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1. Introduction

The main advantage of the spectral formulation given here as the spectral element method
(SEM) is that the element dynamic stiffness is computed from the exact analytical solution in the
frequency domain. A spectral frame element consists of a combination of a bar element, which is
used for axial vibrations, a shaft element, which is used for torsional vibrations, and a beam
element, which is used for flexural vibrations. Thus, using the SEM formulations helps to
calculate the kinetic energy in frame elements in an exact form. Energy methods are gaining
widespread applications related to dynamic analyses of structures, especially at higher frequencies.
The statistical energy analysis (SEA) is one of the methods gaining increasing attention for
dynamic modelling of structural-acoustic systems in medium and high frequencies. Thus, energy
calculations could be used, for example, for the estimation of coupling loss factors (CLF) used in
SEA, which are considered the critical factors in SEA modelling [1]. Another application could be
the use of these energy formulations in the Aybrid element method, lately presented by Langley
and Bremner [2]. The other significant utilization of the presented formulations lies in its use for
the estimation of energy using measured displacements. Normally, energy is calculated using
translation-only displacements, due to the well-known difficulties encountered in measuring
rotational degrees of freedom (d.o.f.). Through mathematical manipulations of the spectral
equation describing wave propagation, rotational d.o.f.s can be found and used in total energy
calculation in the waveguide. Using the SEM together with the rotational d.o.f.s, Structural
Intensity (SI) estimations can also be conducted exactly. The SI estimations found in the literature
generally consider the farfield hypothesis but, with the SEM and the rotational d.o.f.s, the near
field can also be taken into account.
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2. Truss-type structures

Formulations for the calculation of the kinetic energy in rod and beam elements are given
below. The simple Bernoulli-Euler theory and the higher order Timoshenko theory are used. The
authors have already used these formulations for the estimation of CLFs for SEA [4], where the
energies are calculated as time averaged.

2.1. Kinetic energy in rods

The time-averaged kinetic energy due to the propagation of longitudinal waves in rod elements
is calculated as

1 L
CEE> =3 [ paciiy ax (n

where { EX >, is the time-averaged kinetic energy, p is the mass density, 4 is the cross-section area,
L is the element length and # is the velocity along the rod. It is straightforward to show that the
time-averaged velocity can be written as
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where the * represents the complex conjugate, i=+/—1, w is the frequency component and
t(x) is the complex amplitude of the displacement along the rod. The velocity at any arbitrary
point x along the rod can be calculated through the shape functions as #(x) = §;(x)it; + g>(x)it,
and thus,

CER Y, =10’ pARYER ) + ERin* + Egind, + Ex' o)}, (3)

where @; and i, are the nodal displacements of the rod spectral element, and the terms used are
defined as

L L L L
EN = / 019, dx, EZ = / dg,dx, ER = / g19,dx, EX = / 929, dx. 4)
0 0 0 0

Note that EX = E3'. For shaft elements, the same formulations can be used by exchanging
pA with pJ, with J defined as the polar moment of inertia and #&(x) as the angular
displacement along the shaft. The shape functions for the rod spectral element are given

by [3]
gl(x) _ (e—ikx _ e_ik(2L_X))/A1, gz(x) — _(e—ik(L+x) + C_ik(L_x))/Al, (5)

where A; = 1 — e 12kL,
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Solving the above integrals for the case of no hysteretic damping results in the following
expressions:
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where A, = (—2ke?*L 4 kel*L 4 k).

In the case of hysteretic damping Young’s modulus is complex E— E(1 + in) with y defined as
the loss factor and, thus, the wave number k is a complex quantity and this should be taken into
account when solving the integral equations. Defining k = « + if, E}' is given below. The other
expressions are not demonstrated but they can be calculated in the same manner:

1 i(—ioce(iz“L) — peL@r+h) | oCBLIR iae(2L(2[;‘+ioz)))
2 (afel2rl) — o feCL(2e+p) — gReChL) 4 gfeL+im)y (7)
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2.2. Kinetic energy in throw-off rod elements

For rod throw-off element (single-noded element), the solution is a single-coefficient as waves
propagate in only one direction, that is,

i(x) = Ae *~, (8)
Using this solution, the shape function of this single-noded element is given by g;(x) = e™**.
Following the same methodology for the 2-noded rod element, the time-averaged kinetic energy

for the throw-off element is then given by
<E§l-nozled >t = %/ pA<u2>t dx = %wszER{(E}zll nodu[|ul|2} (9)
0

with the term E}  defined as

1-noded
1 s
ERl-nOl[L’d = A glgl dx (10)

Observe that the mathematical evaluation of this expression is possible, nevertheless, it depends

on whether the dynamic system is hysteretically damped or not. In a damped system the wave

number becomes complex. Defining k = o+ if, for undamped system =0 and thus E}Qll o
tends to infinity.

For hysteretically damped systems f#0 and thus the term E}QLW‘I is calculated as
. 2px
e

EN = e dx = — +1 lim —. 11
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Observe that the convergence of this integral depends on the values given to f, nevertheless, f

always has values less than «, as the hysteretic damping # is implicit in Young’s modulus, i.e.,
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E— E(1 + in). A material with large damping factor 5, say Lexan, has values as large as 0.01. The

important characteristic that plays a role in solving this integral is that f has always negative

values and thus the integral quantity is finally given by
11 _ 1
Rl-nude(/ - ﬁ’

which is a positive quantity as f§ is always a negative quantity, and thus the time-averaged kinetic
energy in a throw-off rod element can be calculated as

< led>t 4(0 PA“R{ﬁWﬂ } (13)

(12)

2.3. Kinetic energy in Bernoulli-Euler beams

The time-averaged kinetic energy in Bernoulli-Euler beams is only due to the flexural
displacements and can be calculated as (having the velocity along the beam ©v)

