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1. Introduction

Considerable attention has been paid to the solution of the vibration problems of rectangular
plates. In recent years with the practical application of active sound and vibration control, several
studies have been devoted to plate response subject to different kinds of excitation and with
various boundary conditions. The solution for simply supported plates is easy to obtain. It is
much more difficult to obtain solutions for other boundary conditions. In addition, there is a
great motivation to develop techniques for rapid, global inspection of vibrating structures.
Classical methods to find the surface response of a plate with complex boundary conditions
include the superposition and Ritz methods using trial polynomials and trigonometric functions.
A large amount of information has been compiled by Leissa [1,2]. These methods require the
solution of simultaneous equations or high order matrices, making the calculations of sound
power radiated by vibrating structures even more difficult. An approach using the virtual work
principle has been extensively used by Sung and co-workers [3–5]. This approach provides an
easier methodology for calculating the surface response of a plate. It appears that the
fundamentals of the method were first introduced by Vlasov [6]. A set of valuable references
can be found in the comments made by Laura [7]. However, there is a relative scarcity of
information in the literature for rectangular, as opposed to square, fully clamped plates. It can be
concluded that an efficient method to predict the low-frequency sound radiated from a vibrating
structure will require a computationally fast method to solve the vibration part of the problem
combined with a method that, when possible, avoids the integration of the sound pressure field [8].

The final aim of this letter is to summarize the application of the virtual work principle to fully
clamped plates, reporting the results for natural frequencies for plates of arbitrary aspect ratio
and an estimate for the modal density, results that are not reported in the previous works. This
can be useful in evaluating the accuracy of the method by comparing with previous numerical and
experimental results reported in the literature.
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2. Theory

For thin plate theory the wave equation for transverse vibration of an isotropic, undamped
plate subjected to a concentrated load at point ðx0; y0Þ is [2]

Br4xþ rh
@2x
@t2

¼ F ðtÞdðx � x0Þdðy � y0Þ; ð1Þ

where xðx; y; tÞ is the instantaneous transverse displacement, r is the density of the plate,
h is the plate thickness, B ¼ Eh3=12ð1 � n2Þ is the stiffness of the plate in bending, n is the
Poisson ratio, E is the modulus of elasticity (Young’s modulus), FðtÞ is the dynamic
amplitude of the external force referring to unit surface area of the plate, and dð�Þ is the delta
function.

Now, let a rectangular plate be defined in the region 0pxpa and 0pypb and consider the
clamped–clamped boundary condition, i.e., x ¼ 0 and @x=@n ¼ 0; where n represents the normal
direction from the clamped edges.

Application of the virtual work principle to Eq. (1), implies that the steady state amplitude
response x0ðx; yÞ of the plate subjected to a harmonic point force of amplitude F0 and frequency o
can be expressed as [3]

x0ðx; yÞ ¼ F0

XN
m¼1

XN
n¼1

Cmnðx; yÞCmnðx0; y0Þ
BðI1I2 þ 2I3I4 þ I5I6Þ � rso2I2I6

; ð2Þ

where the shape functions are decomposed in the form of the product

Cmnðx; yÞ ¼ WmðxÞznðyÞ; ð3Þ

rs is the surface density of the plate, and

I1 ¼
Z a

0

W0000m Wm dx; I2 ¼
Z b

0

z2n dy; I3 ¼
Z a

0

W00mWm dx;

I4 ¼
Z b

0

z00nzn dy; I5 ¼
Z b

0

z0000n zn dy; I6 ¼
Z a

0

W2
m dx: ð4Þ

The eigenfunctions WmðxÞ and znðyÞ can be arbitrarily chosen as long as they are quasi-

orthogonal and both of them satisfy the boundary condition. Eq. (2) shows that the natural
frequencies are given by

omn ¼

ffiffiffiffiffi
B

rs

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1I2 þ 2I3I4 þ I5I6

I2I6

s
: ð5Þ

2.1. Solution for a clamped–clamped rectangular plate

Sung and co-workers [3–5] have used an approach for the calculation of the vibration
distribution and natural frequencies of a clamped–clamped plate. For this, they define the
functions JðsÞ ¼ coshðsÞ � cosðsÞ and HðsÞ ¼ sinhðsÞ � sinðsÞ: Then, the eigenfunctions WmðxÞ and
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znðyÞ can be defined as

WmðxÞ ¼ Jðbmx=aÞ �
JðbmÞ
HðbmÞ

Hðbmx=aÞ;

znðyÞ ¼ Jðbny=bÞ �
JðbnÞ
HðbnÞ

Hðbny=bÞ; ð6Þ

where bm and bn are the roots for the equation coshðbÞcosðbÞ ¼ 1: It is noticed that for large values
of the integer i then bi-ð2i þ 1Þp=2: In an earlier work Crocker [9] used a similar approach.

