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Abstract

Aeroacoustical analogies allow one to extract acoustical information from limited information about the
flow. In the particular case of low Mach number compact flows, vortex sound theory has been quite
successful. In the present paper, different formulations of the vortex sound theory are compared on the
basis of their ability to provide realistic results for vortex-pairing sound when approximate flow models are
used. In particular, these theories do not perform equally well when applied to a flow model in which the
effective conservation of momentum and kinetic energy is not respected, as it should be in the absence of
external forces and neglecting viscous dissipation and compressibility effects. A conservative form of the
vortex sound theory is obtained by reiterating the assumptions of conservation of these flow invariants.
This alternative form of the analogy allows one to obtain more robust results when applied to perturbed
analytical flow models and experimental data.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Lighthill’s analogy

In a recent paper, Fedorchenko [1] states that the acoustical analogy is not a useful concept. In
the present paper, it is argued that the acoustical analogy can be quite useful. The use of the subtle
approach of M .ohring [2] to vortex sound theory is considered. In the original paper and the more
extended description provided by Dowling et al. [3], some of the steps in the derivation of this
analogy are made quite implicitly. An attempt is made to provide the reader with a more explicit
description. The key idea that is stressed is that the analogy allows one to predict sound
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production by a flow from experimental data or simplified theoretical models while this would be
impossible by a more direct approach.

The main idea of Lighthill’s analogy [4] is to deduce an exact equation in which aerodynamic
sound sources are made ‘‘explicit’’. By combination of the exact mass and momentum
conservation laws, Lighthill obtains
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where r is the fluid density, vi are the velocity components, p is the pressure, sij is the viscous stress
tensor, fi is an external force density and c0 is a velocity. The right hand of Eq. (1) defines the
acoustical source term q: A set of 4 exact equations (11 unknowns) has been replaced by a single
equation (still 11 unknowns). At first glance this seems quite useless. The key to the use of an
analogy is to introduce approximations. As stated by Tam [5] this makes the use of the analogy an
intuitive procedure with a non-unique solution.

The first approximation is to assume that the listener is submerged into a uniform stagnant fluid
with pressure p0 and density r0: It is assumed that around this listener the flow can be
approximated by neglecting all the right side source terms ðq ¼ 0Þ: This defines the wave
propagation region, as opposed to the acoustical source region in which qa0: The speed of sound
c0 is identified as the speed of sound in the uniform and stagnant fluid surrounding the listener.

A further approximation is to assume that the acoustical source region is limited in space. One
would like now to obtain information about the right-hand side q from an analytical theory,
numerical simulation or experimental data. An important step is to make this approximation
within an integral formulation of the analogy. This integral formulation smoothes out random
errors in the flow description [6].

A commonly used and convenient assumption is that the feedback of the acoustic field (outside
the source region) on the flow in the source region is negligible. The discussion will be limited to
free field conditions for which the acoustical feedback is indeed quite small at low Mach numbers.
At low Mach numbers one can also neglect the effect of density fluctuations in the source term.

Additional assumptions such as the absence of external force fields (fi ¼ 0) and neglecting the
visco-thermal effects [7,8] yield the wave equation:
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where p is the acoustical pressure perturbation.
A drawback of Lighthill’s analogy is that the source region ðqa0Þ can be rather extended in

space. Realizing that sound production in an inviscid homentropic flow is determined by the
dynamics of vorticity, Powell [9] obtained an alternative to Lighthill’s formulation in which the
role of vorticity becomes explicit.

This formulation is not only useful because the region in which there is vorticity ðxa0Þ is often
much smaller than the region in which Lighthill’s source term is non-vanishing ðqa0Þ; but also
because inviscid homentropic flows at low Mach numbers are most efficiently described in terms
of vortex dynamics. When the flow is locally two dimensional, attractive point vortex (or vortex
blob) methods can be used. In some cases these point vortex models are very crude and do not
even respect momentum nor energy conservation.
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The aim of this paper is to show how different versions of the analogy behave when such
approximate flow models are used. The example of a free flow: the leapfrogging of two vortex
rings is considered, in which the dominating source term should be a quadrupole. The
implications of this analysis for experimental work on jet noise is then discussed. The sensitivity of
the sound predictions to random perturbations introduced in a simple vortex pairing flow model
[10] are investigated. A related discussion of the theory of Howe [11] is provided in another paper
[12].

