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Abstract

Total potential energy of non-symmetric thin-walled beam-columns in the general form is presented by
introducing the displacement field based on semitangential rotations and deriving transformation equations
between displacement and force parameters defined at the arbitrary axis and the centroid-shear center axis,
respectively. Next, governing equations and force—deformation relations are derived from the total
potential energy for a shear-deformable, uniform beam element and a system of linear eigenproblem with
non-symmetric matrices is constructed based on 14 displacement parameters. And then explicit expressions
for displacement parameters are derived and exact dynamic stiffness matrices are determined using force—
deformatin relationships. In addition, the modified numerical method to eliminate multiple zero
eigenvalues and to evaluate the exact static stiffness matrix is developed for spatial stability analysis.
Finally, in order to demonstrate the validity and the accuracy of this study, the spatially coupled natural
frequencies and buckling loads are evaluated and compared with analytical solutions or results analyzed by
thin-walled beam elements and ABAQUS’s shell elements.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, numerical methods that enable one to evaluate an exact dynamic element stiffness
matrix for a beam element were proposed by many authors. Most of those studies adopted an
analytical method, which exactly derived explicit expressions of displacement functions for
governing equations. Friberg [1] evaluated an exact dynamic stiffness using Vlasov’s equation for
coupled vibration of beams. Banerjee [2] and Banerjee and Fisher [3] derived explicit expressions
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for the coupled bending-torsional dynamic stiffness matrix of a uniform beam element. Leung [4]
investigated the characteristic curves for lateral buckling of uniform beams under the constant
bending moment using the dynamic stiffness. Afterwards, many researchers [5-8] derived the
coupled bending-torsional dynamic stiffness for Timoshenko beam-column elements but did not
account for shear-deformation effects due to restrained warping torsion of the non-symmetric
cross-section. As Banerjee [9] pointed out, it is evident that those procedures can be easily
developed by the help of symbolic computation and are very effective in saving the computing
time due to the closed-form solution. These analytical methods, however, are sometimes
inefficient because analytical operations in solving a system of simultaneous ordinary differential
equations with many variables are so complex that those method may fail to yield the exact
displacement functions.

On the other hand, Friberg [10] proposed the new numerical scheme based on the quadratic
eigenproblem in calculating the exact dynamic stiffness matrix of thin-walled beam-columns and
Leung and Zeng [11] presented a generalized formulation which is believed to improve Friberg’s
method. This method yields numerically exact displacement functions via a generalized linear
eigenproblem with complex eigenvalues. But this method appears not to be general enough to
solve the higher order simultaneous differential equation and may not give an exact static stiffness
matrix owing to existence of multiple zero eigenvalues for a generalized eigenproblem.

The primary aim of the present paper is to develop an improved numerical procedure
evaluating an exact dynamic and static stiffness matrix for the spatial free vibration and stability
analysis of uniform and shear-deformable beams with non-symmetric thin-walled cross-sections.
The important points presented are summarized as follows:

(1) Firstly, an improved theory considering the effects of shear deformations is developed for free
vibration and stability of thin-walled beam-columns having non-symmetric cross-sections.

(2) Secondly, equations of motion and force—deformation relations are derived from the total
potential energy of non-symmetric and shear-deformable thin-walled beams subjected to
initial stress resultants based on semitangential rotations and semitangential moments [12].

(3) Thirdly, higher order simultaneous ordinary differential equations are transformed into the
first order simultaneous differential equations by introducing 14 displacement parameters so
that a generalized linear eigenvalue problem is obtained with non-symmetric matrices.
Particularly in case of static problems, the efficient method of eliminate multiple zero
eigenvalues for a generalized linear eigenproblem is devised by choosing 14 displacement
parameters different from those of dynamic problems.

(4) And then using the solutions of the eigenproblem allowing the complex eigenvalues and
eigenvectors, displacement functions of 14 displacement parameters are exactly derived with
respect to nodal displacements.

(5) Finally, nodal forces are exactly evaluated using member force—deformation relationships and
14 x 14 dynamic and static element stiffness matrices are determined, where the Wittrick—
Williams algorithm [13] is used to yield the natural frequencies.

(6) In order to demonstrate the validity and the accuracy of this procedure, the natural
frequencies and buckling loads are evaluated and compared with analytical solutions or
results of the analysis using beam elements and ABAQUS’s shell elements [14] for the thin-
walled straight beam structures.



K. Moon-Young et al. | Journal of Sound and Vibration 267 (2003) 29-55 31

2. An improved thin-walled beam-column theory

Displacement measures for a thin-walled cross-section with right-handed co-ordinate system
observed from the positive x;-axis are shown in Fig. 1. The xj-axis is the member axis defined at
an arbitrary point in the cross-section. x», x3 axes are perpendicular to x; axis and these two axes
need not be the principal inertia axes; Uy, U,, U. are rigid-body translations of the cross-section in
the xi, x, and x5 direction, respectively; w;, w,, w3 are rigid-body rotations about the x;-, x,- and
x3-axis, respectively; fis a parameter defining warping of the cross-section.

In this study, the right-body rotations w;, w;, w3 are assumed as the semitangential rotations
introduced by Argyris et al. [15,16]. The semitangential rotations have the commutative property
independent of the (et al.) rotation sequence in the space, so the potential energy can be uniquely
defined in the geometrically non-linear and stability analyses. Referring to the previous study by
Kim and Kim [12], the displacement field including first and second order terms of the finite
semitangential rotation may be written as

Ui(x1, x2, x3) = Uy + 02x3 — 03x2 + [, (la)
Us(x1, x2, x3) = Uy, — w1x3, (1b)
Us(x1, x2, x3) = Uz + 01x2 (Ic)
and
U (x1, X2, x3) = Yo% + 0103x3], (2a)
Uy (x1, X2, x3) = J[—(0F + 03)s: + wrw3x3], (2b)
Us(x1, %2, X3) = Yonwsxs — (@] + 03)xs), (2¢)

S: Shear center
C: Centroid

Fig. 1. Displacement parameters at the arbitrarily chosen axis.
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where ¢ is the normalized warping function defined at the origin and satisfies a following relation
for the warping function ¢° at the shear center

¢ =" — x5& + x58. 3)

