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Abstract

The paper presents an analytical method to solve the elastodynamic problem of a finite-length
orthotropic hollow cylinder subjected to a torsion impact often occurring in engineering fields. The
elastodynamic solution is composed of a quasi-static solution of homogeneous equation satisfied with the
non-homogeneous boundary condition and a dynamic solution of non-homogeneous equation satisfied
with homogeneous boundary condition. The quasi-static solution can be obtained by directly solving the
quasi-static equation satisfied with the non-homogeneous boundary condition. The solution of a non-
homogeneous dynamic equation is obtained by means of a finite Hankel transform to a radial variable r;
Laplace transform to a time variable t and finite Fourier transform to an axial variable z. Thus, the
elastodynamic solution of the finite length of an orthotropic hollow cylinder subjected to a torsion impact is
obtained. On the other hand, a dynamic finite element for the same problem is also carried out by applying
the ANSYS finite-element analysis system. Comparing the theoretical solution with finite-element solution,
it can be found that two kinds of results obtained by making use of two different solving methods are
suitably approached. Therefore, it is further concluded that the methods and computing processes of the
theoretical solution are effective and accurate.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that the dynamic response of a hollow cylinder under torsion impact became
an attentive engineering problem for a long time in many cases, such as, in the course of
mechanical drilling, geologic prospecting, drilling, petroleum drilling and automatic fastening of
steel structure’s fastening bolts. It is possible to induce various actions of torsion impact, to a
hollow cylinder, geology, rock, and so on, including isotropic and anisotropic materials.
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Solving the problem of elastic wave propagation in a hollow cylinder or a hollow sphere by
using the theory of elastodynamics has been done in many works. But it was always limited to the
situation of radial impact [1–6]. The research of the problem of solving a hollow cylinder subjected
to torsion impact by means of the theory of elastodynamics is very few. Ref. [7] studied the
response histories and distribution of a semi-infinite and infinite elastic body under a torsion force
with time and uniform distribution along one of the cylinders. Ref. [8] studied the response
histories of torsion stress wave in a cylindrical waveguide tube with longitudinal section periodic
changing by using the theory of elasticity and experiment. Ref. [9] presents the theoretical solution
of elastodynamics about an infinite length hollow cylinder subjected to torsion impact. But
through analyzing, it was found that it does not satisfy the given boundary condition.
This paper sets up the corresponding dynamic model regarding the problem of finite length of

an orthotropic hollow cylinder subjected to torsion impact, based on the mixed boundary
condition. The elastodynamic solution is composed of a quasi-static solution satisfied with a non-
homogeneous boundary condition and a dynamic solution satisfied with homogeneous boundary
condition. The quasi-static solution is obtained by means of a direct integral for the quasi-static
equation with non-homogeneous boundary condition. The solution of a non-homogeneous
dynamic equation with the corresponding homogeneous boundary condition is obtained by
making use of a finite Hankel transform to a radial variable r; Laplace transform to time variable t
and finite Fourier transform to axial variable z:
In the example calculating, the responding histories and distributions of shear stress in a finite-length

orthotropic hollow cylinder subjected to torsion impact load have been obtained. By analyzing the
result of computing, it is seen that the solution obtained in the paper appears in the wave’s properties
and there exists a strong discontinuity effect at the wavefront of the shear stress wave.
In order to further prove that the method and computing process of the theoretical solution are

effective and accurate, a dynamic finite-element solution for the same problem is also carried out
by using the ANSYS finite-element analysis system. Comparing the results of the theoretical
solution with the finite-element solution, it can be found that the two kinds of results obtained by
making use of two different methods are approached very well.

