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Abstract

A method for determining the dynamic response of prismatic damped Euler—Bernoulli beams subjected
to distributed and concentrated loads is presented. The method yields exact solutions in closed form
and may be used for single and multi-span beams, single and multi-loaded beams, and statically
determinate and indeterminate beams. Also Green functions for various beams with different homogenous
and elastic boundary conditions are given. In order to demonstrate the use of the Green functions
method, several examples are given. Some of the obtained results are compared with those given in the
references.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The forced transverse vibration of beams due to steady and moving loads is a very important
research topic in all branches of engineering. The most used method for determining these
vibrations is the expansion of the applied loads and the dynamic responses in terms of the
eigenfunctions of the undamped beams [1,2]. This method leads to solutions presented as infinite
series, which will be truncated after a number of terms and approximate solutions are then
obtained. Fryba [3] used the Fourier sine (finite) integral transformation and the Laplace—Carson
integral transformation to determine the dynamic response of beams due to moving loads and
obtained this response in the form of series solutions. Leissa [4] presented an exact method for
determining the dynamic deflection of single-span Euler—Bernoulli beams subjected to distributed
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loads of the form P(x)sin Q¢. He used a solution for the deflection similar to the exciting load
function and obtained a fourth order spatially dependent ordinary differential equation. Then he
solved the ordinary differential equation and applied the boundary conditions to evaluate the
integration constants. Although the dynamic response of the undamped beam was readily
obtained, the determination of the response of the damped system is more complicated. Finally,
he compared the obtained solution with the series solution obtained through expansion in normal
modes. Hamada [5] solved the response problem of a simply supported and damped Euler—
Bernoulli uniform beam of finite length traversed by a constant force moving at a uniform speed
by applying the double Laplace transformation with respect to both time and the length co-
ordinate along the beam. He obtained in closed form an exact solution for the dynamic deflection
of the considered beam. Nicholson and Bergman [6,7] used Green functions for analyzing the free
vibration of a combined linear undamped dynamical system consisting of beams and discrete
spring—mass oscillators. They used the method of separation of variables to separate the
governing partial differential equation for the system into a second order time-dependent and a
fourth order spatially dependent ordinary differential equations and derived the characteristic
equation for the eigenfrequencies of the system. Finally, the characteristic equation was solved
and exact natural frequencies and exact normal modes obtained. Also they determined in Ref. [7]
the dynamic response of the studied system due to an arbitrary excitation using the method of
expansion in eigenforms. Broome [8] used a Green function approach and a particular integral
approach to study the economical analysis of combined dynamical systems. Bergman and
McFarland [9] used Green functions to study the free vibration of an Euler—Bernoulli beam with
homogeneous boundary conditions, supported in its interior by arbitrarily located pin supports
and translational and torsional linear springs. Furthermore, they determined the forced response
of the beam to an arbitrary excitation by modal analysis method. Kukla and Posiadala [10]
utilized the Green function method to study the free transverse vibration of Euler—Bernoulli
beams with many elastically mounted masses. They obtained closed form expressions of the
equations for the natural frequencies. Also Kukla [11] applied the Green function method to
determine the natural frequencies of a Timoshenko beam with attached multi-mass oscillators.
Foda and Abduljabbar [12] used a Green function approach to determine the dynamic deflection
of an undamped simply supported Euler—Bernoulli beam of finite length subject to a moving mass
traversing its span at constant speed.

In this paper a Green functions method for determining the dynamic response of Euler—
Bernoulli beams subjected to distributed and concentrated loads is presented. This method may be
used for single and multi-span beams, single and multi-loaded beams, and statically determinate
and indeterminate beams. Also Green functions for various beams with different homogeneous
and elastic boundary conditions are determined. Several examples are given to illustrate the use of
the Green functions method.