Sung and co-workers did not present explicit formulae for a clamped–clamped plate. Therefore,
after integration of Eq. (4) it is useful to define

Qi ¼ 1
4
ð1þD2

i Þ sinhð2biÞ þ sinhðbiÞ½2Di sinðbiÞ � ð1�D2
i Þ cosðbiÞ


� ð1þD2
i Þ sinðbiÞ coshðbiÞ þ

1
2
ð1�D2

i Þ sinðbiÞ cosðbiÞ þ bi

� 1
2
Di½1 þ coshð2biÞ
 þDi cos

2ðbiÞ; ð7Þ

and

Ri ¼ 1
4ð1þD2

i Þ sinhð2biÞ �
1
2 Di coshð2biÞ �

1
2 ð1 �D2

i Þ sinðbiÞ cosðbiÞ

� Di cos
2ðbiÞ �D2

i bi þ
3
2
Di; ð8Þ

where Di ¼ JðbiÞ=HðbiÞ: Now, the following products can be calculated:

I2I6 ¼
ab

bmbn

QmQn and I3I4 ¼
bmbn

ab
RmRn: ð9Þ

It is observed that I1 ¼ I6ðbm=aÞ4 and I5 ¼ I2ðbn=bÞ4: Therefore, the natural frequencies for a
rectangular clamped–clamped plate are given by

omn ¼

ffiffiffiffiffi
B

rs

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bm

a

� �4

þ
bn

b

� �4

þ2
bmbn

ab

� �2
RmRn

QmQn

s
: ð10Þ

2.2. Natural frequencies and modal density

Numerical results for the dimensionless frequency parameter lmn ¼ omna2
ffiffiffiffiffiffiffiffiffiffi
rs=B

p
were

computed using Eq. (10) for rectangular plates of arbitrary a=b ratio. These results are
summarized in Table 1. Double-precision arithmetic was used in the computations. Comparing
the values presented in Table 1 with the numerical results presented in the classical literature
[1,2,10,11] it is observed that they compare favorably with more sophisticated and accurate
methods. Importantly, comparing the values shown in Table 1 with the available experimental
results presented by other authors [12], it can be seen that the differences in the calculations for the
natural frequencies using Eq. (10) do not exceed 2%. In order to obtain better approximations it
could be suggested to apply some weighting constant to the overestimated values given by
Eq. (10). However, it has to be noticed the limitations of the experimental methods. Most of the
classical theories have been developed assuming light fluid loading, so that the plate response is
not affected by the surrounding environment, which acts as added mass and also provides
radiation damping. Loading by fluid significantly lowers the natural frequencies of flat plates, the
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Table 1

Values of the dimensionless frequency parameter lmn ¼ omna2
ffiffiffiffiffiffiffiffiffiffi
rs=B

p
for a fully clamped rectangular plate of arbitrary

a=b ratio

m n Aspect ratio a=b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 1 22.4419 22.6599 23.0621 23.7026 24.6480 25.9694 27.7322 29.9888 32.7747 36.1087

2 22.6335 23.4941 25.1664 27.9146 31.9618 37.4354 44.3734 52.7604 62.5608 73.7372

3 22.9426 24.9258 28.9480 35.5549 44.9729 57.1935 72.1298 89.6963 109.8289 132.4831

4 23.3833 27.0804 34.6999 46.8896 63.6595 84.8361 110.2715 139.8698 173.5726 211.3440

5 23.9674 30.0501 42.5109 61.8203 87.7238 119.9624 158.3821 202.8982 253.4637 310.0511

6 24.7592 34.0446 52.5793 80.4547 117.2381 162.6589 216.5817 278.9382 349.6918 428.8221

2 1 61.7650 62.0456 62.5265 63.2269 64.1724 65.3936 66.9248 68.8021 71.0616 73.7372