2. Powell’s analogy

For low Mach numbers and compact source regions, with no external force field and neglecting
visco-thermal effects, the vortex sound analogy is written [9]:
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where x and v are respectively the vorticity and velocity.
In absence of solid boundaries, using the free space Green’s function

Gðt;xjt; yÞ ¼
dðt � t� jx� yj=c0Þ

4pjx� yj
; ð4Þ

where x is the listener’s position and y the co-ordinate in the source region, one obtains the
integral formulation [3]:
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where tn � t � jx� yj=c0 is the retarded time. For a compact source region, one can use a Taylor
expansion of the retarded time:
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Using a far field approximation [3] one finds for the first integral of Eq. (5):
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where the integrands on the right side must be evaluated at the retarded time tn0 � t � jxj=c0: It can
be shown [13–15] that, owing to the conservation of the impulse
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that applies in absence of external forces, the first term in Eq. (7) vanishes. The same algebra
applied to the second integral in Eq. (5) gives
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in which the first term on the left side vanishes, because of the conservation of the kinetic energy

T ¼ r0

Z
V

y 
 ðx � vÞ d3y; ð10Þ

in an inviscid incompressible flow approximation [13–15]. Moreover, it can be shown [3] that the
second term scales with r0M5l=jxj (where l is a typical eddy size and M is the flow Mach number)
and can be neglected at low Mach numbers. This yields the integral solution of Powell’s analogy:
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Please note that the first integrals in Eqs. (7) and (9) have simply been set equal to zero because
one knows that there are no external forces and that kinetic energy is conserved in an inviscid
incompressible flow. This occurs even if the calculation of the flow field does not respect these
conservation laws.

3. M.ohring’s analogy

M .ohring [2] derived an alternative formulation of Powell’s analogy, in which the sound
production depends on the evolution of the vorticity alone. M .ohring argued that the explicit
presence of the flow velocity in Powell’s formulation (11) might cause some difficulties when
dealing with vortex filaments or vortex sheets, on which the self-induced velocity is singular.

M .ohring’s analogy is based on the Helmholtz’s equation for inviscid and incompressible flow
[13,14]:
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and on the vectorial identity:
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Substituting ðx 
 yÞx from Eq. (13) into Powell’s analogy (11), one finds

p0ðx; tÞ ¼ �
r0

12pc2
0jxj

3

@2

@t2

Z
V

=� ½ðx 
 yÞx� y� 
 ðx � vÞjtn
0
d3yþ jxj2

Z
V

y 
 ðx � vÞjtn
0
d3y

� �
: ð14Þ

The second integral is proportional to the kinetic energy of flow (10) so that its contribution to the
sound pressure vanishes. After integration by parts, and using the Helmholtz equation (12), the
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first integral of Eq. (14) becomesZ
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and finally the M .ohring’s analogy is obtained:
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Please note that M .ohring’s analogy is obtained from Powell’s one, with the assumptions
already included in that formulation (conservation of momentum and kinetic energy), and by
imposing once more the conservation of kinetic energy in absence of viscous dissipation for an
incompressible flow. The same conclusion has been reached by Powell [16] who proved the
equivalence of the two analogies as a consequence of the conservation of kinetic energy, without
invoking any acoustical argument. It is interesting to note that other approaches lead to the
formulation of M .ohring (16) like the ‘‘contiguous method’’ [17], or methods based on the matched
asymptotic expansions [10,18]. A drawback of M .ohring’s analogy is that its source term is not
locally defined (i.e., its value is not invariant under a change of the origin of co-ordinates), while
Powell’s source r0 ðx � vÞ is locally defined, which makes its physical interpretation much easier in
terms of local sound production. Furthermore, M .ohring’s approach involves one more time
derivative than Powell’s formulation, which might induce a stronger sensitivity to errors in the
flow model.

4. Special case: sound field of a system of vortex rings

M .ohring [2] considered the situation where the vorticity is concentrated into circular vortex ring
filaments. Using the same formalism, his approach is generalized to the case of a continuous
distribution of vorticity. This allows the application of the analogy to the data obtained from
particle image velocimetry measurements (Section 5.3). A flow which has a cylindrical symmetry is
considered. The co-ordinate of an element of vorticity is given by

y ¼ z nþ r eðfÞ; ð17Þ

where n and eðfÞ are unit vectors, respectively, parallel with and perpendicular to the axis of
symmetry (Fig. 1), and z and r are respectively the axial and radial coordinates. The vorticity and
velocity are expressed by

xðr; y; zÞ ¼ oðr; zÞ n� eðfÞ;

vðr; y; zÞ ¼ uðr; zÞ nþ vðr; zÞ eðfÞ þ wðr; zÞ n� eðfÞ; ð18Þ

where x is the azimuthal component of the vorticity x and u; v and w are respectively the axial,
radial and azimuthal components of the velocity v.
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Substituting description (18) of the flow into Powell’s expression (11) yields
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(the specification of the retarded time tn0 is further left out). The same substitution into M .ohring’s
expression (16) gives
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where Q is defined by