The method of Green functions is more efficient than the series methods because this method
yields exact solutions in closed forms. This is in particular essential for calculating dynamic
stresses and determining the dynamic response of beams other than simply supported. Also by the
use of the Green functions method, the boundary conditions are embedded in the Green functions
of the corresponding beams. Furthermore, by using this method, it is not necessary to solve the
free vibration problem in order to obtain the eigenvalues and the corresponding eigenfunctions
which are required while using series solutions.
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2. Green functions of beams with homogeneous boundary conditions

The transverse vibration of a uniform elastic homogeneous isotropic Euler—Bernoulli beam is
described by the partial differential equation

EI"" + ups + oo + rit"" = p(x, 1), (1)

where EI, u,r,, and r; are the flexural rigidity of the beam, the mass per unit length of the beam,
the coefficient of external damping of the beam, and the coefficient of internal damping of the
beam, respectively. v(x, ¢) is the deflection of the beam at point x and time ¢ and p(x, ¢) denotes the
load per unit length of the beam at point x and time ¢. A prime denotes differentiation with respect
to position x and an overdot denotes differentiation with respect to time ¢. Assuming the load
function p(x, ) is given in the form

p(x, 1) = f(x) cos Qf, )
where f(x) is an arbitrary but deterministic distributed load, then Eq. (1) becomes
ER"" + us + r o + rit"" = f(x) cos Qt. (3)
By the action of a concentrated harmonic force F(¢) at a position &, the load p(x, ¢) is given as
px, 1) = d(x — &)Fycos Qt 4)
and by the action of a harmonic moment load M(7) at a position £, the load p(x, ¢) is given as
p(x, 1) = &' (x — £)My cos Qt, (5)

where d(.) is the Dirac delta function.
Since the beam is damped, it is recommended to write Eq. (3) in the complex form

EIW" 4 wiv + row + rpp"”" = f(x)e', (6)
where 1 = 4/—1 is the imaginary unit and
v(x, 1) = Re{w(x,1)}. (7
The solution of Eq. (6) is assumed in the form
w(x, 1) = X(x)e'. (8)
Substituting this solution into Eq. (6) and dividing by €'’ yields
X" Y = S(x) 9
AT E i) ©)
where
Q@ —ir,Q
4 _ u (10)
(EI +ir;Q)
The solution of Eq. (9) may be given as
L
X = [ 160 (an
0

where L is the length of the beam and G(x, ¢) is a Green function which is to be determined. Since
a Green function of a beam is its response due to a unit concentrated force acting at an arbitrary
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position &, we write Eq. (9) in the form

o(x -9

X//// 4 X = i
AT BT in0)

(12)
to get the desired Green function.

Although any method for solving differential equations of the form given in Eq. (12), for
example the method of variation of parameters or the method of undetermined coefficients, may
be used to obtain the desired Green function, in this work the method of Laplace transform will
be used since this method seems to be easier to use. The Laplace transformed solution of Eq. (12)
with respect to position variable x is

1 e %
(s* — k) | (EI +ir;Q)

X(s) = +5°X(0) + s°X'(0) + sX”(0) + X" (0) |, (13)
where s is a suitable transform parameter which is in general a complex variable and X(0), X”(0),
X"(0), and X"(0) are the values of the function X and their derivatives at x = 0. In general, only
two of these conditions are known for beam problems with homogeneous boundary conditions.
Therefore, the two unknown conditions will be left as parameters which can be then evaluated by
applying two boundary conditions at x = L to the obtained inverted solution. The inverse
transform of Eq. (13) is found to be

Py(x — Hu(x — &) X'(0)
3(E[ + il",‘Q) + X(0)¢1(x) + K

//(O) X//I(O)

X(x, Q) = $2(x)

$3(x) +

P4(x), (14)

where u(x) is the unit step function and

$1(x) = H(cosh kx + coskx), ¢,(x) =I(sinhxx + sin kx),

15
$3(x) = H(cosh kx — coskx), ¢y(x) =3(sinh kx — sin kx). 13
Eq. (14) represents the sought Green function of Eq. (1), i.e.,
G(x, &) = X(x,8). (16)
Knowing that
¢/1 =Ky ” = K2¢3 m = 3‘152
d’/z = K¢, 2 = K2¢4 /2” = K3¢3 (17)
<l5/3 = K¢, 3 = K7¢, d’/s” = 1y
d)il = K3 ‘154 = K2¢2 ¢Z/ = K3¢1
then the first, second, and third derivatives of X (x, £) with respect to x for x>¢ are
$3(x = 9)
X’ == 7 1 kX X’
)= i T 06+ X0 ()
// 0 X/// O
N L e) (18)
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X8 = S X O30 + kX Oy
X000+ P, (19)
<l>1(x 9)