2 62.0188 63.0815 64.9312 67.6720 71.4252 76.3107 82.4316 89.8657 98.6632 108.8499

3 62.4187 64.7402 68.8605 75.0681 83.6327 94.7485 108.5206 124.9831 144.1270 165.9226

4 62.9727 67.0788 74.4940 85.7589 101.2462 121.1171 145.3876 174.0072 206.9086 244.0295

5 63.6835 70.1336 81.9379 99.8784 124.3104 155.2695 192.6628 236.3780 286.3212 342.4226

6 64.6279 74.1964 91.7307 118.1030 153.5158 197.8604 250.9752 312.7283 383.0274 461.8103

3 1 121.0042 121.3086 121.8224 122.5554 123.5205 124.7341 126.2152 127.9850 130.0663 132.4831

2 121.2811 122.4258 124.3715 127.1710 130.8917 135.6092 141.4014 148.3422 156.4978 165.9226

3 121.7158 124.1918 128.4400 134.6185 142.9067 153.4771 166.4747 182.0060 200.1383 220.9063

4 122.3153 126.6459 134.1488 145.1578 159.9983 178.9224 202.0875 229.5671 261.3756 297.4941

5 123.0803 129.8041 141.5611 158.9179 182.3292 212.0596 248.2086 290.7734 339.7038 394.9359

6 124.0938 133.9883 151.3420 176.9099 211.1674 254.2950 306.2926 367.0857 436.5845 514.7084

4 1 199.9652 200.2835 200.8179 201.5741 202.5600 203.7856 205.2626 207.0045 209.0262 211.3440

2 200.2554 201.4498 203.4622 206.3242 210.0769 214.7693 220.4553 227.1909 235.0315 244.0295

3 200.7104 203.2851 207.6461 213.8893 222.1322 232.5018 245.1219 260.1031 277.5372 297.4941

4 201.3371 205.8228 213.4639 224.4720 239.0839 257.5238 279.9770 306.5780 337.4113 372.5196

5 202.1353 209.0700 220.9513 238.1619 261.0822 290.0181 325.1731 366.6544 414.4982 468.6958

6 203.1922 213.3671 230.8357 256.1429 289.7556 331.9795 382.9631 442.7434 511.2958 588.5685

5 1 298.6644 298.9917 299.5398 300.3124 301.3148 302.5537 304.0370 305.7739 307.7749 310.0511

2 298.9631 300.1900 302.2491 305.1607 308.9526 313.6582 319.3159 325.9670 333.6547 342.4226

3 299.4313 302.0723 306.5187 312.8339 321.0987 331.4054 343.8511 358.5310 375.5334 394.9359

4 300.0756 304.6690 312.4302 323.5018 338.0548 356.2680 378.3097 404.3243 434.4257 468.6958

5 300.8957 307.9831 320.0039 337.2234 359.9359 388.4169 422.8922 463.5243 510.4145 563.6139

6 301.9814 312.3675 330.0054 355.2833 388.5900 430.2432 480.4609 539.3654 607.0060 683.3838

6 1 417.1048 417.4475 418.0203 418.8259 419.8681 421.1514 422.6815 424.4650 426.5091 428.8221

2 417.4177 418.7013 420.8499 423.8775 427.8025 432.6482 438.4412 445.2111 452.9898 461.8103

3 417.9079 420.6682 425.2976 431.8375 440.3423 450.8759 463.5080 478.3108 495.3552 514.7084

4 418.5824 423.3778 431.4369 442.8520 457.7387 476.2243 498.4374 524.4983 554.5129 588.5685

5 419.4403 426.8299 439.2756 456.9493 480.0536 508.7947 543.3609 583.9084 630.5556 683.3838

6 420.5760 431.3948 449.6211 475.5002 509.2995 551.2656 601.5970 660.4348 727.8661 803.9348
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effect decreasing with increasing mode order. In addition, differences between the numerical and
experimental approaches are due to imperfections in the experimental fixture, the damping which
couples the modes (non-proportional damping), and some non-linearities, among others.