L
CEE> =dpa [ iy, (14)
The velocity along the beam can be calculated by using shape functions of the form
g1(x) rnrn 0 0 M (x)
g2(x) 1{0 0 r o h(x) 1
. =— =— [rl{h(x)}, (15)
g3(x) A3 ry r 0 0 h3(x) A3
Q4(X) 0 0 —r —n h4(x)

where 43 = —r} + 13 and the terms of the shape functions are not shown here but can be found in
Refs. [3-5]. The time-averaged kinetic energy is then given by

CEF >, =10t paR {Eioi + ERei ) + EFnds + Ef'oi )
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with the terms E defined by

ij b e
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or in the compact form
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The terms of matrix [/;] are given in Appendix A, noting that the terms E obey the following
properties: Ej = Ej, Vi#j; E¥ = —Ef; Ey =Ej; Ey=—E} E}‘;‘ = E%.

2.4. Kinetic energy in Timoshenko beams

The time-averaged kinetic energy in Timoshenko beams is due to the translational
displacements and rotational inertia, and it is given by

L L
CEEY =lpd [ <@y dxsdo [ ¢4, ax
0 0
Different shape functions are used for the different d.o.f.s and can be found in Refs. [3-5]. The
time-averaged kinetic energy is given by
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The different terms of the matrices [N,(x)] and [N(x)] can be found in Refs. [3-5], but the elements
of [I3] and [I4] are given in Appendix B, noting the following properties: E) = EJ’, Vi#j; E ”‘7’

qub’ Vi £]; and E%% — _E};4v, E1333b — E};lb, El334b — —”EII;ZL, E§4v _ E12;2L, E§3¢ _ —E};(b, E;;(b —
E1131¢, E1334¢ = _E1192¢, E;‘;‘d’ = E1292¢. All the terms E}, are complex. When using a hysteretic
damping, the shear and Young’s modulus become complex quantities and should be taken into
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account when solving for the analytical expressions of these functions. The use of mathematical
manipulation software as Maple® or Mathematica® is advised to obtain the analytical
expressions. Observe that the same formulations given above can be used with FEA shape
functions, except that these shape functions are real.

3. Determining rotational d.o.f.s

Dynamists, usually, have no difficulties in measuring flexural d.o.f.s on truss-type members.
Longitudinal d.o.f.s are somehow harder to measure but still different techniques could be used,
as, for example, taking two measurements with a Laser Doppler Vibrometer (LDV) with two
different angles and calculating the longitudinal component using ordinary geometry laws, or by
using accelerometers glued on their side on the surface of the waveguide, or simply using tri-axial
accelerometers. Nevertheless, on the other hand, measuring rotational d.o.f.s is not an easy task.
There exist special rotational accelerometers to accomplish the job but they might have cost
restrictions, not forgetting the fact that non-contact measurements (LDV techniques) are
normally preferred, especially on lightweight structures, where accelerometer weight and cabling
might affect the structure dynamics.

When energy is calculated using flexural-only measured data, energy representation is not exact,
as rotational d.o.f.s are not included. These rotational d.o.f.s (¢(x)) can still be obtained in an
exact form using flexural data, and then used to estimate the total energy. The equations given as
follows describe the methodology. Observe that these formulations depend upon the beam
waveguide theory adopted, whether it is Bernoulli-Euler where ¢(x) = d6/dx, or Timoshenko,
where 0(x) and ¢(x) are not related by one equation but instead described by two different
equations. For a beam waveguide of length L, and using Bernoulli—Euler theory, the displacement
can be described by the following equation, which is an exact solution to the Bernoulli-Euler
equation of motion of the waveguide:

B(x) = Ae™* + Be ™™ + Ce™ + D, (22)
Consider a straight beam with length L with four measurements of flexural displacements taken

at four points along the beam [x], x», X3, x4]. The frequency-dependent constants A, B, C ¢ D are
then calculated for each frequency component using the equation

e—i/{xl e—kxl eikxl ekxl A 01 (X)

efikxz ekag eikxz ekxz B B By (X) (23)
e ikxs  gkxs  elkxvs gk C )&

efikx4 e —kxy4 eik,m ekx4 D 1’54 (X )

These constants are then used for the calculation of the rotational d.o.fs q’A)(x), according to the
beam theory adopted (in this case, ¢(x) = do/dx). It should be noted that a minimum of four
measurements is needed for every span of straight beam with different geometrical or material
properties. Normally, more points are measured, which implies that the super-determined system
of equations is to be solved by a least-squares technique. It may be important to mention that
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Fig. 1. Total kinetic energy in L-shaped beam: - - - - - , without rotational d.o.f.; ——, with rotational d.o.f.

using more points implies higher numerical cost, as a matrix inversion would be calculated for
every frequency component. If the Timoshenko theory is adopted, the rotational d.o.f.s are
then calculated using equations different from those given above. To show the importance
of rotational d.o.f.s in dynamic analysis, an L-shaped beam having the following characteristics
is used: Ly = Ly = 1m, E=2.1x 10"'N/m? p = 7800kg/m>, 4 = 5.836 x 10~>m?. The struc-
ture is excited transversally at beam 1 and the total kinetic energy is calculated at 21 points
along the L-shaped beam for two cases, that is, with and without the ¢(x) d.o.f.s. These
calculations were conducted using the aforementioned spectral energy formulations. The results
are shown in Fig. 1.

4. Conclusions

Formulations have been presented for exactly calculating kinetic energy in truss-type structures.
Rod, Bernoulli-Euler beam and Timoshenko beam are covered. A methodology is also presented
for obtaining the rotational degrees of freedom using measured transverse degrees of freedom.
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Appendix A. Bernoulli-Euler beam
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Appendix B. Timoshenko beam
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