X"(x, &) = + 12 X(0)(x) + K2 X" (0)3(x) + kX" (0)a(x) + X"(0)1 (x).  (20)

(EI + ir:Q)

The relationship between the boundary vectors of the left-hand end (x = 0) and the right-hand
end (x = L) of the beam are obtained using Egs. (14), (18)—(20):

Pr(L)  P3(L)  py(L)T]

L
Rl MO IR (OR I ((RVIE
R PO B PR on

oLy | | X' (O X"(L) - f3($)
K2¢3(L) kP (L)  ¢y(L) ZK X" (0) X"(L) — f4(¢)

_K3¢2(L) K2¢3(L) Kpy(L) ¢y(L) ]

or
TX, = Xy, — f, (22)
where
(L =9) (L= 9)
Ne) = 1W3(EI + ir;Q) S0 = K2(EI + ir;Q)
o (L —=0) o (L= 9)
S0 = W(ET £ ir,Q) Jf14(Q) = E 10 (23)

The Green function for a certain beam may be now determined using Egs. (14) and (21) and
appropriate boundary conditions. As an example, a simply supported beam is considered.
Because the deflection and the internal bending moment of this beam must vanish at x =0, i.e.,
X(0) = EIX"(0) = 0, then the first and third columns of the matrix T may be omitted. On the
other hand, since the slope (X’) and shear force (EIX") are unknown at x = L, the second and
fourth rows of the matrix T may be ignored. Knowing that X (L) = X”(L) = 0, Eq. (21) becomes

$o(L)  Pu(L) _ Pa(L — )
i 13 X'(0) _ K3(EI + ir;Q) (24)
k(L) Po(L) | | X(0) _ $(L =9
4 K K(EI + 1r;Q)
Solving this equation yields for the unknown conditions
N 1 Pa(L)Po(L — <) — $o(L)¢a(L — )
YO~ S@mTrme) $2(L) — $3(L) 22
Yoy — L BB~ O = (DL~ ) 6

EIl +ir,Q $3(L) — p3(L)
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With X’(0) and X"(0) defined in Egs. (25) and (26), the Green function for a simply supported

beam is obtained from Eq. (14) as

Pa(x = Hu(x = &)  X'(0) X"(0)
K3(EI + ir;Q) + K $al) + K3

Using Egs. (15), (25) and (26) yields

G(x,0) =

G(x, &) =

D4(x).

m[sin hk(x — &) — sin k(x — OJu(x — &),

N 1 sin xx sin Ak L sin k(L — &) — sin hxcx sin L sin hx(L — £)
2K3(EI + ir;Q) sin kL sin hkL ’

or in the more familiar form

sin kx sinh kL sin k(L — &) — sinh kx sin kL sinh k(L — &)  x<¢,

G(x,0) = A{

sin k& sinh kL sin k(L — x) — sinh k¢ sin kL sinh k(L — x) ¢<x,

where
4 1
~ 2K3(EI + ir;Q) sin kL sinh kL'

(27)

(28)

(29)

(30)

Table 1 includes Green functions for beams with different boundary conditions derived by using

Egs. (14) and (21) and appropriate boundary conditions.

3. Green functions of beams with elastic boundary conditions

Consider a beam supported on torsional and translational springs at both ends. The torsional
and translational spring constants at the left-hand (right-hand) end of the beam are denoted by
kr: (kgry) and kp(kg), respectively. The boundary conditions of this beam at the left-hand side

Table 1

Green functions for different Euler—Bernoulli beams

Beam type G(x,¢)