On the other hand, the modal density is often used to study the sound radiation from a plate, in
particular when statistical methods are used [13]. As an example, Fig. 1 shows the results for the
cumulative mode count, NðlÞ; as a function of the dimensionless frequency parameter for a fully
clamped plate of aspect ratio a=b ¼ 0:5; computed using Eq. (10). The results for an equivalent
simply supported plate are plotted for comparison. NðlÞ represents the number of modes which
can be excited in the range from zero up to l: It can be observed in Fig. 1 that the number of
modes for the clamped plate can be approximated by

NðlÞE
b

4pa
lþ C; ð11Þ

where C is a real number that depends on the aspect ratio. The average modal density nðlÞ; which
is the number of modes that can be excited in a narrow frequency band, is obtained from the
derivative of Eq. (11). Then

nðlÞ ¼
dN

dl
E

b

4pa
: ð12Þ

Eq. (12) is exactly the expression for the modal density of a simply supported plate, which is
independent of frequency. Eq. (12) confirms that the modal density depends not too strongly on
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Fig. 1. Number of modes as a function of the dimensionless frequency parameter l for both clamped and simply

supported plate of a=b ¼ 0:5:
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the boundary conditions. However, Eq. (11) is a good approximation for plates of not too high
aspect ratio and for l > 2l11:

2.3. Velocity response to multi-point force excitation of the plate

Most of the practical applications which use active control of vibration are developed by
placing piezoceramic actuators on the surface of the plate and by applying point forces with
electromagnetic shakers. In such cases, a matrix equation is very useful in predicting the velocity
response of the plate to these forces. In addition, the response of the plate to a point moment can
be obtained since a point moment can be treated as two point forces F1 at ðx1; y1Þ and F2 at ðx2; y2Þ

with the same magnitude separated by a small distance D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ

2 þ ðy1 � y2Þ
2

q
but oriented

in opposite directions [4]. Multi-point excitation can be found also in the case of a machine
installed on a plate with several mounting positions [14].

For multi-point force excitation (several forces of amplitude F1;F2;y;Fk applied to a set of
corresponding co-ordinates ðx1; y1Þ; ðx2; y2Þ;y; ðxk; ykÞ) on the plate, the total displacement of
the plate is obtained using the superposition of the responses induced by each of the forces, since
the system is assumed to be linear. Then, including the response of modes up to the mode ðM;NÞ
the total displacement is

x0ðx; yÞ ¼
1

rsab

Xk

i¼1

XM

m¼1

XN

n¼1

FiCmnðx; yÞCmnðxi; yiÞ
gðo2

mn � o2Þ
; ð13Þ

where omn is computed using Eq. (10), and g is

g ¼
1

ab

Z b

0

Z a

0

C2
mnðx; yÞ dx dy: ð14Þ

Now, it is useful to write the velocity V on the plate for any co-ordinate point ðx; yÞ in matrix
form. Let F be a k � k complex diagonal matrix of forces defined as F ¼ diagðF1;F2;y;FkÞ:
Then, the velocity can be expressed as

V ðx; y;o; tÞ ¼
o

2pk
traceðFVTXPÞ exp ot þ

p
2

	 

; ð15Þ

where k ¼ 2prsabg; V is a M � k matrix, P is a N � k matrix and X is a M � N matrix. The
entries for the matrices in Eq. (15) are

Vmk ¼ WmðxÞWnðxkÞ; Pnk ¼ znðyÞznðykÞ; Omn ¼ 4p2=ðo2
mn � o2Þ: ð16Þ

3. Concluding remarks

The use of the virtual work principle produces good approximations for the natural frequencies
and modal density of a fully clamped rectangular plate to within acceptable limits, at least for
acoustical requirements. The method summarized in the present letter is very useful for fast
calculations of the sound radiation characteristics of fully clamped plates, where the velocity
distribution on the plate is needed, since it does not require the solution of simultaneous
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equations. This is particularly true when the computational cost of formulating and solving the
system of equations to predict the sound radiation can become prohibitive. In addition, the
method avoids the symmetric eigenvalue problem that results when the Rayleigh–Ritz, or other
more sophisticated method is used. Moreover, all the formulae are relatively simple to convert
into a computational code when numerical software approaches are used.

The theory may be extended to other boundary conditions simply by selecting quasi-orthogonal
shape functions that satisfy the boundary conditions. Further work can be carried out to estimate
the sound radiation from free plates and for mixed boundary conditions, by combining the
method described in this article with the surface resistance matrix [15]. However, the lack of
experimental results for the vibration of rectangular plates of arbitrary aspect ratio still remains.
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