2. Solving method of orthotropic hollow cylinder under torsion impact

The structure of a finite-length orthotropic hollow cylinder with the outer boundary fixed and
inter-wall subjected to a torsion impact load Aðz; tÞ is shown in Fig. 1.
In a cylindrical co-ordinate system, the generalized Hooke’s law of an orthotropic hollow

cylinder is given by
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Considering the forms of geometry and load of the structure shown in Fig. 1, the strains and
displacements of the finite length of an orthotropic hollow cylinder subjected to torsion impact are
independent of y and Ur ¼ Uz ¼ 0. The corresponding geometrical equation is expressed as

er ¼ ey ¼ ez ¼ grz ¼ 0;

gyz ¼
@Uy

@z
; gry ¼

@Uy

@r
�

Uy

r
:

ð2Þ

Substituting Eq. (2) into Eq. (1) yields

tyz ¼ C44
@Uy

@z
; try ¼ C66

@Uy

@r
�

Uy

r

� �
: ð3Þ

In the cylinder co-ordinate system, dynamic equilibrium equations are written as

@sr

@r
þ
sr � sy

r
þ

@tzr

@z
¼ r

@2Ur

@t2
;

@tyr

@r
þ

@tyz

@z
þ
2try

r
¼ r

@2Uy

@t2
;

@trz

@r
þ
@sz

@z
þ

trz

r
¼ r

@2Uz

@t2
: ð4Þ

Substituting Eq. (3) into Eq. (4), the elastodynamic equilibrium equation of the finite length of
an orthotropic hollow cylinder subjected to torsion impact is simplified to

@2Uyðr; z; tÞ
@r2

þ
1

r

@Uyðr; z; tÞ
@r

�
Uyðr; z; tÞ

r2
þ R2 @

2Uyðr; z; tÞ
@z2

¼
1

C2
t

@2Uyðr; z; tÞ
@t2

;

aprpb; 0pzpL; tX0; ð5Þ

where R2 ¼ C44=C66 and C2
t ¼ C66=r:

The boundary condition and initial condition are, respectively, given as

tryðr; z; tÞr¼a ¼ C66
@Uyðr; z; tÞ

@r
�

Uyðr; z; tÞ
r

� �
¼ Aðz; tÞ; ð6aÞ

Uyðr; z; tÞr¼b ¼ 0; ð6bÞ

tyzðr; z; tÞz¼0 ¼ C44
@Uyðr; 0; tÞ

@z
¼ 0; ð6cÞ
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Fig. 1. The structural model.
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tyzðr; z; tÞz¼L ¼ C44
@Uyðr;L; tÞ

@z
¼ 0; ð6dÞ

Uyðr; z; tÞt¼0 ¼ U0ðr; zÞ; ð6eÞ

@Uyðr; z; tÞ
@t

t¼0j ¼ VW0ðr; zÞ: ð6fÞ

Suppose the solution of Eq. (5) is

Uyðr; z; tÞ ¼ Uysðr; z; tÞ þ Uydðr; z; tÞ; ð7Þ

where Uysðr; z; tÞ represents the solution of a quasi-static equation satisfied with the non-
homogeneous boundary condition and Uydðr; z; tÞ represents the solution of a dynamic equation
satisfied with the homogeneous boundary condition. The quasi-static equation is expressed as

@2Uysðr; z; tÞ
@r2

þ
1

r

@Uysðr; z; tÞ
@r

�
Uysðr; z; tÞ

r2
¼ 0 ð8aÞ

and Uysðr; z; tÞ satisfied with the following non-homogeneous boundary condition:

C66
@Uysðr; z; tÞ

@r
�

Uysðr; z; tÞ
r

� �
r¼a

¼ Aðz; tÞ;

Uysðr; z; tÞr¼b ¼ 0: ð8bÞ

The solution of differential equation (8) can be given by

Uysðr; z; tÞ ¼ C1r þ C2r
�1: ð9Þ

Utilizing the non-homogeneous boundary condition (8b), the quasi-static solution Uysðr; z; tÞ is
written as

Uysðr; z; tÞ ¼
a2

2C66

r

b2
�
1

r

� �
Aðz; tÞ: ð10Þ

Substituting Eq. (7) into Eq. (5) and utilizing Eqs. (6), the non-homogeneous dynamic equation
which the dynamic solution Uydðr; z; tÞ should satisfy, the corresponding homogeneous boundary
condition and initial condition are, respectively, represented as