Q ¼
Z Z

S

or2z dr dz: ð21Þ

5. Application to the leapfrogging of two vortex rings

Different levels of approximation are used below for the description of the pairing of two vortex
rings: firstly the periodic leapfrogging of thin core rings is considered (Sections 5.1 and 5.2);
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secondly, the application to an experimental description of the flow obtained by particle image
velocimetry will be briefly discussed in Section 5.3.

5.1. Two-dimensional modelling

The first model assumes that the initial axial separation between the leading and the trailing
ring d � ZL � ZT (see Fig. 2) is very small with respect to their initial radius R0; so that their
mutual induction is locally two dimensional. Moreover, the radius of the core s is assumed to be
small compared to d; so that the mutual induction of two vortex filaments is considered. The
corresponding evolution law is [2]

ZLðtÞ ¼ u0t þ
d
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pd2
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� �
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where u0 is the self-induced axial velocity of each vortex ring (assumed constant).
This very simple model neglects the vortex stretching that occurs during slip-through, and

whose primary effect is to modulate the self-induced velocity of each ring. The self-induced
velocity of a circular vortex ring of radius R; core radius s and evenly distributed vorticity over its
core is [13–15]:

U ¼
G

4pR
log

8R

s
�

1

4

� �
; ð23Þ

where G is the circulation of the vortex.
The effect of stretching is not important for small initial separation d=R0 between the vortex

rings. This is apparent in Fig. 3 which shows that the trajectory of the cores is similar for
d=R0 ¼ 0:1 using the two-dimensional model (22) and the three-dimensional model (40) that will

ARTICLE IN PRESS

Fig. 2. Initial positions of the leading ring ðZL;RLÞ and of the trailing ring ðZT ;RT Þ:

C. Schram, A. Hirschberg / Journal of Sound and Vibration 266 (2003) 1079–1098 1085



be introduced in the next section (that takes into account vortex stretching). The difference
becomes significant for d=R0X0:3: One observes a flattening of the trajectory calculated using the
more realistic three-dimensional model (Fig. 3). A consequence of the absence of variation in the
self-induced velocity in the model is that the impulse and kinetic energy of the vortex system are
not conserved. This is verified by substitution of Eq. (22) in definitions (8) and (10):
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0 1þ

d2

4R2
0

sin2 Gt

pd2
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; ð24Þ
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One sees that the impulse P contains a fluctuating component, scaling with d2=R2
0 and which is

probably small in the asymptotic case R0bd considered. This is illustrated in Fig. 4 for two values
of the initial separation (d=R0 ¼ 0:1 and 0.3), where the impulse is normalized by the quantity
2pr0GR2

0 to highlight the relative importance of the fluctuating component. Given the high
acoustic efficiency of the dipolar radiation associated with a variation of impulse (see Eq. (7)), this
small term alters the prediction of the radiated sound field.
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The evolution of the kinetic energy T (normalized by 2pr0Gð2R2
0u0 � GR0=2pÞ; Fig. 5) confirms

the shortcoming of the simplified model, in a more crucial way: in addition to an harmonically
fluctuating component, one can observe an unrealistic term, with an amplitude increasing linearly
with time. As time increases the model failure becomes more dramatic. This secular term could
come from the singularity of the velocity field at the location of the filament that has not been
taken into account in the calculation of the kinetic energy (25). A correct treatment of the
singularity is provided by Lamb [15] and Saffman [14].

Substituting the vortex evolution (22) into Powell’s formulation (19) gives
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in which the presence of a secular term invalidates the result. Applying the same algebra,
M .ohring’s analogy (20) gives
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and once again a secular term appears.
Clearly, the direct application of both Powell and M .ohring analogies in their original forms

(respectively Eqs. (19) and (20)) to predict the sound radiated by the leapfrogging of two vortex
rings as described by the planar flow model (22) is a failure.