Pinned-pinned Chy(x — Hu(x — &) + Clg1(E)d4(x) + g2(E)r(x)]
Fixed—fixed Cy(x — Hu(x — &) + Clg3(E) P4 (x) + ga(E)p3(x)]
Fixed-pinned Coy(x — Ou(x — &) + Clgs(E)da(x) + go(S)p3(x)]
Pinned—fixed Chy(x — Hu(x — &) + Clgr(E)d4(x) + gs()o(x)]
Fixed—free Cy(x — Hu(x — &) + Clgo(E)4(x) + g10(E)P3(x)]
Free—fixed Cy(x — Hu(x — &) + Clg11(E)hr(x) + g12(E) Py (¥)]
Pinned-sliding Cy(x — Hu(x — &) + C[g13(E)Pa(x) + g1a(E) P (x)]
Fixed-sliding Cy(x — Hu(x — &) + Clg15(£)Pa(x) + g16(E)P3(x)]
Sliding—free Coy(x — Ou(x — &) + Clg17(E)P3(x) + gis(E) (X)]
Pinned—free Cpy(x — Hu(x — &) + Clg19(E)Pa(x) + g20(E) P ()]
Sliding—sliding Cy(x — Hu(x — &) + Clg21(E)P3(x) + g (O (x)]
Free—free Cy(x — Hu(x — &) + Clg23(E)d1(x) + g24(D) 1 (¥)]
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(x = 0) are given as
V=—kv, M=k (31)
and at the right-hand side (x = L) as

V = kRU, M = —kR[l)/, (32)

where V' = EIV" is the shear force and M = EIV" is the bending moment of the beam. Using the
product solution v(x, ) = X (x)7T'(¢) and their derivatives, One obtains for the boundary conditions
atx =20

—EI
X(0) = ——X"(0),
5 (33)
X'(0) = X”(O)
and at x =L
xa="21 LXL)
EI (34)

X/(L) - k_RtX//(L)

Using Eqgs. (14), (18)—(20), (33) and (34) yields the unknown boundary conditions at x = 0

X(0) flc(f) (35)
X'(0) = {i(é) (36)
" o kLlf2(é)
X®_Hwﬁ 37
X///(O) _ _klfl(é) (38)

EIC, °
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where
C1 = — $1(LNED k*(kp + kp)(kr, + KL.)
+ EIC [ (L)dy(L) — 3 (L)pa(LNED k4 (kps + kpe) — kpikre(kp + kg)]
— EIK[¢,(L)py(L) — do(L)p3(DI(ED 16k, + k) — kpkr(krs + kro)]
+ (EI)[¢3(L) — ¢3(DNi*k ik gy — kgl
— PIDIED K — (ED*k*(kpikg + kikr) + kpkpkpkr]
+ oy (D) (DIED K® + (EIic*(k Lk + krkre) + kpkrkpik g, (39)

S1(©) =lkrpy(L — &) — EISC (L — ONEIK(kr, + kr)py (L) + ik ripr(L)
+ (EI1) py(D)] — [Elcdy(L — &) + kreps(L — O Elckrepy(L)
— (ED*k* = kpkr)ps(L) — ENCkriy(L)], (40)

S(E) =Tkropy(L — &) — EIF (L — ONETkkdo(L) — (EIk* — kpkr)ps(L)
— EIC kg4 (D)) + [ETkpo (L — &) + kreps(L — ONEIS (kp, + kr)p (L)
— (EI*k8 (L) — krkrey(L)]. 41)

Substituting Egs. (35) to (38) with Cy, f1(£), and f>(&) defined in Eq. (39) to (40) into Eq. (14) yields
the Green function of a beam with elastic boundary conditions:

_yx = Dulx — &)
X == 5 E 1 i)

BEICS)

1 k
4 000+, T

EI@3

k(@)
ot )| (42)

$5(x) —

In order to obtain the Green function for a certain beam, we let the stiffness constants at the right-
hand and/or the left-hand ends of the beam go to zero or infinity. Consider, for example, a beam
fixed supported at the left-hand end and elastically supported in translational direction at the
right-hand end. To obtain the Green function of this beam from the equations above, let k; and
kr, go to infinity and kg, go to zero. Doing so, one obtains for the unknown boundary conditions
at x =0:

X(0) = X'(0) = 0,

[krpa(L) — EIE§y (D] (L — &) + ¢o(DEIR ¢y (L — &) — krpy(L — &)]

X/I 0 _
© EIK[EIG $1(L) — krpi(L)pa(L) + $o(L)(krep3(L) — EI3 dy(L))]

. (43)

[EI5 §4(L) — krp3(D]do(L — &) — p(DEIR (L — &) — krpy(L — a1
EIEIS$I(L) — kri(L)da(L) + do(L)(krep3(L) — EIE y(L))]

Substituting these values into Eq. (14) yields the desired Green function.