@2Uydðr; z; tÞ
@r2

þ
1

r

@Uydðr; z; tÞ
@r

�
Uydðr; z; tÞ

r2

¼
1

C2
t

@2Uysðr; z; tÞ
@t2

þ
@2Uydðr; z; tÞ

@t2

� �
� R2 @2Uysðr; z; tÞ

@z2
þ

@2Uyd ðr; z; tÞ
@z2

� �
; ð11aÞ

@Uydðr; z; tÞ
@r

�
Uydðr; z; tÞ

r

� �
r¼aj ¼ 0; ð11bÞ

Uydðr; z; tÞr¼b ¼ 0; ð11cÞ

Uydðr; z; 0Þ ¼ Uy0ðr; zÞ � Uys0ðr; z; 0Þ; ð11dÞ

@Uydðr; z; 0Þ
@t

¼ Vy0ðr; zÞ �
@Uysðr; z; 0Þ

@t
¼ Vy0ðr; zÞ � Vys0ðr; zÞ: ð11eÞ
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In non-homogeneous dynamic equation (11a), Uysðr; z; tÞ is the known quasi-static solution shown
in formula (10).
Defining finite Hanker transform [10] to a radial variable r of Uyd ðr; z; tÞ in a non-homogeneous

dynamic equation as

H½Uyd ðr; z; tÞ� ¼ %Uydðxi; z; tÞ ¼
Z b

a

Uydðr; z; tÞrC1ðxirÞ dr; ð12Þ

its inverse transform is

Uyd ðr; z; tÞ ¼
X
xi

%Uydðxi; z; tÞ
F ðxiÞ

C1ðxirÞ; ð13Þ

where

C1ðxirÞ ¼ J1ðxirÞY1ðxibÞ � J1ðxibÞY1ðxirÞ ð14Þ

and

F ðxiÞ ¼
Z b

a

rC2
1ðxirÞ dr: ð15Þ

xi (i ¼ 1; 2, 3,y) are positive eigenroots which should satisfy the following characteristic
equation:

Y1ðxibÞ½xiJ1ðxiaÞ �
1

a
J1ðxiaÞ� � J1ðxibÞ½xiY1ðxiaÞ �

1

a
Y1ðxiaÞ� ¼ 0: ð16Þ

Applying a finite Hankel transform on the radial variable r to the two sides of non-
homogeneous dynamic equation (10a), we have

H
@2Uydðr; z; tÞ

@r2
þ
1

r

@Uyd ðr; z; tÞ
@r

�
Uydðr; z; tÞ

r2

� �

¼
1

C2
t
H

@2Uysðr; z; tÞ
@t2

þ
@2Uydðr; z; tÞ

@t2

� �
� R2H

@2Uysðr; z; tÞ
@z2

þ
@2Uydðr; z; tÞ

@z2

� �
: ð17Þ

Utilizing boundary condition (11b,c), the finite Hankel transform of the left side of Eq. (17) can
be shown as

H
@2Uydðr; z; tÞ

@r2
þ
1

r

@Uydðr; z; tÞ
@r

�
Uydðr; z; tÞ

r2

� �
¼ �x2i %Uydðxi; z; tÞ ð18Þ

and the finite Hankel transform of the right side of Eq. (17) can be shown as

1

C2
t
H

@2Uysðr; z; tÞ
@t2

þ
@2Uydðr; z; tÞ

@t2

� �
� R2H

@2Uysðr; z; tÞ
@z2

þ
@2Uyd ðr; z; tÞ

@z2

� �

¼
1

C2
t

@2 %Uysðxi; z; tÞ
@t2

þ
@2 %Uydðxi; z; tÞ

@t2

� �
� R2 @2 %Uysðxi; z; tÞ

@z2
þ

@2 %Uyd ðxi; z; tÞ
@z2

� �
: ð19Þ
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Substituting Eqs. (18) and (19) into Eq. (17) yields

� x2i %Uydðxi; z; tÞ

¼
1

C2
t

@2 %Uydðxi; z; tÞ
@t2

þ
@2 %Uydðxi; z; tÞ

@t2

� �
� R2 @2 %Uyd ðxi; z; tÞ

@z2
þ
@2 %Uydðxi; z; tÞ

@z2

� �
: ð20Þ

In order to solve %Uydðxi; z; tÞ; applying Laplace transform to the axial variable z in Eq. (20), we
have