These results show also that the singularity of the velocity field at the vortex filament corrupts
the sound predicted by M .ohring’s analogy (20) even if the velocity does not appear explicitly in
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the source term. The secular term in the sound predicted is related to the one that appears in the
kinetic energy (25).

M .ohring [2] found a way to compensate for such a weakness in the description of the flow by
imposing one more time the conservation of the kinetic energy. This compensates the effect of the
actual non-conservative character of the flow model. It will be shown below that the same
derivation can be implemented into Powell’s analogy, leading to the same formulation.

Using Lamb’s results [15] and assuming that the total impulse of the flow is constant, one can
express the first time derivative of M .ohring’s source integral (21) as a function of the kinetic
energy:

dQ
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¼

T
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þ 3

Z Z
S

ovrz dr dz: ð28Þ

The axial position of the vortex centroid can be defined as
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and injecting the flow model (22) into this definition shows that z0Cu0t in the asymptotic limit
d5R0 considered. Assuming the conservation of the impulse, one hasZ Z
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so that Eq. (28) can be rewritten as
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Although not explicitly specified by M .ohring [2], this last expression is useful since it allows one to
remove the presence of the mean convection velocity u0 in the sound prediction (27). The sound
production should theoretically not be affected by the value of the mean axial velocity of the
vortex system. One finds
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þ
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and imposing the conservation of the kinetic energy, one finally obtains

d3Q

dt3
¼ �

3G4R0

p3d4
cos

2Gt

pd2

� �
: ð33Þ

M .ohring’s result [2] is finally obtained by substitution of the last expression in Eq. (20):
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The sound prediction (34) is compared in Fig. 6 to the prediction obtained by straightforward
application of definition (20) using the three-dimensional leapfrogging model that will be
presented in the next section, which respects the conservation of both the impulse and kinetic
energy. It can be seen that in spite of the effective non-conservation of these quantities by the two-
dimensional flow model, an accurate prediction is obtained.
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The same methodology can be followed within the framework of Powell’s analogy, observing
that

d
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Hence, subtracting the term T=ð2pr0Þ x 
 ðnn� IÞ 
 x from Eq. (37), and subtracting the term
T=ð2pr0Þ from Eq. (28), both Powell’s and M .ohring’s analogies (19) and (20) lead to the same
expression
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Finally, following the approach of M .ohring, one can subtract the axial co-ordinate of the vortex
centroid z0 (29) to the co-ordinate of each element of vorticity (which is correct as far as the
impulse is conserved), and obtain
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This is called the conservative formulation of the Powell–M .ohring analogy.
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It will now be shown how the original formulations of Powell (19), M .ohring (20) and the
conservative forms (38) and (39) behave when applied to a model of vortex leapfrogging that
respects the flow invariants, but is perturbed by noise.

5.2. Three-dimensional modelling

In this more realistic vortex pairing model, the vortex core radius s is still assumed to be small
compared to the initial separation d between the vortices, i.e., the interaction of vortex filaments is
again considered. The distance d is, however, no longer small compared to the initial radius R0 of
the vortex rings. Vortex stretching is therefore taken into account by varying the core radius s to
maintain the volume of each ring constant [14]. It is further assumed that there is a uniform
distribution of the vorticity in the core of the filament. Distortion of the vortex core is neglected.
This model has been successfully used by Kambe and Minota [18] to predict the sound produced
by the leapfrogging of two vortex rings.

The Biot–Savart induction is integrated over the whole rings, and vortex stretching is taken into
account in the evaluation of the self-induced velocity of each ring [18]:

dZi

dt
¼

1

Ri

@C
@Ri

þ
Gi

4pRi

log
8Ri

si

� �
�

1

4

� �
;

dRi

dt
¼ �

1

Ri

@C
@Zi

;

ds2
i Ri

dt
¼ 0;

8>>>>>>><
>>>>>>>:

ð40Þ

where the stream function associated with the vortex filament j; and evaluated at the vortex
filament i is [15,19]:

C ¼
Gj

2p

ffiffiffiffiffiffiffiffiffiffi
RiRj

p 2

kij

� kij

� �
KðkijÞ �

2

kij

EðkijÞ
� �

; ð41Þ

with

kij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4RiRj

ðZi � ZjÞ
2 þ ðRi þ RjÞ

2

s
; ð42Þ

where KðkÞ and EðkÞ are, respectively, the complete elliptic integrals of first and second kind. It is
noteworthy that the system of equations (40) has two integrals of motion expressing the
conservation of linear momentum and energy.

