;4 are roots of Eqs. (18) and (19), respectively, given by

l2i ¼
�A þ ð�1Þiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B

p
2

" #
; i ¼ 1; 2;

l2i ¼
�E þ ð�1Þiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 4F

p
2

" #
; i ¼ 3; 4 ð25Þ

and

Ri ¼
ð1þ a1Þðz

2 � l2i Þ þ a4p
2

a3

� �
; i ¼ 1; 2;

Ri ¼
a1ðz

2 � l2i Þ þ a4p
2

a2

� �
; i ¼ 3; 4: ð26Þ

3. Application

3.1. Instantaneous normal point source

Plane boundary is subjected to an instantaneous normal point force. Therefore, the boundary
conditions in this case are

tzz ¼ �
P0dðrÞdðtÞ
2pr

; tzr ¼ 0; mzy ¼ 0;
@q

@z
¼ 0 at z ¼ 0; ð27Þ

where P is the magnitude of force applied and dðÞ is Dirac’s delta distribution.
Making use of Eqs. (1), (2), (6), (11) and (12) in the boundary conditions (27) and applying the

transforms defined by Eq. (17) and substituting the valuesf #c1; #c2; #q and #t from Eqs. (21)–(24) in
the resulting expressions, we obtain the expressions for the components of displacement, force
stress, couple stress and volume fraction field as

#urðz; z; pÞ ¼ z½�ðD1e�l1z þ D2e�l2zÞ þ l3D3e�l3z þ l4D4e�l4z
=D; ð28Þ

#uzðz; z; pÞ ¼ �½l1D1e�l1z þ l2D2e�l2z � z2ðD3e�l3z þ D4e�l4zÞ
=D; ð29Þ

#tzzðz; z; pÞ ¼ ðH1D1e�l1z þ H2D2e�l2z þ H3D3e�l3z þ H4D4e�l4zÞ=D; ð30Þ

#tzrðz; z; pÞ ¼ ðG1D1e�l1z þ G2D2e�l2z þ G3D3e�l3z þ G4D4e�l4zÞ=D; ð31Þ

#mzyðz; z; pÞ ¼ �zðl3R3D3e�l3z þ l4R4D4e�l4zÞ=D; ð32Þ

#qðz; z; pÞ ¼ ðR1D1e�l1z þ R2D2e�l2zÞ=D; ð33Þ

where

D ¼ � l3R3½G4ðH1l2R2 � H2l1R1Þ þ H4ðG2l1R1 � G1l2R2Þ


þ l4R4½G3ðH1l2R2 � H2l1R1Þ þ H3ðG2l1R1 � G1l2R2Þ
;
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Di ¼ð�1Þiþ1PljRj½l3R3G4 � l4R4G3
; i ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1;

Di ¼ð�1ÞiPljRj½l1R1G2 � l2R2G1
; i ¼ 3; j ¼ 4; i ¼ 4; j ¼ 3;

Hi ¼
ðlþ 2mþ KÞl2i

m
�

lz2

m
þ

anRi

Knm
; i ¼ 1; 2;

Hi ¼
�z2ð2mþ KÞli

m
; i ¼ 3; 4; P ¼ P0=2p;

Gi ¼
zð2mþ KÞli

m
; i ¼ 1; 2;

Gi ¼ �
zðmþ KÞl2i

m
� z3 �

zK2Ri

m2
; i ¼ 3; 4: ð34Þ

Particular Case I: Neglecting the influence of the voids, i.e. ðan ¼ bn ¼ zn ¼ on ¼ Kn ¼ 0Þ; the
expressions for the displacement components, force stresses and couple stress are obtained in a
micropolar elastic medium.

Particular Case II: If the effect of micropolarity is ignored, i.e. ðK ¼ j ¼ a ¼ b ¼ g ¼ 0Þ; the
expressions for the displacement components, force stresses and volume fraction field are
obtained in a elastic medium with voids.

Particular Case III: If we let ðK ¼ j ¼ a ¼ b ¼ g ¼ 0Þ and ðan ¼ bn ¼ zn ¼ on ¼ Kn ¼ 0Þ; then
micropolarity and voids is not there and in this case the problem reduces to the problem of normal
point load on a elastic half-space. The resulting expressions tally with those obtained by
Achenbach [26] with the change of notations as same as used by the author, by putting p ¼ 1 in
this particular case.

3.2. Continuous normal point source

When the plane boundary is subjected to continuous normal point force, the boundary
conditions are

tzz ¼ �
P0dðrÞHðtÞ

2pr
; tzr ¼ 0; mzy ¼ 0;

@q

@z
¼ 0 at z ¼ 0; ð35Þ

where P is the magnitude of force applied and HðÞ is Heaviside distribution.
With the help of these boundary conditions (35), the expressions for the components of

displacement, force stress, couple stress and volume fraction field are obtained by Eqs. (28)–(33)
replacing Di with D0

iði ¼ 1;y; 4Þ; where

D0
i ¼ Di=p: ð36Þ

Particular Case I: Neglecting the influence of the voids, i.e. ðan ¼ bn ¼ zn ¼ on ¼ Kn ¼ 0Þ; the
expressions for the displacement components, force stresses and couple stress are obtained in a
micropolar elastic medium.
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Particular Case II: If the effect of micropolarity is ignored, i.e. ðK ¼ j ¼ a ¼ b ¼ g ¼ 0Þ; the
expressions for the displacement components, force stresses and volume fraction field are
obtained in a elastic medium with voids.