The three co-ordinate systems are used in this study (see Fig. 1). The (x,,x3)-axis is the
arbitrarily chosen rectangular axis in the cross-section; (x§, x$)- and (x3, xj)-axis are defined at
the centroid and the shear center, respectively, and coinciding with the direction of principal axes;
¢, and ¢3 are co-ordinates of the centroid in (x,, x3) co-ordinate system; e, and ez are co-ordinates
of the shear center in (x5, x§) co-ordinate system; o is the angle between x§ and x, axis. The
transformation between three co-ordinates systems is expressed as

X5 = x5+ e, (4a)
X§ = x3 + e3, (4b)
and
Xy = X5 €os o — X§ sin o + ¢, (5¢)
X3 = X5 cos o — x5 sin o + c3. (5d)

Now, we define the cross-sectional constants defined at the arbitrary axis and the centroid-shear
center, as follows:

SzI/X3dA:C3A, S3:/X2dA:C2A, S¢:/¢d1‘1:0,
4 4 4
b= [erdd = [Pdd b= [
4 4 4
Ly = /x3¢ d4, Iy :/x2¢ dd4, I, :/¢>2 d4 (6)
A 4 A
and
ng/xgdAzo, Sg’:/xﬁdA:O, j):/qbsdA:O,
4 4 4
[ = / (x> dA =0, I§= / (x5 dA =0, I = / x$x§ d4 = 0,
4 4 A
5 = /x§<[>s d4=0, Ij,= / X5¢°d4 =0, I = /(df)z d4 =0, (7)
4 4 4
where the cross-sectional constants defined at (x5, x§) and (x5, x3) co-ordinate system are
expressed using the right superscript ‘c’ and ‘s’, respectively. These superscripts are also used for
the definition of displacement parameters and stress resultants (see Fig. 2).
The transformation equations for the cross-sectional constants between three co-ordinate

systems may be referred to the previous study by Kim and Kim [12]. For later use, &, and &3
denote the distance from the origin of (x», x3)-axis to the shear center in the direction of x$- and
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(a) C: Centroid (b) C: Centroid

Fig. 2. Displacement parameters and stress resultants at the centroid-shear center: (a) Displacement parameters and
(b) stress resultants.

x§-axis, respectively, and are obtained as following:

&y = ¢y cos a+ ¢3 sin o + e, (8a)

&3 = —cp sin o+ ¢3 cos o + e3. (8b)

On the other hand, assuming that the in-plane strain measures are negligible according to the
assumption of rigid deformation with respect to in-plane, stress resultants can be defined at the
arbitrary axis and the centroid-shear center, respectively, as follows:

Fl—/fn d4, Fz—/flz d4, F3—/T13 d4,
A A A

M, Z/(T13X2—112X3) d4, MzZ/T11X3 d4, M3=—/T11X2 d4,
4 4 4

M, Z/T11<l5 d4, MR:/<T12%+T3%> d4, MPZ/TM(X%'X%) d4 )
A y A

ox 2 ox 3

and

FC

—

A A A

M = .5 —1i,x5) dA, M5 = [ tx5d4, M= — | t;1x5dA4,
1 13 T T 2 y 3 3 2

A
s s s s a¢2 s 8¢S
= [ aa, ati= [ (504G oa
My = [ et + ) da, (1o
A

where Fj, F, and F3 are an axial force and shear forces, respectively; M, and M3 are bending
moments with respect to x,- and Xxs-axis, respectively; M; is the total twisting moments
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with respect to the x;-axis; Mg and My are restrained (non-uniform) torsional moment and
the bimoment about the x;-axis, respectively; Mp is a stress resultant known as the Wagner
effect and its detailed calculation procedure is given in the previous study of Kim
and Kim [12].

In order to consistently obtain force—deformation relationships considering shear-deforma-
tion effects, transformation equations between displacement parameters and stress resultants
defined at the arbitrary center (Fig. 1) and the centroid-shear center (Fig.2), respectively,
should be derived for non-symmetric thin-walled frame member. For this purpose, two force
and displacement vectors composed of stress resultants and displacement parameters are
defined by

F' = (F\, Fy, Fs, My, My, M3, My)", (11a)

T
F = (Fi, F3, F, M3, M3, M5, M3,) (11b)

and

a T
D = <UX5 Uy, U., w1, o, w3, f> 5 (123)

i ) T
D= <U;, U, U, o, o, co§,f5> . (12b)

Here stress resultant systems at the arbitrary center and those at the centroid-shear center
Fig. 2(b), respectively, should be mechanically equivalent so that transformation equations
between two force systems can be obtained by considering (3) as follows:

Fy =F",
F, =F5 coso— Fj sin o,
F3 =F; sin o + F5 cos a,
M, = M| — F5¢3 + F3&,,
M> = — M5 sin o + M5 cos o + c3F7,
M3 = M5 cos o+ Mj sin o — o F},
My = Mj + M5E; + M5,
My = M} — F3& + F3&,. (13a—h)

Then the principle of contragredience gets
(Fa)TDa — (F\)TDs (14)

Now considering F* as a virtual force vector and invoking the equilibrium condition (13),
the resultant transformation between two displacement parameters (Figs.1 and 2(a)) is
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obtained as

Ui = Uy + 300 — cam3,

Uj = U, cos o+ U sin o0 — &y,
U! = —U, sin o+ U. cos o+ &,
W] = w1,
®§ = w7 cos o+ w3 sin o + f &y,
w§ = —w, sin o + w3 cos o + [ &3,

fi=. (15a—g)

On the other hand, referring to the study of Chang et al. [17], force-deformation relationships
in the centroid-shear center formulation are given by

= EAU¢,
= GA3(U) — ),
= GA3(UY + o5),
M{— M}y = Glow,
My = GANf* + o),
M§ = ELoS,
M§ = ELof,
M, = ELY, (16a—h)

where E is the Young’s modulus; J is the St. Venant torsion constant; G is the shear modulus; 43,
A5 and A; are the effective shear areas defined by

Lot g et G et

where

QZ:/ xst ds, Q3:/ Xt ds, Q,:/ ¢’t ds. (18a—c)
0 0 0
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Here, substituting Egs. (15) and (16) into Eq. (13) and arranging leads to
F\ = EAU, + ES)0) — ES;07%,
F, = GAy(U,, — 03) + GA»(U. 4 02) + GAz () + /),
M; = ELol — ES;U. — Elyob, — ElLy f,
F5 = GA3(U. + ) + GA23(U; — w3) + GAs (0] + f),
M, = ELw) + ESyU'. — ELyo + Eby ',
M, — Mg = GJw),
Mg = GA(0| +f) + GAQr((]),) — w3) + GA3(U. + ),
My = Ely '+ ELywy — ELyol, (19a—h)
where
Ay = A5 cos® o+ A5 sin® o, Az = A cos® o + A3 sin® o,
A, = A+ A5G 4+ A58, Axz = (A5 + A3) cos o sin o,
Ay = — A5¢cos o — Ayéy sina, Az, = —A5E; sin o+ A&, cos o (20a—f1)

Here, it should be noticed that effects of the non-symmetric cross-section and shear deformations
due to shear forces and restrained warping torsion are consistently take into account.