� x2i L½ %Uyd ðxi; z; tÞ�

¼
1

C2
t

L
@2 %Uysðxi; z; tÞ

@t2
þ

@2 %Uydðxi; z; tÞ
@t2

� �
� R2L

@2 %Uysðxi; z; tÞ
@z2

þ
@2 %Uyd ðxi; z; tÞ

@z2

� �
: ð21Þ

The left side of Eq. (21) can be written as

�x2i L½ %Uydðxi; z; tÞ� ¼ �x2i ½ %U
	
ydðxi; z; pÞ� ð22aÞ

and the right side of Eq. (21) can be written as

1

C2
t

L
@2 %Uysðxi; z; tÞ

@t2
þ
@2 %Uydðxi; z; tÞ

@t2

� �
� R2L

@2 %Uysðxi; z; tÞ
@z2

þ
@2 %Uydðxi; z; tÞ

@z2

� �

¼
1

C2
t

p2
@2 %U	

ysðxi; z; pÞ
@t2

þ
@2 %U	

ydðxi; z; pÞ
@t2

� �
� p %Uydðxi; zÞ � %Vydðxi; zÞ

� �

� R2 @2 %U	
ysðxi; z; pÞ
@z2

þ
@2 %U	

ydðxi; z; pÞ
@z2

� �
: ð22bÞ

Thus, Laplace transform of Eq. (21) is represented as

�x2i ½ %U
	
ydðxi; z; pÞ� ¼

1

C2
t
fp2½ %U	

ysðxi; z; pÞ þ %U	
yd ðxi; z; pÞ� � p %U0ðxi; zÞ � %V0ðxi; zÞg

� R2 @2 %U	
ysðxi; z; pÞ
@z2

þ
@2 %U	

ydðxi; z; pÞ
@z2

� �
; ð23aÞ

where

%Uy0ðxi; zÞ ¼
Z b

a

Uy0ðr; zÞrC1ðxirÞ dr; ð23bÞ

%Vy0ðxi; zÞ ¼
Z b

a

Vy0ðr; zÞrC1ðxirÞdr: ð23cÞ
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Define, respectively, finite Fourier transform and its inverse transform as

F½f ðxÞ� ¼ F ðnÞ ¼
Z L

0

f ðxÞ cos
npx

L
dx; n ¼ 0; 1; 2; 3y; ð24aÞ

F�1½FðnÞ� ¼ f ðxÞ ¼
1

L
Fð0Þ þ

2

L

XN
n¼1

F ðnÞ cos
npx

L
: ð24bÞ

To make Uysðr; z; tÞ and Uydðr; z; tÞ satisfy boundary condition (6c,d) when z ¼ 0 and L; the
finite Fourier transform to them is represented as

Uysðr; z; tÞ ¼
XN
n¼0

*Uysðr; n; tÞ cos
npz

L
; ð25aÞ

Uydðr; z; tÞ ¼
XN
n¼0

*Uyd ðr; n; tÞ cos
npz

L
: ð25bÞ

Substituting Eqs. (25) and (24) into Eq. (23a) yields

�x2i
*%U	
ydðxi; n; pÞ ¼

1

C2
t
½p2 *%U	

ysðxi; n; pÞ þ p2 *%U	
yd ðxi; n; pÞ � p *%Uy0ðxi; nÞ � *%Vy0ðxi; nÞ�

þ
n2p2R2

L2
½ *%U	

ysðxi; n; pÞ þ *%U	
ydðxi; n; pÞ�; ðn ¼ 0; 1; 2; 3;yÞ; ð26Þ

where

*%U	
yd ðxi; 0; pÞ ¼

1

L

Z L

0

*%U	
ydðxi; z; pÞ dz;

*%U	
yd ðxi; n; pÞ ¼

2

L

Z L

0

*%U	
ydðxi; z; pÞ dz;

*%U	
yd ðxi; 0; pÞ ¼

1

L

Z L

0

*%U	
ysðxi; z; pÞ dz;

*%U	
yd ðxi; n; pÞ ¼

2

L

Z L

0

*%U	
ysðxi; z; pÞ dz;

*%Uy0ðxi; 0Þ ¼
1

L

Z L

0

%Uy0ðxi; zÞ dz; *%Uy0ðxi; nÞ ¼
2

L

Z L

0

%Uy0ðxi; zÞ dz;