X"(0) = (44)
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4. Numerical examples and discussion

The following examples demonstrate the use of Green functions for determining the dynamic
response of different beams

4.1. Statically indeterminate cantilevered beam

In this example a cantilevered beam with intermediate simple support as shown in Fig. 1 is
considered. The dynamic response of this beam was studied by Giirgéze and Erol [13]. They used
for the solution the receptance matrix method, which uses an approximate series solution and
therefore yields an approximate solution. In order to prove the validity of this method, they used a
solution through boundary value problem formulation. In doing so, they divided the beam into
three portions and used a product solution for each portion. This leads to a solution with twelve
unknown coefficients, which may be determined from the boundary and continuity conditions.
Although this method gives an exact solution, it is circumstantial and time-consuming. The use of
the Green function method as we see in the following, gives an exact solution and leads to the
same results but in a simpler and faster way. By applying this method the support reaction at B
was considered as an external force, which can be determined from the condition v(a, ) = 0 after
the dynamic response of the beam has been found. Since the exciting load ((F cos ¢)) is harmonic
and the studied beam behaves linearly, the reaction at B must be harmonic. Thus, the load may be
given as

p(x,t) =[Fo(x — b) — Bé(x — a)] cos Qt = f(x) cos Qt. (45)

The Green function of a cantilevered beam is obtained from Table 1 as

G(x. &) = 1 — Dulx — &)+ go(Dby(x) + 910(Os ()] (46)

with g9(&), g10(£) defined in the appendix and ¢;(x), ¢,4(x) defined in Eq. (15). Substituting f(x) as
given in Eq. (45) and Eq. (46) into Eq. (11) yields

1 L
X(x) :@/o P4(x — OIFO(C — b) — Bo(E — a)]u(x — &) d&

L
o | 0000 + g NFEE - b) - BoGE - ) )

The evaluation of the first integral in this equation gives three solutions depending upon the
product of the step and the delta-functions. This product gives for all £ over the interval 0<Eé< L

V(X,t)
FcosQt

A 4

Fig. 1. Statically indeterminate cantilevered beam.
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the value of 0 for 0<x<a, —B( — a) for a<x<b, and Fo(é — b) — Bi(E — a) for b<x<L.
Thus, using the relation

0 for ¢é<a<fp
/ FO(x — 9 dx={ f(2) for a<i<p (48)
0 for a<f<¢
One obtains for the first integral in Eq. (47)

0 for 0<x<a
B
Ii(x) = _3—EI¢ (x—a) for a<x<b (49)
3EI[Fq54(x —b) — Bpy(x —a)] for b<x<L
The second integral in Eq (47) can be readily evaluated by using Eq. (48)
L) =72 F199(0)h4(x) + g10(0)p3 ()] — Blgs(@)a(x) + gro(@)3 ()]} (50)
Combining the obtained results in Egs. (49) and (50) gives for the dynamic response of the beam
bL(x) for 0<x<a
o(x, 7) = cos @t 1(¥) = 3E1¢4(x a) for a<x<b (51)
L(x) + —=F¢s(x —b) — Bpy(x —a)] for b<x<L

3EI

The unknown support reaction B may be now obtained from the condition v(a, f) = 0. This gives
for B the value

_ [99(0)¢4(@) + g10(D)p3(a)]
[99(@)p4(@) + gro(@)p3(a)]

In order to compare the results obtained from Eq.(51) with those in Ref. [13], the non-
dimensionalized displacement (&(x, ) = v(x,?)/(FL?/EI)) of the beam at three positions
(x=0.5L, x=08L, x=L) are plotted in Fig. 2 for values given in [13]; namely: Q =
5\/EI/uL* b= L, and a = 0.1L. The amplitudes are found to be 7, (x = 0.5L) = 0.1618507,
Tmax(x = 0.8L) = 0.3790165, and b,,,,(x = L) = 0.5304795. Comparison of these values with those
given in Ref. [13, Table 1] yields excellent agreement.