3. Equations of motion for a thin-walled beam column

The total potential energy of thin-walled space frame member (I1) is presented as
=g+ g — Uy — Uy, (21)
where Il ., IIg, Il and II,,, are the kinetic energy, the linear elastic energy, the potential energy

due to the initial stress resultants and the potential energy corresponding to the element nodal
forces, respectively. Each terms of the total potential energy (21) may be rewritten as

I
g = —/ / Te; dA dxy, (22a)
2 LJA
Mg — / / 2y, + ) dA dxi, (22b)
LJA
_ Ly )
Hy=-w pU; d4 dx;, (22¢)
2 LJA
Mew=3 [ 110 ds (22d)

where ej;, njj and e; are the conventional linear and non-linear strain due to U;, the linear strain
due to U}, respectively, which are defined as follows:

ey = 3(Ui; + Uyy), (22f)
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N = %Ui,k Ujks (22g)

ey = YU + UY), (22h)

where the subscript ‘comma’ indicates partial differentiation with respect to the spatial co-
ordinate (x;, x5, X3).

Firstly, substituting the displacement field for the thin-walled space frame member into

Eq. (22a) and noting definition equations of stress resultants, the elastic strain energy Ilg is
reduced to the following expression:

1
I g :E/[Fl U)/C +F2(U)/) — w3) +F3(U§ + wy) + Mza)/z
L

+M3w’3+(M1—MR)a)'1+M¢f’+MR(f—|—w’l)]dx1. (23)

Finally, substituting Eq. (19) into Eq. (23) and rearranging, the elastic strain energy for non-
symmetric thin-walled space frame member considering shear-deformation effects is derived as
follows:

2

+ 2ES, ULy — 2ES; U0y — 2EL30hw'y + 2EL o [/ — 2EL 30 f

+ GAU] — 3)’ + GA3(U! + ;) + GAL(o] + /)

+2GA3(U, — 03)(U. + 2) + 2GA>/(U, — 03)() +f)

+ 2GA3,(U_§ + coz)(co’l + )] dx;. (24)

Also, the kinetic energy (I1,,), the potential energy due to the initial stress resultants (I15) and
the potential energy corresponding to the element nodal forces (I1.,,) in (21) can be obtained by
considering the displacement field, strain—displacement relations and the definition equations of
stress resultants as follows:

1
My == / [EAU” + ELo} + ELo? + GJof? + El, f7
L

1
My =§pw2 / [A(U; + U; + U2) + Ly + Loj + Loy + 1y f°
L

+ 25 Usmy — 283U w3 — 2h3myw3 + 2Ly, f

— 213¢w3f +253U,01 — 25, Uya)l] dxy, (25)
1

MG =5 / CF(U? + UP) + "HQULor + w1w;) — "FQUjo) — 103)
L
+ 0M2(CO1C()/3 — 2UJ/)CU/1 + (1)’1603) - OMg(a)lw'z + 2U£w/1 + w’lwz)
+ OMpco’l2 + OMl(a)'za)3 — 4] dxy, (26)
M. =1iUF.. (27)

The equations of motion and boundary conditions considering shear-deformation and rotary
inertia effects can be obtained by substituting Egs. (24)—(27) into Eq. (21) and invoking the
variation principle.
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In order to exactly evaluate dynamic stiffness, not only the cross-section of thin-walled beams
should be uniform but also the initial stress resultants be constant. Hence in this study, it is
assumed that the initial axial force is acted eccentrically so that axial force °F;, bending moments
OM,.% M3 are constant along the element axis, respectively, and initial torsional moment °M; are
also constant but initial shear forces and bimoment are zero. Now the equations of motion and
geometric and natural boundary conditions are obtained by variation of (21) with respect to the

seven displacement parameters as follows:

EAU! + ES,0) — ES;0fy + pw* (AU + Shawy — Syw3) = 0,

GA(U — o) + GAx(U! + wh) + GAr(wf + f7)
+ AU = "Myo] + po* (AU, — Shon) = 0,

GA3(U! + ) + GAxn(U) — o) + GAz (o) + f7)
+ R U — "M 4 pa* (AU, + S;01) = 0,

G + GA( + ') + GA(U] — ) + GA3(U! + w))
="M U = "M3U! + "Moo + por*(lowy + S3U- — S, U,) = 0,

ELw) + ESyU! — ELzo + Ehy [ — GA3(U. 4 02) — GA3(U; — @3)

— GA3 (0 + 1) + po(hws + Sy Uy — hyws + by f) = 0,

E[3(1)/3/ — ES3 U;, — E123a)’2’ — E[3(/; f” + GAz(U}/, — 603) + GA23(U_; + a)z)

+ GAx (0 +f) + po(liwy — S3Uyx — hywy — iy f) = 0,

EI¢ f” + E12¢6012/ - EI3¢60/31 - GAr((,{)ll —|-f) - GAzr(U)/) — 0)3)
— GA3/(U. + ) + p’(Ly [ + hywy — Ipw3) = 0

and
dU(0) = 6U” or Fi(o) = —FY,

3Uy(0) = U or Fy(0) = —F,
dU.(0) = U or Fs(0) = —FY,
dw1(0) = def, or Mi(0) = —M?,
Swy(0) = 6wk or My(o) = —M?,
dw3(0) = dcfy or M3(o) = —M3,

3f(0) = 0f” or My(o) = —M?,

dU(l)=0U? or Fi(l) = F},
SUW) = U? or Fy(l) = FY,
SU.(l) = 8UY or Fi(l) = FY,
So(l) = dw! or M(l) = M,
Son(l) = dwd or My(l) = M,
Sas(l) = dwf or Ms(l) = MY,

of (1) = o1 or My(l) = M,

(28a)

(28b)

(28¢)

(28d)

(28e)

(28f)

(282)

(29a, b)
(29¢,d)
(29¢, 1)
(29g,h)

(291, )
(29K, 1)