*%Vy0ðxi; 0Þ ¼
1

L

Z L

0

%Vy0ðxi; zÞ dz; *%Vy0ðxi; nÞ ¼
2

L

Z L

0

%Vy0ðxi; zÞ dz: ð27Þ

To make Laplace inverse transform of Eq. (26) be easier, Eq. (26) is simplified to

*%U	
ydðxi; n; pÞ ¼ � *%U	

ysðxi; n; pÞ þ
x2i C2

t

p2 þ X 2
*%U	
ysðxi; n; pÞ �

p

p2 þ X 2
*%Uy0ðxi; nÞ

�
1

p2 þ X 2
*%Vy0ðxi; nÞ; ð28aÞ
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where

X 2 ¼ x2i C2
t þ

n2p2R2C2
t

L2
: ð28bÞ

Laplace inverse transform to Eq. (26) gives

*%Uyd ðxi; n; tÞ ¼ � *%Uysðxi; n; tÞ þ
x2i C2

t

X
sinXt 	 *%Uysðxi; n; tÞ � *%Uy0ðxi; nÞ cosXt

�
sinXt

X
*%Vy0ðxi; nÞ; ð29aÞ

where

sinXt 	 *%Uysðxi; n; tÞ ¼
Z t

0

sinX ðt � tÞ *%Uysðxi; n; tÞ dt: ð29bÞ

For n ¼ 0; Eq. (29a) can be written as

*%Uydðxi; 0; tÞ ¼ � *%Uysðxi; 0; tÞ þ xiCt sinðxiCttÞ 	 *%Uysðxi; 0; tÞ � *%Uy0ðxi; 0Þ cosðxiCttÞ

�
sinðxiCttÞ

xiCt

*%Vy0ðxi; 0Þ: ð30Þ

Substituting Eq. (29) into Eq. (25) and applying Fourier inverse transform of *%Uydðxi; n; tÞ yields

%Uydðxi; z; tÞ ¼
XN
n¼0

*%Uyd ðxi; n; tÞ cos
npz

L
: ð31Þ

Substituting Eq. (31) into Eq. (13), the dynamic solution Uydðr; z; tÞ of non-homogeneous
dynamic equation (11) satisfied with the homogeneous boundary condition is represented as

Uydðr; z; tÞ ¼
XN
xi

P
N

n¼0
*%Uydðxi; n; tÞcos

npz

L
F ðxiÞ

C1ðxirÞ: ð32Þ

Substituting quasi-static solution (10) Uysðr; z; tÞ and dynamic solution (32) Uydðr; z; tÞ into
Eq. (7), the elastodynamic solution of the finite length of an orthotropic hollow cylinder subjected
to torsion impact is represented as

Uyðr; z; tÞ ¼
a2

2C66

r

b2
�
1

r

� �XN
n¼0

*Aðn; tÞ cos
npz

L
þ
XN
xi

P
N

n¼0
*%Uydðxi; n; tÞ cos

npz

L
FðxiÞ

C1ðxirÞ; ð33aÞ

where

%Að0; tÞ ¼
1

L

Z L

0

Aðz; tÞ dz;

%Aðn; tÞ ¼
2

L

Z L

0

Aðz; tÞ cos
npz

L
dz ðn ¼ 1; 2; 3;yÞ: ð33bÞ
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Substituting elastodynamic solution (33) into Eq. (3), dynamic shear stresses try and tyz in the
finite length of an orthotropic hollow cylinder are given by

try ¼
a2

r2

X
n¼0

Aðn; tÞ cos
npz

L
þ C66

X
xi

P
n¼0

*%Uydðxi; n; tÞ cos
npz

L
FðxiÞ

dC1ðxirÞ
dr

�
C1ðxirÞ

r

� �
;

tyz ¼
a2C44

2C66

r

b2
�
1

r

� �X
n¼0

�
np
L

� �
*Aðn; tÞ sin

npz

L
� C44

2np
L2

X
xi

P
n¼1

*%Uydðxi; n; tÞ sin
npz

L
F ðxiÞ

C1ðxirÞ:

ð34Þ

3. Examples and discussions

In the practical engineering applications, the general form of torsion impact load can be
considered as