The solutions obtained using the two-dimensional model of vortex pairing (22) and the three-
dimensional model (40) can be compared in Fig. 3, illustrating the locus of the vortex cores for
two initial distances d between the rings. It can be seen that the trajectories of the vortex filaments
are quite similar for d=R0 ¼ 0:1; while the two-dimensional model (22) gave an unrealistic path
for d=R0X0:3:

5.2.1. Influence of random perturbations on sound prediction
A major concern is the robustness of the sound prediction when the analogies are applied to a

flow data contaminated by errors, inherent to a measurement technique or a numerical method.
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The key idea of this section is to explore the sensitivity of the predicted sound field to
perturbations added to the solution of the flow field obtained using the leapfrogging model (40).
Since the conservation of the impulse and kinetic energy are respected by this model, it will be
possible to evaluate the effect of the perturbations on these flow invariants. Then, on the basis of
the previous discussions about the successive assumptions that are involved in the different
formulations of vortex sound theory, their respective robustness will be evaluated and related to
the flow invariants.

The random errors come from the measurement uncertainty and concern the vortex ring
characteristics (co-ordinates of the cores, circulations). The parameters of the vortex rings have
been defined on the basis of the particle image velocimetry measurements discussed in another
paper [20]. Vortex pairing in a harmonically excited free jet is considered. It has been seen that the
initial spacing between the vortices is half the initial diameter, and the initial core size is about
one-tenth of the initial ring diameter. The circulation of each vortex is about 0:55U0D; where D is
the diameter of the nozzle and U0 the mean flow velocity at the nozzle exit. The trajectory of the
vortices has been integrated over 100 points covering one cycle (Fig. 7). As it can be verified from
Figs. 8 and 9, the momentum conservation is accurately respected but fluctuations of 1% in the
kinetic energy are observed. Hence without the use of the analogy of Powell or M .ohring (Fig. 10)
this model could not provide a correct prediction of the sound production by leapfrogging.
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Random (Gaussian) noise has been added to the vortex ring core co-ordinates as a first step,
and to their circulation as a second step. The absolute root-mean square amplitudes of the noise
added to the co-ordinates and circulations are, respectively, 10�5 and 10�4; and the corresponding
relative amplitudes are 0.002% and 0.02%. Please note that the perturbations have been added
independently to each of the axial and radial co-ordinates of each vortex and to their individual
circulations .

In what follows, the sensitivity of a quantity X to the addition of noise will be evaluated
through the difference dX between its values for the perturbed and the unperturbed cases:

dX ¼ Xperturbed � Xunperturbed : ð43Þ

The effect of the added noise on the flow invariants is indicated in Figs. 11–14. It is difficult to
formulate conclusions from comparison of these figures, since the amplitudes of the perturbations
of the co-ordinates and kinetic energy are not identical. Nevertheless, it appears clearly that
perturbing the co-ordinates influences mostly the kinetic energy and leaves the impulse relatively
unaffected. Adding noise to the circulation has the inverse effect.

The effect of the added noise is significant when considering the sound prediction (Figs. 15 and
16). It can be seen from Fig. 15 that applying the direct formulations of Powell and M .ohring to
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the perturbed co-ordinates case, the variation of the sound pressure dp0 exhibits a scatter as large
as the sound pressure p0 itself.

Fig. 16 shows that Powell’s analogy performs much better when one considers the perturbed
circulation case. The additional time derivative required in M .ohring’s formulation explains this
result.
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Fig. 13. Effect of 10�4 circulation perturbation on impulse (8) (initial axial separation d=R0 ¼ 1).
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A somewhat surprising result is that M .ohring’s formulation (20) produces slightly less scatter
than Powell’s equation (19) when perturbation of the co-ordinates is considered, in spite of its
additional time derivative. This robustness might be a consequence of the additional assumption
of conservation of the kinetic energy that is incorporated in M .ohring’s analogy. In the case of the
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two-dimensional model of leapfrogging (Section 5.1) the circulation was conserved but an error
was introduced in the co-ordinates. It was also observed in that case that M .ohring’s approach
performed well.

Finally, Fig. 17 shows that the scatter of dp0 calculated using the conservative formulation (39)
is about 20 times smaller that what was obtained using Powell’s analogy for the perturbed
circulation case. The scatter is larger for the perturbed co-ordinates case, but remains still about
30 times smaller that using M .ohring’s and Powell’s analogies. This success is due to the fact that
an additional time momentum and energy conservation by using Lamb’s [15] equation (31) has
been imposed.