(29m, n)
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C : Centroid
S : Shear center

Fig. 3. Thin-walled beam-column element and its nodal displacements.

where superscripts ‘p” and ‘¢’ indicate end points of the member (see Fig.3) and force—
deformation relations are expressed as

Fi = EAU. + ES)o — ES; 00, (30a)

Fy = GAy (U} — @3) + GA3(U. + ;) + GAx(00] + f) + "FL U, — "Moo, (30b)
M; = ELo)y — ES3U. — ELyoh — ELy f' + 0.5 Msoy, (30c)

Fy = GA3(U. + ) + GAn(U}, — 3) + GA3( + /) + "F UL = " Mso), (30d)
M, = ELo)y + ESyU, — ELyoy + EbLy f — 0.5 Mz oy, (30e)

M = GJoy + GA(w) + ) + GA(U;, — @3) + GA3, (U, + w2)
— "My (U} — 0.5w3) — "M3(U. 4 0.50,) + " Mo, (30f)

My = El; f' + ELyw), — ELyof, (30g)

where it should be noticed that Eq.(30) contains additional effects of initial forces when
compared with Eq. (19). Also, it is evident that the equations of motion (28) constitute a set of the
second order ordinary differential equation because of coupling effects of bending-torsional
deformations and non-symmetry of the cross-section. In Sections 4 and 5, the new numerical
method to evaluate an exact dynamic and static stiffness matrix of a thin-walled beam-column
element with the non-symmetric section is developed by integrating the corresponding governing
equations exactly.

4. Exact evaluation of dynamic element stiffness matrix

Firstly, in order to transform the higher order simultaneous ordinary differential equation (28)
into simultaneous differential equations of the first order, a displacement state vector consisting of
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14 displacement parameters is defined by
d(x) =<dy, db, ds, ds, ds, dg, dy, ds, do, dyo, dy1, dyo, diz, diad"

T
=<Ux, U, Uy, U, 3, 0, U, U, 0, ), o1, o}, f, f’> : 31)

Now by rearranging Eq. (28) based on Eq. (31), the simultaneous ordinary differential equations
of the first order with constant coefficients are obtained as follows:

di = dy, (32a)
—EAdy + ESsd}, — ESyd), = po’ Ady — pa*Szds + por’ Sado, (32b)
& = di, (32¢)

—(GAy + "F))d, — GAxdy — (GAy — " Mo)d,,
= pw’ Ady — GAards + GAndig — pw*Sodiy + GAzedya, (32d)
dt = ds, (32¢)

ES3d£ — E]3dé + EI23diO + EI3¢di4 = —pa)zS3d1 + GArdy — (GA, — pco213)d5
+ GAxds + (GAzy — par*I3)dy + GAzdiy + (GAs, — por’Iy)d, (32f)
d; = ds, (32¢)
— GAxndy, — (GAs + °F))dy — (GA3, — "M3)d;,
= —GArds + pa’Ady + GAsdyy + pw*Ssdyy + GAsdyg, (32h)
dy = dho, (321)
— ESzdé + E123dé — Elzdio — E12¢di4 = pw2S2d1 — GAydy + (GAy; — pa)2]23)d5
— GAzdy — (GA; — po’b)dy — GAspdys — (GA3, — par’ hy)dis, (32))
d{l =d,, (32k)
— (GAy — "Mo)d), — (GAs, — "M3)dy — (GT + GA, + "M,)d,,

= —pw?*Sady — GAnds + p*Sydy + GAsdio + po*lody + GA,dya, (321
d's = dua, (32m)

E13¢dé — E12¢d{0 — E1¢d{4 = —GA2,4d4 + (GAzr - pa)213¢)d5
— GAsdy — (GAs, — po*hy)dy — GA,dya — (GA, — por*ly)dys, (32n)

which can be compactly expressed as
Ad' = Bd, (33a)
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where
ky i
k> ks ky
ki
ks ke k7
ki
k3 kg ko k1o
ki
A= )
ke ki ki
ki
ky ko k13 k4
ki
k7 k1> kis
ki
k1o k4 kie |
where
ki =10, ky=—EA, ky=ESy, kqs=—ES>,, ks=—GAr»—"F, k¢=—GA»p,
k7 — GAy + "My, ks = —EL, ko = ELs, ki = ELy, ki =—GA; - F,
kin=—GA3, + M3, kis=—EbL, k= —EbhLy, kis=-GJ—GA,—"M,, k=
_ " -
by —b; by
b
by —bs bs —by b7
by
—bs bs b bs by b; b
by
B =
—bs by by b bis
b
by —bs by —b11 b1z —b1y bu
by
—by —b7 b3 by bis b1s
b
i —b7 by —b1y bis —bis b1z

41

(33b)

—EI,

, (339
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where
b1 =1.0, by=pwd, by=pw’S;, by=pw’S:, bs=GAr, bs= GAn,

by = GAy, by =—GAs+ parly, by = GAyy — par’lys, big = GAy — po’ Ly,
b1y = GAs, b1y = GA3,, b1z = —GAs + pa’lh, b1y = —GAs, + par‘hy,
bis = p*ly, big = GA,, by = —GA, + pw’ly.
In order to find the general solution of Eq. (33a), the following eigenvalue problem is considered:
) AZ = BZ, (34)

where note that the matrix A is symmetric but B is non-symmetric. Hence, the eigensolution of
Eq. (34) gives the eigenvalue and eigenvector with complex numbers. In this study, in order to
resolve this problem, IMSL subroutine DGVCRG [18] is adopted so that eigensolutions of 14
pairs are calculated as follows:

(i, £), i=1,2,..,14, (35)
where
Z; = {Z1i, 22i> Z3i> Z4i> Z5i» Z6is Z7is Z8is Z9i» Z10is Z1li» Z12is Z13is Zl4ia>T~
Owing to the above eigensolution, the general solution of Eq. (33a) may be represented by the

linear combination of eigenvectors with complex exponential functions as follows:

14
d(x) =Y a,Ze"™ = X(x)a (36)
i=1

and
X(x) =[Z1"; Zye""; Z3e™Y; Zye™s Zse™; Zee'; Ze7;

A8X. A9X. AloX. AlLX. Al2X. A13X. Alax.
Zge Zoe™Y; Z1ge"y Z11eY Z10e" Z13e" Z14e™ ], (37a)

T
a=<{ay, a, as, a4, as, dg, a7, as, dy, dio, di1, A12, A3, di4) . (37b)

where X and a denote the 14 x 14 denote matrix function made up of 14 eigensolutions and the
integration constant vector, respectively.