Aðz; tÞ ¼ t0ze�bt; tX0; ð35Þ

where b represents the decaying factor. When ba0; the load function Aðz; tÞ expresses an
exponential decaying torsion impact load. When b ¼ 0; the load function Aðz; tÞ expresses a
sudden torsion impact load.
The initial condition before the loading is considered as

Uyðr; z; 0Þ ¼ 0;
@Uyðr; z; 0Þ

@t
¼ 0 : ð36Þ

Substituting Eqs. (35) and (36) into Eqs. (33), the displacement field and the correspondent
dynamic shear stress in the structure are, respectively, expressed as

Uyðr; z; tÞ ¼
t0a2e�bt

2C66

r

b2
�
1

r

� �
L

2
þ

2

p2
XN
n¼1

n2½ð�1Þn � 1� cos
npz

L

( )

þ
X
xi

t0
FðxiÞ

LJ1ðxibÞ

C66px
2
i Ja

�bCtxi sinðoitÞ þ o2
i cosoit þ b2e�bt

b2 þ o2
i

" #(

þ
4LJ1ðxibÞ

p3Ja

XN
n¼1

1

n2
½ð�1Þn � 1�

e�bt

C66x
2
i

�
1

rX

" #
cos

npz

L

)
C1ðxirÞ; ð37Þ
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tryðr; z; tÞ ¼
t0a2e�bt

r2
L

2
þ

2

p2
X
n¼1

n2½ð�1Þn � 1� cos
npz

L

( )

þ
X
xi

t0
FðxiÞ

LJ1ðxibÞ

C66px
2
i Ja

�boi sinðoitÞ þ o2
i cosðoitÞ þ b2e�bt

b2 þ o2
i

" #(

þ
4LJ1ðxibÞ

p3Ja

XN
n¼1

1

n2
½ð�1Þn � 1�

1

C66x
2
i

�
1

rX

b sinðXtÞ � X cosXt þ Xe�bt

b2 þ X 2

" #
cos

npz

L

)

� xiC0ðxirÞ �
2
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where

C0ðxirÞ ¼ J0ðxirÞY0ðxibÞ � J0ðxibÞY0ðxirÞ: ð40Þ
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Fig. 2. The finite-element net for the middle plane at z	 ¼ 0:5 in the finite length of an orthotropic hollow cylinder

under a sudden torsion load for b ¼ 0: ðb � aÞ=a ¼ 10:

X. Wang et al. / Journal of Sound and Vibration 267 (2003) 67–8676



In calculating examples, to improve the convergence of these series in the expression of the
solution, we consult a particularly useful book ‘An introduction to Fourier analysis and
generalized functions’ in Ref. [11]. Material properties of an orthotropic hollow cylinder in the
solutions are considered as: C44 ¼ 80GPa; C66 ¼ 50GPa; r ¼ 5000 kg=m3: The thickness of the
two kinds of hollow cylinders are, respectively, ðb � aÞ=a ¼ 20 and ðb � aÞ=a ¼ 2: In order to
make the problem easy to deal with, all the variables are taken in the form of dimensionless
quantities such as T	 ¼ tCt=a; R	 ¼ ðr � aÞ=a; R1 ¼ ðr � aÞ=ðb � aÞ; Z	 ¼ z=L; t	ry ¼ try=t0; t	yz ¼
tyz=t0; and U	

y ¼ Uy=t0 ðm=PaÞ:
In order to prove further the validity of the analytical method and the solving process, a

dynamic finite-element solution for the same example used in the theoretical solution is also
achieved by applying the ANSYS finite-element analysis system. In this dynamic equation of the
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Fig. 3. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under an exponential

decaying impact load for b ¼ 500: R	 ¼ 0; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:

Fig. 4. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under an exponential

decaying impact load for b ¼ 500: R	 ¼ 0; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:
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elastic system, applying the Hamilton principle, the dynamic equation of finite element is
written as

½K�fdg þ ½M�f .dg ¼ fF ðtÞg; ð41Þ

where ½K � is the stiff matrix, ½M� is the weight matrix, fdg is the displacement of the knot point
and fF ðtÞg is the dynamic load. In the solving process of the dynamic finite element, applying a
direct integral method, the solution of dynamic equation (41) can be obtained in the ANSYS
program system. Considering the orthotropic hollow cylinder shown in Fig. 1, the finite-element
model and net for the middle plane at z	 ¼ 0:5 in the orthotropic hollow cylinder is as shown in
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Fig. 5. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under an exponential

decaying impact load for b ¼ 500: R	 ¼ 1; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:

Fig. 6. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under an exponential

decaying impact load for b ¼ 500: R	 ¼ 1; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:
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Fig. 2. The geometry size and material property are the same as those in the theoretical solution.
Calculating time step Dt ¼ 0:015a=Ct is taken. Convergence error is less than 0.5%.
The response histories and distributions of dynamic stress and tangential displacement in an

orthotropic hollow cylinder with ðb � aÞ=a ¼ 20; subjected to an exponential decaying torsion
impact load are shown in Figs. 3–6. The response histories and distributions of dynamic stress and
tangential displacement in an orthotropic hollow cylinder with ðb � aÞ=a ¼ 20; subjected to a
sudden torsion load are shown in Figs. 7–12. In order to have a confirmation of the validity of the
solution, a special case in computing time T 	p20 is taken. When the computing time T 	p20;
that is before the wavefront of stress wave arrives at the exterior boundary r ¼ b; reflected waves
have not been produced so that the reflecting effects of the stress wave in the structure can be
avoided.
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Fig. 7. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under a sudden impact

load for b ¼ 0: R	 ¼ 0; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:

Fig. 8. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under a sudden impact

load for b ¼ 0: R	 ¼ 0; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:
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By viewing these figures, the solution is satisfied with the given boundary condition. The
dynamic stress t	ry at internal surface R	 ¼ 0 is not changed with time, and equals the given
boundary value Aðz; tÞ shown, respectively, in Figs. 3 and 7. At z	 ¼ 0 and z	 ¼ 1; which are at
the two ends of the finite length of the hollow cylinder, dynamic shear stress t	ry is satisfied with the
given end condition ðt	ry ¼ 0Þ shown in Figs. 4, 6, 8 and 11. From Figs. 4–6 and 8–12, we can see
that the shear stress and tangential displacement where the wavefront arrives appear in the
maximum value and are highly discontinuous. When the wavefront propagates from the point to
the external boundary, the stress at the point will gradually decay from the maximum to quasi-
static solution at the point.
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Fig. 9. The responding histories of tangential displacement in a finite-length orthotropic hollow cylinder under a

sudden impact load for b ¼ 0: R	 ¼ 0; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:

Fig. 10. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under a sudden impact

load for b ¼ 0: R	 ¼ 1; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:
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Figs. 13–18 represent the responding histories and distributions of shear stress and tangential
displacement with time and along the axial direction in an orthotropic hollow cylinder with
ðb � aÞ=a ¼ 2; under a sudden torsion load. The calculating time is taken as T	p20; the reflection
effects of wave between the internal and external surfaces have appeared in the responding
histories and distributions of stress and displacement in the structure with ðb � aÞ=a: As shown in
the figures, except the shear stresses at the internal surface and the two free ends, which are
satisfied with the given boundary and end conditions, the responding histories and distributions of
shear stresses and tangential displacement at the other points of the hollow cylinder appear in
dramatical oscillation with time.
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Fig. 11. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under a sudden impact

load for b ¼ 0: R	 ¼ 1; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:

Fig. 12. The responding histories of tangential displacement in a finite-length orthotropic hollow cylinder under a

sudden impact load for b ¼ 0: R	 ¼ 1; ðb � aÞ=a ¼ 20; R	 ¼ ðr � aÞ=a; T	 ¼ tCL=a; Z	 ¼ z=L:
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Figs. 19 and 20 express, respectively, the analytical solution and finite-element solution of the
responding histories and distributions of shear stress in the middle plane ðz	 ¼ 0:5Þ of the finite-
length hollow cylinder with thick b � að Þ=a ¼ 20; under a sudden torsion load. The features of the
stress waves propagating in the hollow cylinder along the radial direction are clearly shown in
these figures. The responses of shear stress at which the wavefront of stress wave has not arrived
equals zero. The responses of shear stress at which the wavefront arrives appear in the maximum
value and strong discontinuous effects. The propagation of the wavefront decays and the dynamic
stress approaches the static stress at the same point when time is large and the effect of reflected
dose not appear. Comparing the theoretical solution with finite-element solution, it can be found
that the two kinds of results obtained by making use of two different solving methods are suitably
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Fig. 13. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under a sudden impact

load for b ¼ 0: R1 ¼ 0; ðb � aÞ=a ¼ 2; R1 ¼ ðr � aÞ=ðb � aÞ; T	 ¼ tCL=a; Z	 ¼ z=L:

Fig. 14. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under a sudden impact

load for b ¼ 0: R1 ¼ 0; ðb � aÞ=a ¼ 2; R1 ¼ ðr � aÞ=ðb � aÞ; T	 ¼ tCL=a; Z	 ¼ z=L:
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approached. Therefore, it is further concluded that the method and computing process of the
theoretical solution are effective and accurate.
From the above, one concludes that the present closed solution of the finite length of the

orthotropic hollow cylinder subjected to torsion impact appears in the features of the stress waves
propagating, and is valid theoretically and may be used as a reference to solve other dynamic
problems.
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Fig. 15. The responding histories of tangential displacement in a finite-length orthotropic hollow cylinder under a

sudden impact load for b ¼ 0: R1 ¼ 0; ðb � aÞ=a ¼ 2; R1 ¼ ðr � aÞ=ðb � aÞ; T	 ¼ tCL=a; Z	 ¼ z=L:

Fig. 16. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under a sudden impact

load for b ¼ 0: R1 ¼ 0; ðb � aÞ=a ¼ 2; R1 ¼ ðr � aÞ=ðb � aÞ; T	 ¼ tCL=a; Z	 ¼ z=L:
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Fig. 17. The responding histories of shear stress in a finite-length orthotropic hollow cylinder under a sudden impact

load for b ¼ 0: R1 ¼ 0; ðb � aÞ=a ¼ 2; R1 ¼ ðr � aÞ=ðb � aÞ; T	 ¼ tCL=a; Z	 ¼ z=L:

Fig. 18. The responding histories of tangential displacement in a finite-length orthotropic hollow cylinder under a

sudden impact load for b ¼ 0: R1 ¼ 0; ðb � aÞ=a ¼ 2; R1 ¼ ðr � aÞ=ðb � aÞ; T	 ¼ tCL=a; Z	 ¼ z=L:
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Fig. 19. The response histories of shear stress in the r � y plane at z	 ¼ 0:5 in a finite-length orthotropic hollow cylinder

under a sudden torsion load for b ¼ 0: ðb � aÞ=a ¼ 20; R	 ¼ 1; R	 ¼ ðr � aÞ=a , T	 ¼ tCL=a; t	ry ¼ try=t0:

Fig. 20. The distribution of shear stress in the r � y plane at z	 ¼ 0:5 in a finite-length orthotropic hollow cylinder

under a sudden torsion load for b ¼ 0: ðb � aÞ=a ¼ 20; T	 ¼ 1; T	 ¼ tCL=a; R1 ¼ ðr � aÞ=ðb � aÞ , t	ry ¼ try=t0:
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Appendix A. Nomenclature

uy tangential displacement
eij and sij strains and stresses
try shear stress in the ry plane
tyz shear stress in the yz plane
uys quasi-static displacement solution
uyd displacement solution of the non-homogeneous dynamic equation
cij elastic coefficients of the material
C44 shear module in the yz co-ordinate plan
C66 shear module in the ry co-ordinate plan
r and t density of material and time variable
a; b and L internal radii, external radii and length of hollow cylinder
Ct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C66=r

p
elastic wave speed

aðz; tÞ torsion impact load function
J1ðxirÞ and Y1ðxirÞ first order Bessel function of the first and second kinds
J0ðxirÞ and Y0ðxirÞ zero order Bessel function of the first and second kinds
xi ði ¼ 1; 2; 3;yÞ positive eigenroots

Non-dimensional quantities
T	 ¼ tCt=a; R	 ¼ ðr � aÞ=a; R1 ¼ ðr � aÞ=ðb � aÞ; Z	 ¼ z=L; t	ry ¼ try=t0; t	yz ¼ tyz=t0;
U	

y ¼ Uy=t0ðm=PaÞ:
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