(52)

4.2. Comparison of Green functions solution with series solution

In order to compare the method of eigenfunction expansion with the method of Green
functions, an undamped cantilevered beam acted upon by a force Py cos Q¢ at the right-hand side
is considered. For that, the dynamic deflection of the beam at x = L and the bending moment and
shear force at x = 0, will be calculated using both methods and compared with each others. A
cantilevered beam is chosen to make the difference between both methods clearer, because the
series solution of beams others than simply supported converges slower [3]. Using the
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0.6
~, N\
0.4 7.\ /.

7 [ /
zozt ) V3 /
S WA W
= /I U ) f

-0.2 ’I:/ \:‘\ ,’/'/ “‘\ I’,l/

i ,f}/ N7/
0l - N

J \~/ \\/'
-0.6

0 0.01 0.02 0.03 0.04

Fig. 2. Dimensionless dynamic deflection versus time of the beam shown in Fig. 1 at three positions: (——) x = 0.5L,
(----)x=08L,(— - —) x=1L.

eigenfunction expansion, the deflection of the beam is given in series solution as

v(x, 1) = ZOO: ¢ Xy(x) cos Qt, (53)
n=1

where X,(x) is the nth eigenfunction of the cantilevered beam given as
sin 4,L + sinh 4, L

X,(x) = sin J,x — sinh Z,x — cos L 1 cosh AL \ cos A,x — cosh 4,,x) (54)
and
Py X, (L
I 2. )2 (55)
my(wy — Q)
is the nth expansion coefficient where
L
m, = u / X2(x) dx (56)
0

is the generalized mass and w,, is the circular eigenfrequency of the beam associated with the nth
mode. The used eigenvalues /, are correct up to 12 decimal places.

On the other hand, the dynamic deflection of the cantilevered beam by means of Green
functions is given as

L
v(x, ) = cos Ql/ f(OG(x,¢)de, (57)
0
where (&) = Pyd(¢ — L) and G(x, &) is obtained from Table 1 as
6.8 = P &) 4l 04) + 910( () (58)

with g9(£), g10(¢) defined in the Appendlx and ¢;(x), ¢4(x) defined in Eq. (15). Substituting (&)
and G(x, &) into Eq. (57) and carrying out the integration yields

0, 1) = = Ao (L)$4(x) + gro(L)3(x)] cos Q1. (59)

3EI
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Table 2
Non-dimensionalized amplitudes of dynamic deflection 7, at x = L and non-dimensionalized amplitudes of bending
moment M,,,, and shear force V. at x = 0 for a cantilevered beam

Emax MWI(L\’ I/Y‘H(IX
Green functions solution (exact) 6.6885 7.6624 10.1581
Series solution: n = 1 6.6586 7.8039 10.7422
n=2 6.6839 7.6184 9.8550
n=3 6.6871 7.6834 10.3653
n=4 6.6879 7.6503 10.0012
n=>5 6.6882 7.6703 10.2843
n=10 6.6885 7.6604 10.0946
n=20 6.6885 7.6619 10.1253
n =30 6.6885 7.6622 10.1359
n =40 6.6885 7.6623 10.1412
n=>50 6.6885 7.6623 10.1444

The bending moment M (x, ¢) and shear force V'(x, f) are obtained from Egs. (53) and (59) through
differentiation with respect to x as

M(x, 1) = EIV"(x, 1), (60)

V(x, 1) = EIV"(x,1). (61)

To make numerical calculations, the following data are used: L =2m, = 117.45kg/m, EI =
640625 Nm?, and Q = 60 rad/s.

In Table 2, the non-dimensionalized amplitudes of dynamic deflection (7,,,,), bending moment
(M,ux) and shear force (V,,..) are given, where

Umax (L) v MYH(IX (0) I_/ _ Vmax (0)

B = ) = : - 62
Umax (POL3/3EI) max POL max PO ( )

In the first row of Table 2, the exact values are given. These are obtained from the Green functions
solution. In the remaining rows partial sums for several terms of the series (53) and their
derivatives multiplied by EI are set out. As the table indicates, the convergence of the series
solution is comparatively very fast for the dynamic deflection, but much less so for the bending
moment, and particularly for the shear force. That is because each differentiation of the dynamic
deflection with respect to x impairs the convergence of the series [3].