Now, it is necessary that complex coefficient vector a is represented with respect to 14
nodal displacement components (see Fig. 3). For this purpose, the nodal displacement vector is
defined by

U, =P, UT, (38a)
U’ = (u, v*, of, w', wf, of, f">T, w=p,q, (38b)

where
U” = (Uy(0), Uy(0), 3(0), Us(0), @a(0), @1(0), f(0))", (38¢)

U = (UD), Uy(D), o3(D). U(D), (D), en(D), £(D))" (38d)
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By substituting co-ordinates of the member end (x = 0,/) into Eq. (36) and accounting for

Eq. (38), nodal displacement vector U, can be obtained as follows:

U,=Ea, (39a)
where E is easily evaluated from X(x) and the detailed expression is
i Z11 212 213 214 Z15 Z1e Z1,7 | 218 Z1,9 0 Zi10 0 Zi,11 Zn12 0 Z1,13 Z1,14 1

Z31  Z32 Z33  Z34  Z35 Z36  Z37 | Z38  Z39  Z310  Z311  Z312  Z313  Z3,14
Zs1  Zsp  Z53  Zs4  Z55  Zs6  Zs7 | Z58  Z59  Z510  Zs11  Zs512  Z513  Z514
Z71 Z12  Z13  Z14  Z15  Z76  Z17 | Z18  Z79  Z710  Z711  Z702  Z713 Z7,14
291 292  Z93  Z94 295 Z96  Z97 | Z98  Z99  Z910  Z911  Z912  Z913  Z9,14
ZiL,1 Z112 Zi3 o Zi4 Z1Ls Zie 2117 | Zi8 Z11L9 Zin1o Zii,1 o Zi,12 ZiL13 0 Zi,14
Z13,1  Z132 Z133 Z134 Z135 Z136 Z137 | Z138 Z139 Z13,10 Z13,11 Z13,02  Z13,13 Z13,14

yiro Yz i3 Ve Vs Ve V7 | Vg V19 Yoo Yiuiro Yz Vi3 Vil4 ’
Y31 Y32 V33 V34 V35 Ve V37 | Vs V39 V310 V311 V312 V313 V34
Y1 Vs2 V53 Vs4a V55 Vse V57 | Vs8 o V59 Vsio o Vsito V512 V513 Vs4
Yir Vizo i3 vVia Vis Ve Vig | Vis V19 V1o Vi Vi V7,130 V7,14
Yoo o Y92 )93 Vo4 )95 Vo6 )97 | V98 )99 V910 Vo1 V912 V9,13 V9,4
YLt Y2y Yug o yins Vie Vi | Vi Y1y Yipioo YVinir YiLiez Vi3 Vi4
Y131 V32 V133 Vi34 Vi35 Vise V13,7 | Vi3g V139 Viz10 Vi3l V13,12 V13,13 V13,14

(39b)

where y; ; = z; ;€4 i=1,3,5,7,9,11,13; j = 1—14 and the inverse of E is calculated using IMSL
subroutine DLINCG [18].

Finally, elimination of the complex coefficient vector a from Egs. (36) and (39a) yields the
displacement state vector consisting of 14 displacement components

d(x) = X(x)E~'U..

C : Centroid
S : Shear center

Fig. 4. Thin-walled beam-column element and its nodal forces.

(40)
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Force—deformation relations of thin-walled beam columns have been derived in Section 3. For
determination of exact dynamic stiffness matrix, nodal forces are depicted in Fig. 4 in which Fj,
F>, F5 are axial force and shear forces, respectively. M>, M3 are bending moments, M;, M, are
torsional moment and bimoment and superscript p, ¢ mean each ends of the member (x = 0, /).

The nodal force vector is then defined by
Fo=<F, F)T,
where
T
F* = (F, F3, M3, F3, M3, M}, M3) . a=p, g

From consideration of Egs. (31), (30) can be rewritten as follows:

F) = EAd, — ES3ds + ES»d),
F> = (GAy + °F\)ds — GAads + GArzdsGArzdy + (GA, — " Mo)dys + GAzdis,
M3 = —ES3d> + ELds — Ebadyg + 0.5° Mady — ELydya,
Fy = GAydy — GAxds + (GAs + "Fy)ds + GAsdy + (GAs, — " M3)dy, + GAs3dys,
M, = ESydy — Elyds + Ehdyg — 0.5° Msdyy + Ehydya,

M =(GAy — "My)dy — (GAy, — 0.5° My)ds + (GA3, — ° M3)dy
+(GA3, — 0.5°M3)dy + (GJ + GA, + "M,)d1, + GA,dy3,

M¢ = —EI3¢d() + E12¢d10 + E]¢d14,

which is compactly represented as

f(x) = Sd(x),
where /' = (Fy, F», M3, F3, M>, M, M¢>T and each element of 7 x 14 matrix S is
i S1 52 53 i
S4 S5 S6 S6 Ay S
2 59 S0 S11 §12
S = S6  —S6 S13 S14 S1s S16 ,
S3 S10 17 818 519
7820 S15 821 $22 823
L S12 819 824 |

(41a)

(41b)

(42a)

(42b)

(42¢)

(42d)

(42¢)

(42f)

(42g)

(43a)

(43b)
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where
s1=FEA, s5=—ES;, s3=ES), s4=GA,+F, s55=—GAs, 6= GA»n,
s7=GAy — "My, sy=GAy, s9=EL, s19=—EbL;, s;1=05M,,
sin=—ELy, s13=GAs+ Fi, su=GA4s;, s15= GA5 — "M,
si6 = GAs;, s17=EDL, s15=-05"M;, s19=EbLg, s30=—GAy +0.5°M,,
$31 = GA3, — 0.5°M5, 520 = GJ + GA, +°M,, 3= GA,, s04 = Ely.

Now substituting Eq. (40) into Eq. (43a) leads to

f(x)=SX(x)E'U.. (44)

Also nodal forces at ends of element are evaluated as
FP = f(0o) = —SX(0)E"'U.,, (45a)
Fi=f()=SX()E'U.. (45b)

Consequently, the exact dynamic stiffness matrix K(w) of a thin-walled beam-column is
calculated as follows:

F,=K(o)U,, (46a)
where
K(o) = —SXOF (46b)
SX(HE™!