Particular Case III: If the effect of micropolarity and voids is neglected, i.e. ðK ¼ j ¼ a ¼ b ¼
g ¼ 0Þ and ðan ¼ bn ¼ zn ¼ on ¼ Kn ¼ 0Þ; the expressions for the displacement components and
force stresses are obtained in a elastic medium. Again the resulting expressions telly with those
obtained by Achenbach [26] with the change of notations as same as used by the author.

4. Inversion of transforms

We get expressions for displacement, microrotation and stress components solution in
Eqs. (28)–(33). These expressions are functions of z; the parameters of the Laplace and Hankel
transforms p and z; respectively, and hence of the form #fðz; z; pÞ: To get the function f ðr; z; tÞ in the
physical domain, first we invert the Hankel transform using

%fðr; z; pÞ ¼
Z

N

0

z #fðz; z; pÞJnðrzÞ dz: ð37Þ

Now, for the fixed values of z; r and z; the %fðr; z; pÞ in expression (37) can be considered as the
Laplace transform %gðpÞ of some function gðtÞ: Following Honig and Hirdes [27], the Laplace
transformed function %gðpÞ can be inverted as given below.
The function gðtÞ can be obtained by using

gðtÞ ¼
1

2pi

Z CþiN

C�iN
ept

%gðpÞ dp; ð38Þ

where C is an arbitrary real number greater than all the real parts of the singularities of %gðpÞ:
Taking p ¼ C þ iy; we get

gðtÞ ¼
eCt

2p

Z
N

�N

eity %gðC þ iyÞ dy: ð39Þ

Now, taking e�CtgðtÞ as hðtÞ and expanding it as Fourier series in ½0; 2L
; we obtain
approximately the formula

gðtÞ ¼ gNðtÞ þ ED0 ð40Þ

where

gNðtÞ ¼
C0

2
þ
XN
k¼1

Ck; 0ptp2L ð41Þ

and

Ck ¼
eCt

L
R e

ikpt
L %g C þ

ikp
L

� �� �
:

ED is the discretization error and can be made arbitrarily small by choosing C large enough.
The value of C and L are chosen according to the criteria out lined by Honig and Hirdes [27].
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Since the infinite series in Eq. (41) can be summed up only to a finite number of N terms, so the
approximate value of gðtÞ becomes

gNðtÞ ¼
C0

2
þ
XN

k¼1

Ck; 0ptp2L: ð42Þ

Now, we introduce a truncation error ET that must be added to the discretization error to
produce the total approximation error in evaluating gðtÞ using the above formula. Two methods
are used to reduce the total error. The discretization error is reduced by using the ‘Korrecktur’-
method, Honig and Hirdes [27] and then ‘e-algorithm’ is used to reduce the truncation error and
hence to accelerate the convergence.
The ‘Korrecktur’-method formula, to evaluate the function gðtÞ is

gðtÞ ¼ gNðtÞ � e�2CLgNð2L þ tÞ þ ED0 ; ð43Þ

where

jED0 j5jEDj: ð44Þ

Thus, the approximate value of gðtÞ becomes

gNk
ðtÞ ¼ gNðtÞ � e�2CLgN 0 ð2L þ tÞ; ð45Þ

where, N 0 is an integer such that N 0oN:
We shall now describe the e-algorithm which is used to accelerate the convergence of the series

in Eq. (42). let N be a natural number an Sm ¼
Pm

k¼1 Ck be the sequence of partial sums of
Eq. (42). We define the e-sequence by

e0;m ¼ 0;

e1;m ¼ Sm;

enþ1;m ¼ en�1;mþ1 þ
1

en;mþ1 � en;m
; n;m ¼ 1; 2; 3;y :

It can be shown Honig and Hirdes [27] that the sequence e1;1; e3;1;y; eN;1 converges to
gðtÞ þ ED � C0=2 faster than the sequence of partial Sm;m ¼ 1; 2; 3;y : The actual procedure to
invert the Laplace transform consists of Eq. (45) together with the e-algorithm.
The last step is to evaluate the integral in Eq. (37). The method for evaluating this integral by

Press et al. [28], which involves the use of Romberg’s integration with adaptive step size. This, also
uses the results from successive refinement of the extended trapezoidal rule followed by
extrapolation of the results to the limit when the step size tends to zero.