4.3. Cantilevered beam with elastic support

As a third example, a damped cantilevered beam with elastic support at the right-hand end as
shown in Fig. 3 is presented. The Green function of this beam may be given as

G(x, 1) = Coy(x — Qulx — ) + h1(Dd3(x) + ha(S)py(x), (63)
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Fig. 3. Fixed elastic-supported beam.
where C is given in the appendix and
X// X///
=0, X0 (64)

K K

with X”(0) and X”(0) defined in Eqgs. (43) and (44), respectively. The acting load is
given as

p(x, 1) = 8'(x — L/2)My cos Qt. (65)

According to Egs. (8) and (11), the dynamic response of the damped beam may be given in the
complex form

w(x, ) = Mye /OL 8'(& — L/2)G(x, &) d¢, (66)

where the real-valued dynamic deflection corresponding to Eq. (7) is given as v(x, t) = Re{w(x, ?)}.
Making use of the relation

Ji 8"(E = b)f (&) dE = (=1)'f"(b) a<b<c (67)
gives for the complex dynamic deflection
iQt
WO 1) = S o~ L/~ L) + (L6500 + 1oL/ D), (69)

where

[krpa(L) — EIE§y (D] (L — &) + o(DEIR $y(L — &) — krp3(L — )]
EIGHH(L) — kry(L)ds(L) + do(L)krps(L) — El>py(L)]

[ED15 y(L) — krd3 (D] (L — &) — p(DEIR dy(L — &) — krps(L — 9
EIGHH(L) — kri(L)ps(L) + po(L)krps(L) — EI>py(L)]

In order to make numerical calculations, the following data for the beam are used: beam length
L = 2.5m, width of the beam’s cross-section » = 300 mm, height of the cross-section # = 50 mm,
density of the used material p = 7830 kg/m?, and modulus of elasticity E = 205 (10°) N/m?>. Using
these values yields for the flexural rigidity EI = 640625 Nm? and for the mass per unit length
w=117.45kg/m. In Table 3, the first five circular natural frequencies for different values of

ri(§) = . (69)

r(S) = (70)
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Table 3
The first five natural frequencies of the beam shown in Fig. 3 in rad/s for different values of dimensionless stiffness
k = kr/(72EI/L%)

k w1 s w3 w4 ws
0 41.548 260.375 729.056 1428.659 2361.676
0.1 73.925 268.338 731.842 1430.072 2362.529
0.25 100.444 280.988 736.124 1432.214 2363.816
0.5 125.176 302.865 743.528 1435.844 2365.978
1 148.083 344.552 759.266 1443.322 2370.369
2 163.994 409.008 793.626 1459.150 2379.424
5 174.792 500.846 899.350 1512.858 2408.760

0 182.192 590.419 1231.862 2106.556 3214.503

stiffness kg are set out. These frequencies are obtained by using the frequency equation

3 kgL’ (cos /sinh A — sin 4 cosh A)
AT =

1
EI (1 + cosAcosh 4) 70
where
wn = (An/L)*\/EI /1. (72)

The frequency Eq. (71) is obtained by setting x = A/L in the denominator of Eq. (69) or Eq. (70)
and then equating it to zero.

The first and last rows in the table give the natural frequencies of a cantilevered beam (kg = 0)
and a fixed-pinned beam (kg = o0), respectively. The table shows that increasing the stiffness kg
leads to an increase in the natural frequencies. Furthermore, the effect of this stiffness on the
lower frequencies is greater than on the higher frequencies.

Fig. 4 shows the dimensionless dynamic deflection & = v/v;,4y at X = X4y for different values of
the dimensionless stiffness kK = kg/ky and different excitation frequencies Q, where vy, Xmax, and
ko are defined as

M,yL?