Natural frequencies of thin-walled beam structures vibrating with the frequency w under initial
forces can be effectively determined by applying the Wittrick—Williams algorithm [13].
5. Evaluation method of exact static stiffness matrix

The circular frequency becomes zero in the equilibrium state. Therefore Eq. (28) is reduced to
equilibrium equation (47) as follows:

EAU! + ES,oy — ES;00] = 0, (47a)

GA(U) — ) + GA(U! + wh) + GAxy(f + 1)+ "F U — "Mool =0, (47b)
ELofy — ES3UY — ELyo) — ElLy [ 4 GAx(U), — w3) + GAn(U. + @)

+ GAy() + 1) =0, (47¢)

GA3(U! + wh) + GA»(U) — ) + GAs (o + 1)+ "F U = Mo =0, (47d)

ELw) + ESyU! — ELzo + Ehy [ — GA3(U. 4 ) — GA3(U; — @3)
— GA3(o) +f) =0, (47¢)
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GJo| + GA(o] + 1) + GA(U; — 03) + GA3,(U! + )
—"MyU) = "M3U! + "M, =0, (47f)

Eld, f” + E[z(/)a)lzl — EI3(/>CL),3/ — GA,(w’l +f) — GAQ,(U)/; — w3) — GA3V(U_; + 602) =0. (47g)

In exactly integrating equilibrium equations of thin-walled beams, the evaluation procedure
of the dynamic stiffness matrix cannot be directly applied to that of static stiffness due to exis-
tence of multiple zero eigenvalues from the associated eigenproblem. In order to ecliminate
multiple zero eigenvalues in advance, it is necessary to integrate the seven differential equations
as follows:

Uy + Sran/A — Ss03/A = ay + ayx,

GAN(U, — 03) + GAx(U. + @) + GAo (] + ) + "Fi U, — "Mroo, = ag;,

ELw, — ES3U. — Elz0)y — ELy f' — "FL U, + *Maoy = as — agx,

GA3(U. + ) + GAn(U;, — 3) + GAz (o) + 1) + "F1U. - "M;0, = ay,

ELwh + ESyU. — Elzoy + EbLy f' + °FiU. — "Mz = ag + ayox,

G| + GA(@| + f) + GA2(U, — 03) + GA3(U. + )

—"MyU;, ="M UL + "My, = aya,

Ely f' + Ehyo), — ELyo + Gloy — "MyU, — "M U, + "M,0) = a3 + aux, (48a—g)
where «;,i =1,2,5,6,9,10,13,14 are the eight integration constants. From consideration of
Eq. (48), the displacement state vector having 14 displacement parameters is defined by

d(x) = {di, dy, ds, ds, ds, ds, dy, ds, dy, dro, d1, dia, di3, dia)’. (49)
where
dy = Uy + Shan /A — Szm3/ A,
dy = U, + S0, /A — S50/ A,
dy =U,, dy= w3,
ds = ELoly — ESyU., — ElLyoy — ELyf' — "Fi U, + " Moy,
ds = GAx(U) — 03) + GA3(U. + w2) + GAr (0 +f) + OF) U, — Mo,
d; =U,, ds=ws,
dy = ELoy + ESy X — ELyoy + Eby f' + "FiU. — "Msm,
dio = GA3(UL + w)) + GAx3(U;, — w3) + GAs(w) + /) + "F UL = "Mz,
di=w, dp=/f,
diy = Ely [’ + ELy0y — ELyoy + Gy — "MyU, — "M3U. + "M,
dis = GJo| + GA (0 + f) + GAzr(U; — m3) + GA3,(U. + o)
—"MyU] - "M3U. + "M, (50a—n)
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From Eqgs. (48) and (49), the eight components of the displacement state vector d are evidently
constant or linear function as follows:

di = a) + ax; dr=d| = a,
ds = as — agx; d¢ = —dt = as,
5 5—ds 6 /5 6 (Sla—h)
dy = ayg + ayox; dig = dy = ay,
dis = a3 + aux;  dis =dj; = as.
Based on Eq. (50), the simultaneous differential equation (48) may be rewritten as

(GAy + "F)dy + GAxdy + (GAs, — "Mo)dy, = GArds — GAxyds — GAxdiy + as,  (52a)
E(I3 — S%/A)d:‘ — E([23 — S2S3/A)dé — EI3(/,d12 = 0F1d3 — OMzdll + das + ES3CZ2 — dgX, (52b)
GAxndy + (GA3 + "Fi)d; + (GAs, — "M3)d|, = GAxds — GAsds — GAsdin + aro,  (52¢)

— E(Is — S2S3/A)di + E(L, — Sg/A)dé + EIZ(/)d{z
= —OFid; + "Msdy) + ay — ESrap + ajox, (52d)

(GAy — "M} + (GA3, — "M3)d + (GT + GA, +"M,)d],
= GAody — GAsdy — GA,din + aa, (52¢)

—ELydy + Ehydy + Elyd;, = "Mads + " Msd; — (GJ + "M,)dy, + aiz + ayax, (52f)

which can be compactly expressed as

Ad = By, + C, (53)
where
d(x) = (s, d, dy, ds, di, dio, Y= (Uy, 3, Us, o, o1, ), (54a)
g1 92 gs ] [ by by by |
94 gs de by bs
—b b b
A, = g2 g7 gs . B — 2 6 7 7 (54b, ¢)
gs g9 g1o —by bg
g3 gs gii —bs by by
L gio 912 | | —bs bg by |

C = {ag, ES;ay + as — agx, ai, —ES»ay + ag + ayox, ais, aiz + ajgx)’, (54d)



48 K. Moon-Young et al. | Journal of Sound and Vibration 267 (2003) 29-55

where
g1 = GAy+F|, gy =GAy, g3=GAy—"My, gs=E(;— S3/A),
gs = —E(Is — $283/A4), g6 = —ELy, ¢7=GA3+°Fi, gs= GAs —"M;,
go = E(L — S3/A4), gi0 = ELy, g1 = GJ + GA, +°M,, g1, = EI,,
by = GAs, by =—GAr, by=—GAr, bs="F, bs=-"M,
be = —GAs, b;=—GAs, bs="Ms, bo=—GA, byy=—-GJ]—"M,.

Clearly, Eq. (53) is the non-homogeneous simultaneous differential equation. When C is a zero
vector, the procedure evaluating the homogeneous solution of Eq. (53) is similar to that of Section
4. Namely, the eigenproblem associated with Eq. (53) is given as

JAZ = B,Z (55)

and, using IMSL subroutine DGVCRG [18], eigenvalues and eigenvectors of the six pairs are
calculated in the complex domain.