5. Numerical results and discussion

In this section, the numerical discussion for both the cases and all particular cases are reported.
The analysis is conducted for a magnesium crystal like material. Following Eringen [29], the
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values of physical constants are

l ¼ 9:4� 1011 dyn=cm2; m ¼ 4� 1011 dyn=cm2;

K ¼ 1� 1011 dyn=cm2; r ¼ 1:74 g=cm3;

g ¼ 0:779� 10�4 dyn; j ¼ 0:2� 10�15 cm2;

and the void parameters are

an ¼ 3:688� 10�4 dyn; bn ¼ 1:13849� 1011 dyn=cm2;

zn ¼ 1:475� 1011 dyn=cm2; on ¼ 0:0787 dyn=cm2;

Kn ¼ 1:753� 10�15 cm2; h2 ¼ 1� 10�15 cm2:

The computations were carried out for non-dimensional time t ¼ 0:1 at z ¼ 1 in the range
0prp10: The distribution of non-dimensional tangential couple stress Mzyð¼ mzy=PÞ; non-
dimensional normal displacement Uzð¼ uz=PÞ; non-dimensional normal force stress Tzzð¼ tzz=PÞ
and non-dimensional Volume fraction field Qð¼ q=PÞ with non-dimensional distance 0r0 have been
shown in Figs. 1–8. The solid line predicts the variations of components for micropolar elastic
solid with void (MESV) whereas the very small dashed line are for micropolar elastic solid (MES),
small dashed line corresponds to the variations for elastic solid with voids (ESV) and large dashed
line are for elastic solid (ES).

5.1. Instantaneous normal point source

The variations of normal displacement, volume fraction field, normal force stress and tangential
couple stress with distance r for MESV, MES, EVS and ES when instantaneous normal point
source is applied have been shown in Figs. 1, 2, 3, 4, respectively.
Fig. 1 depicts the variations of normal displacement Uz with r for all four theories (MESV,

MES, ESV, ES) and it is observed that the behavior of Uz for MES is opposite to MESV, ESV
and ES. The values of Uz decrease sharply as r lies between 0prp3 whereas for MES the values
of Uz increase in the same range. Very near to the point of action of sources, the magnitude of
values of Uz os larger for MESV and smallest for MES. The variations of volume fraction
Qð¼ q=PÞ with r for MESV and ESV have been shown in Fig. 2. The values of Q decrease sharply
in the range 0prp2:5: The values for MESV is greater then that for ESV in the initial range
0prp2:5 and then in the range 7prp10: The variations of normal force stress Tzz with r have
been shown in Fig. 3. The values of Tzz start with sharp decrease for the cases MESV, MES and
ES whereas for the case of ESV it starts with small increase. The magnitude of value of Tzz is
largest for ES and smallest for MES. Fig. 4. shows the variations of Mzy with r: Starting with
small decrease in the range 0prp1:5; the value of couple stress for MESV and MES begin to
grownup with small variation. The behavior of variation of Mzy for both the cases are same
whereas their corresponding values are different.
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Fig. 2. Variations of volume fraction field Qð¼ q=PÞ due to instantaneous source with distance r:

Fig. 1. Variations of normal displacement Uxð¼ ux=PÞ due to instantaneous source with distance r:
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Fig. 4. Variations of tangential couple stress Mzyð¼ mzy=PÞ due to instantaneous source with distance r:

Fig. 3. Variations of normal force stress Tzzð¼ tzz=PÞ due to instantaneous source with distance r:
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Fig. 6. Variations of volume fraction field Qð¼ q=PÞ due to continuous source with distance r:

Fig. 5. Variations of normal displacement Uzð¼ uz=PÞ due to continuous source with distance r:
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Fig. 8. Variations of tangential couple stress Mzyð¼ mzy=PÞ due to continuous source with distance r:

Fig. 7. Variations of normal force stress Txxð¼ txx=PÞ due to continuous source with distance r:
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5.2. Continuous normal point source

The variations of normal displacement, volume fraction field, normal force stress and tangential
couple stress with distance r for MESV, MES ESV and ES when continuous normal point source
is applied have been shown in Figs. 5, 6, 7, 8, respectively.
Fig. 5 shows the variations of normal displacement Uz with r: The behavior of variation of Uz

for all four case are same. The values of normal displacement start with sharp decrease and the
approaches to zero as r increases. The values of Uz are greatest for the case of MESV and smallest
for the case of MES in the range 0prp3: The variations of volume fraction Qð¼ q=PÞ with r for
MESV and ESV have been shown in Fig. 6. The values of Q decrease sharply in the range
0prp3: The values for ESV is greater then that for MESV in the range 0prp3: The variations of
normal force stress Tzz with r have been shown in Fig. 7. Initially, with a sharp increase in values
of force stress its value approaches to be vanished. In the range, 0prp1 the values are greater for
MES and smallest for MESV. Fig. 8 depicts the variations of Mzy with r: It is observed that the
behavior of variation of values of couple stress is just opposite to each other in whole range. The
values of Mzy for the case of MESV start with sharp decrease whereas for the case of MES, start
with sharp increase.

6. Conclusion

From the above numerical discussion a significant effect of void and micropolarity have been
observed. The magnitude of variations of the normal displacement, normal force stress and
tangential couple stress is observed for Delta distribution and continuous normal sources. The
void effect is appreciable in both the cases. Very near to the point of application of source,
it is observed that the components of displacement, force stress, couple stress and volume
fraction filed have large values which become smaller and smaller with the increase in the value of
distance ‘r’.
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