5.3. Experimental description of vortex pairing measured by PIV

Finally, the different forms of the acoustical source term (21), (28) and (31) have been
calculated from experimental data obtained in an acoustically excited subsonic jet using the
particle image velocimetry (PIV) measurement technique. The jet outlet velocity is U0 ¼ 5 m=s
and the nozzle outlet diameter D ¼ 0:041 m: The details of the experimental arrangement
and of the procedure used to process the data are indicated in another paper [20]. A typical
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Fig. 18. Sample vorticity field obtained using particle image velocimetry in an acoustically excited subsonic free jet.
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vorticity field obtained from the PIV measurements is shown in Fig. 18, where the leading
and trailing vortices are, respectively, designated by L and T and the merged ring is indicated
by M. We use series of 32 of such measurements distributed over two excitation periods, obtained
by means of a stroboscopic method [21]. Fig. 19 shows the acoustical source term (21) that
has been calculated on the basis of the experimental data. It can be anticipated that the calculation
of the subsequent three time derivatives that are required in Eq. (20) will be spoiled by the
measurement noise. The first derivative of the acoustic source term (28) that is shown in Fig. 20
presents also some scatter, but its order of magnitude is much smaller. When using formulation
(31), the scatter is even more reduced. Finally, when the kinetic energy term T=2pr0 is sub-
tracted from Eq. (31) anticipating the time derivation in Eq. (39), the scatter is again reduced. This
demonstrates the effectiveness of formulation (39) regarding the robustness of the prediction
using a description of the flow that is noisy and/or does not respect exactly the conservation of
momentum and kinetic energy. The successive corrections that have been brought seem to
compensate for the inaccuracies that are inherent to the experimental description of the flow
field.
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6. Conclusions

An explicit description of the steps used to obtain a useful prediction of the aero-acoustic sound
field from simplified models of the flow at low Mach numbers has been provided. It has been
argued that the analogies of Lighthill [4,6], Powell [9] and M .ohring [2] provide explicit expressions
for the contributions of various physical phenomena to sound radiation. This allows the
correction of the prediction by imposing conservation of momentum or energy even when the flow
model does not respect these fundamentals laws.

Lighthill’s analogy provides a prediction of a quadrupole radiation in free turbulence by
suppressing the monopole and dipole terms, which corresponds to the reinforcement of the laws
of mass and momentum conservation. Powell’s vortex sound theory (11) starts from Lighthill’s
approach followed by an additional use of the laws of momentum and energy conservation.
M .ohring’s vortex sound analogy (16) is derived from Powell’s formulation using Helmholtz’s
equation and assuming once more the conservation of energy.

When the original approaches of Powell and M .ohring are applied to a two-dimensional model
for ring vortex pairing, an unrealistic solution is obtained. This failure is related to the non-
conservation of the momentum and kinetic energy (and in particular to the secular evolution of
the latter). Nevertheless, a reasonable prediction of the sound production is obtained when the
assumptions of conservation of these invariants are reiterated in the derivation of (32).

Following this concept due to M.ohring [2], two conservative formulations (38) and (39) have been
derived for axisymmetrical flows by reiterating the hypotheses of conservation of momentum and energy.

The sensitivity of the vortex sound analogy to noise perturbing the flow model has been
investigated. A three-dimensional (axisymmetric) flow model that takes into account vortex
stretching but no core distortion provides the reference flow evolution in which the momentum
and energy are conserved. The approach of M .ohring has the drawback to involve a third time
derivative, while Powell only needs a second time derivative. Results show that Powell’s original
formulation (19) provides indeed better results when the ring circulation is perturbed (which
affects mostly the conservation of impulse). However, M .ohring’s formulation (20) performs
slightly better than Powell’s formulation (19) when the ring co-ordinates are perturbed (which has
the larger effect on the kinetic energy conservation). The additional energy conservation
assumption that is incorporated into M .ohring’s analogy explains this result.

The application of the conservative form (39) to the perturbed flow cases reduces the scatter in
the sound prediction. In the analysis of the vortex pairing model this scatter is about 20–30 times
smaller compared to the scatter in the results of the original formulations of M .ohring and Powell.

Finally, the different formulations have been compared using experimental PIV data of vortex
pairing in a subsonic free jet. The results confirm the better performance of formulation (31), in
particular when kinetic energy conservation is reinforced an additional time.
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