(4i, Z)), i=1,2,...,6, (56)

where

T
Z; = {z1i, 22, Z3i» Z4i» Z5is Z6i) -

Making use of Eq. (56), the homogeneous solution is expressible as linear combination with
complex exponential functions as follows:

d"(x) = a3 Z " + a,Z,e"* + a7 Z;3e™*

+ a3 Z4e™ + an Zse™ + anZee™™ = X(x)a,, (57)

where
XM(x) = [Z1eM; Zye™"; Z3e"; Z4e™™; Zse™™; Zge), (58a)
ay = {as, ay, ar, as, a1, any’ (58b)

and X" and a, denote the 6 x 6 matrix function made up of the six eigensolutions and the
integration constant vector, respectively.

Next the particular solution d% may be determined using the undetermined coefficient method.
Noting that the vector C'is the linear vector function, each components of d” can be calculated as
follows:

d’(x) = (H + Hx)a,, (59)

where
a. = <ay, ay, as, ag, a9, ayo, a3, al4>T, (60a)
H =B '[-AB"'D, — D], (60b)

H=-B'D,, (60c)
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D,

ES;

K. Moon-Young et al. | Journal of Sound and Vibration 267 (2003) 29-55

—-ES,

1.0

1.0

1.0
1.0

1.0

1.0

D, =

-1.0

1.0

1.0

49

(61a—b)

Resultantly, the general solution d; is obtained by simply summing up the homogeneous
solution (57) and the particular solution (59). Accordingly, the exact solution of the displacement
state vector with respect to the integration constant vector a is constituted by solution (51) and the
general solution d;

di(x) = X(x)a, (62)
where
[ 1.0 X ]
1.0
hi 4+ hyx o b+ hx x’l’vl x’l’z Iy + hisx by + hax Xy x’l’,4 his + hisx hie + hiex x}l"5 x’l’TG g+ hiox hig + hygx
hy + 1;21)6 hy» + flzzx x’Z’)] Xg_z hy3 + ]’;23X hyg + 1224)6 x’z’)_; XgA hys + 1;25)( hae + flzf,x x’iS ngﬁ hy7 + 1;27x hog + /’Alzgx
1.0 —X
1.0
Y - a1+ hax  hay + hagx X{{] Xg,z oy + hasx sy + hagx )vlzl} Xg'A Ias + hasx g + hagx Xé',s Xg,f, sy + harx  hag + hagx
’ hat + harx  hay + hapx Xf{J thth haz + hasx  hag + hagx Xf{g X, has+ hasx  hag + hagx Xl X;hu, hag + hagx  hag + hagx |
1.0 X
1.0
hsi + hsix hsy + hsax xls”] xg_z hsy + hssx  hsy + hsax x/5”3 x§’4 hss + hssx hsg -+ hsex x/5’_5 xé‘ﬁ hs7 + hsyx hsg + hsgx
het + /;(,lx hey + 1;62-’( xz,l xg‘z hes + /;(,3)( hes + h};;x )C/é3 xg74 hgs + /;(,5)( hee + ﬁ“x xg_S xgyﬁ her + /;(,7)( hes + 1;68)(
1.0 X
L 1»0 -
(63)

where xff ; and hj; are elements of matrices X"(x) and H, respectively.

Now, it is necessary that the complex coefficient vector a is represented by 14 nodal
displacement components. For this, substituting co-ordinates of the member end into Eq. (62) and
arranging, the nodal displacement vector U, is obtained as

U, = E;a,

(64)
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where
1.0 |
AN hia 21,1 212 s ha 213 214 s e 215 216 hi7 s
hay ha 22,1 222 ha3 N 223 224 has has 225 226 hy7 hag
h31 hyy 3,1 232 hi3 Iy 233 Z34 h3s h3e 235 36 h37 h3g
—ha —hay —Z41 —ZI42 —hay —hag —Z43 | —Za4 —hys —hae —Z45 —ZI4p —hay —hag
hsi hsy Z5,1 252 hs3 hss 253 Z54 hss hse Z55 Z56 hsy hsg
—he —he —Z61  —Z62 —he3 —hes —Z63 | —Z64 —hes —hes —Z65  —Z66 —her —hes
E, = 1.0 1 5
hiy+hol  ha+hol oy vz hsthsl bkl oyis | via hs+hisl he+hel  oys oyie b bl s+ gl
It +hal  hn+hol o Y22 hn+ hosl  haa+ bl yas o4 s+ hosl  hag + hagl Y25 Ve ha+ horl g + sl
by +hnl ha+hol oy ovsa hnbhnl o hathal o ysa | vsa hs+lasl hssthl yis vse byt hnl hss+ sl
—hay — ﬁ4|l —hyy — /;421 —Y4a1  —Va2 —hg3 — /;431 —hag — /;441 —Y43 | —Va4 —hys — /;45/ —hag — ﬁ461 —Y45 —Vae —ha7 — /;471 —lug — ﬁ4xl
hsi+hsil  hso+hsl sy wsa  hssthssl hsathsal  yss | vsa hus ksl hss+hsl  yss  yse  hsi+hsil o hss + hssl
L —he1 — hetl  —hey — heal —Ye1 —Ye2 —hez— heal  —hes — heal —V63 | —Vea —hes — hesl  —hes — hesl —Y65 —Veo —her— el —hes — ﬁsxl_

(65)

where y;; = ziJe;‘fl, i=1,2,3,4,56, j=1—6 and the inverse of E is calculated using IMSL

subroutine DLINCG [18].
Lastly, the static element stiffness matrix can be easily evaluated from Eq. (62) and force—
deformation relations (30) by using the derivation procedures similar to those of Section 4. The

final result of the static element stiffness matrix is

F,=K,U,, (66a)
where
—SX(0)E!
= I (66b)
SX(I)E

Buckling loads of thin-walled beam structures can be determined by applying the condition that
the determinant of static stiffness matrix is zero.

6. Numerical examples

In order to examine the validity and the accuracy of the proposed method, the spatial free
vibration and stability analysis for the simply supported and cantilever thin-walled beam-columns
are conducted and numerical results by the present study are compared with analytic solution and
those by F.E. procedures using the thin-walled beam element and ABAQUS’s shell element [14].
In case of finite element solutions using the beam element, the seven displacement parameters are
interpolated by isoparametric shape functions corresponding to three-node element [20]. All
geometric data are evaluated with respect to the centroid and principal axes except of effective

shear areas.