= — P = 3
Umax = = mps Xmax 2L/3, ko=T2EI/L". (73)

The quantities v,,,, and x;,,,, are the maximum static deflection of a fixed-pinned beam (kg = o0)
due to a static moment load acting at x = L/2 and the position at which v,,,, occurs, respectively.
The figure shows clearly the effect of the stiffness kg on the dynamic deflection of the beam.
Varying the value of this stiffness leads to increasing or decreasing the amplitudes of the dynamic
deflection of the beam. This is dependent upon, weather the natural frequencies of the beam
thereby approaches the excitation frequency @ or they will be removed from it.

Fig. 5 shows the dimensionless dynamic response of the beam at x = x,x due to the acting
moment for the excitation frequency Q = 160rad/s, the stiffness ratio k = 1, and different values
of damping {, where only the external damping r,, is considered (r; = 0). For that, a damping ratio
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Fig. 4. Dimensionless dynamic deflection versus time of the beam shown in Fig. 3 at x = 2L/3 for different frequencies
and different dimensionless stiffnesses: (a) 2 = 120rad/s, (b) © = 160rad/s, (c) 2 = 200rad/s, (d) @ = 250 rad/s; (—)
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Fig. 5. Dimensionless dynamic deflection versus time of the beam shown in Fig. 3 at x=2L/3 for different values of

damping: (——) {=0,(----) (=0.05,(— - —) (=01,(— -- —){=0.2.

1s defined as

Ta

{= T

(74)

where w; is the first natural frequency of the considered beam and is equal to 148.083 rad/s in the
studied case. The figure shows that the damping ratios { = 0.05, 0.1 and 0.2 reduces the
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amplitudes of the deflection down to 84%, 61% and 37% of the amplitude without damping,
respectively.

5. Conclusions

A method for determining the dynamic response of damped Euler—Bernoulli beams is
presented. This method is based on the use of Green functions and yields exact solutions. It can be
used to study the dynamic behavior of single and multi-span beams, single and multi-loaded
beams, and statically determinate and indeterminate beams. Also Green functions for different

beams are given. To verify the analysis performed, three numerical examples are presented and
discussed.

Appendix A

_ D)oL — &) — $y(L)py(L — &)
o) SAL) — $A(L) 92 SAL) — $A(L) ’
gu(e) = DL =) = (DI (L =9 o GaLDIds(L = O = (L)L =

$3(L) — po(L)p4(L) ’ $3(L) — po(L)p4(L) ’

gu(e) = DDA =) =y (LdsL =) 1 PulDIpa(L = O = o)L = )
do(D)p3(L) — o (D)pg(L) do(D)p3(L) — o (D)pg(L)

g = DAL =) = oLy (L =) o PulDIps(L =) = dy(L)pulL = &)
do(D)p3(L) — o (L)pg(L) do(D)p3(L) — o (D)py(L)

po(e) = PDOL =D = pDYL =9 o dD(L =& = h(L)ds(L =
GT(L) — P (L)py(L) ’ PT(L) — po(L)p4(L) ’

 u(D)py(L — &) — ¢ (L)5(L — &)  a(D)p3(L— &) — ¢ (L)dy(L — &)
gu(é) = 5 , gl = 5 ,

GT(L) — po(L)p4(L) GT(L) — po(L)p4(L)

@) = BDHL =D =g DpL =9 o oL~ = (L5 — O
¢1(L) — P3(L) ’ ¢T(L) — P3(L) ’

gis(e) = PDHL =D = pDYL =9 o d(DL =& = (Lds(L =
O (L)po(L) — p5(L)pg(L) O (L)py(L) — p5(L)pgy(L)
o) = DAL =D = DL =9 o dudDdoL =) = hi(Ldi(L = &)

1

C=—
K3(EI + ir,Q)

Pa(L)py(L — &) — pa(L)Pa(L — &)

1 (L)pa(L) — ¢p3(L)py(L)

D1 (L)pa(L) — ¢3(L)py(L)
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P4(L)py (L — &) — ¢3(L)Pa(L — Q) D1 (L)Py(L — ) — ¢r(L)y (L — ©)

9900 = Do) — 6 (Ddu) PO T D) — b (DbuL)
oy = BB O DL =) GO b (L = O
P — L) P — L)
oy DAL= DL =D DL =) Ly &)
P3D) — Do L)y(L) $3D) — Do L)y(L)
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