6.1. Simply supported thin-walled beam-columns under an eccentrically axial force

In this example, spatially coupled free vibration and buckling problems of simply supported
thin-walled beams under an eccentrically axial force are investigated. Material properties and
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cross-sectional properties are listed below

E =10000 N/ecm?>, G =5000N/cm?, 4=30cm?, J=10cm®* L =100cm,
L =100 cm?*, I;=800cm*, Iy=83750cm® Ly=600cm’, I;=—800cm>,
p = 0.00785 kg/cm?, B, =30cm?, B, =25cm, f;=-22cm, A5=1cm?

A5 =0.6cm?, A =05cm?

where f1, f», f3 are the section parameters defined at the centroid and principal axes and their
definition equations are given in the previous study of Kim et al. [19].

Here closed-form solutions for the simply supported thin-walled beam subjected to both the
constant axial force and pure bending moments can be derived by using the harmonic functions
[20] as follows:

U, = A4, sin (?) ¢ U, =B, sin (?) e w; = C, sin (?) el (67)

which corresponds to the assumption that the beam subdivides into # half sine waves during free
vibration or buckling. Consequently, substitution of these expressions into the differential
equations leads to a cubic equation for the critical values.

Table 1 shows that the coupled flexural-torsional frequencies by this study using a single
element are presented and compared with the closed-form solution for a simply supported beam
without and with an axial force. Note that the present solution coincide exactly with the closed-
form solution. On the other hand, in Table 2, the coupled flexural-torsional buckling loads for a
simply supported beam under an axial force at the shear center, the centroid, and the position
(%, X3) =(—5cm, 7cm), respectively, are compared with the closed-form solution [19,20].
Clearly, Table 2 shows that the present solution using only a single element coincide exactly with
the closed-form solution.

6.2. Thin-walled cantilever beams under an axial force

Fig. 5 shows a thin-walled cantilever beam subjected to an axial force at the centroid and its
non-symmetric cross-section. For vibration and stability analysis, the material and geometric data
are given as follows:

E =30000 N/em®, G =11500N/cm?, A=8cm?, J=0.6667cm?, L =200cm,
L=114872cm®, I = 7.54463 cm?, I; =408.333 cm®, Iy = 182.413 cm’,
Ly = 18.9757 em?,

p = 0.00785 kg/cm3, By = 15.3021 cm?, B, = 0.57706 cm, B = 5.93192 cm,
A5 = 1.51452 cm?, A5 = 4.46252 cm?,  AS = 37.7520 cm®.

Generally, it is not possible to derive closed-form solution for the spatially coupled vibration and
stability analysis of the cantilever thin-walled beam subjected to an axial force. Thus, numerical
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Table 1
Flexural-torsional natural frequencies under an axial force (rad/s)
Zero axial force OF = =200 N at (%, %3) = (=5, 7)
Mod
ode Present study Analytic solution [20] Present study Analytic solution [20]
1.09513 1.09513 0.198424 0.198424
n=1 4.01706 4.01706 3.64734 3.64734
63.1947 63.1947 60.1912 60.1912
4.80932 4.80932 1.57140 1.57140
n=2 33.8270 33.8270 31.7785 31.7785
362.287 362.287 350.396 350.396
11.0357 11.0357 3.90529 3.90529
n=3 97.4077 97.4077 92.3298 92.3298
900.027 900.027 873.450 873.450
Table 2
Flexural-torsional buckling loads under an axial force P (N)
At shear center At centroid At (%2, X3) = (=5, 7)
Mod
oce Present Analytic Present Analytic Present Analytic
study solution [20] study solution [20] study solution [20]
184.528 184.528 261.338 261.338 242.156 242.156
n=1 742.641 742.641 960.533 960.533 2511.28 2511.28
3061.37 3061.37 15375.5 15375.5 9066.84 9066.84

solutions analyzed by this study are compared with those by 12 thin-walled isoparametric beam
elements and 600 shell elements using nine-noded shell element (S9R5) of ABAQUS. Tables 3 and
4 show that flexural-torsional natural frequencies and buckling loads by this study are well
compared with those by two finite element methods. It is evident that numerical results by this
study using a single element are in a good agreement with those by ABAQUS’s shell element as
well as the thin-walled beam element.

7. Conclusions

A general formulation for spatial free vibration and stability analysis of non-symmetric thin-
walled space frame member considering the effects of shear deformations was presented based on
the displacement parameters defined at the arbitrarily chosen axis, including second order terms
of finite semitangential rotations. For the exact evaluation of a dynamic and static element
stiffness matrix for a uniform and shear-deformable beam-column element with non-symmetric
thin-walled cross-section, equations of motion is firstly transformed into the first order differential
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Fig. 5. Cantilever beam with non-symmetric channel section: (a) Cantilever beam under an axial force and (b) non-
symmetric channel section.

Table 3

Flexural—torsional natural frequencies for the cantilever beam (rad/s)?

Mode Present study Three-node beam elements ABAQUS
1 0.027 0.027 0.028
2 0.334 0.335 0.331
3 0.704 0.704 0.696
4 1.065 1.065 1.074
5 4.817 4818 4.766
6 7.055 7.060 7.083
7 17.86 17.89 17.95
8 19.30 19.32 19.36
9 23.74 23.78 23.58

10 45.71 46.08 46.52

Table 4

Flexural-torsional buckling loads for cantilever under axial force at centroid (N)

Mode Present study Three-node beam elements ABAQUS

1 13.789 13.789 14.001

2 111.84 111.85 113.10

3 191.16 191.16 190.08

4 255.10 255.20 256.67

5 406.28 406.79 408.53

equations and a generalized linear eigenproblem having complex eigenvalues is considered. In case
of static problems, the efficient method to eliminate multiple zero eigenvalues for a generalized
linear eigenproblem is devised by choosing 14 displacement parameters different from those of
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dynamic problems. Then displacement functions are exactly derived and dynamic element
stiffness matrices are determined using member force-deformation relationships. Finally, it is
demonstrated that numerical results by the present method are in a good agreement with those
using both thin-walled beam elements and ABAQUS’s shell element. Resultantly, it is believed
that the present procedure is general and provides a systematic tool for the numerical evaluation
of dynamic and static stiffness matrices for a shear-deformable beam-column element.
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