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Abstract

Appropriate researches on non-linear panel flutter behaviour have been already performed by many
authors. In most cases the intent of them focuses on the limit cycle determination, with particular interest
towards its amplitude versus the flow dynamic pressure. This paper deals first with a study of all the
solutions without damping of beam flutter versus the vibration frequency in non-linear post-critical
conditions. A numerical model, which takes into account the influence of the non-linear contribution of the
structural forces, due to the axial stretching of the beam, has been implemented. A complete analysis of all
the possible non-linear solutions without damping leads to the possibility of characterizing the most
appropriate conditions for the presence of the post-critical panel flutter limit cycles. Then the complete
model, which also takes into account aerodynamic damping, has been utilized, according to the ‘‘Piston
Theory’’, to verify the state evolution of the fluttering damped beam towards the limit cycle, which is very
near to the undamped vibrating beam state with minimum amplitude. This convergence test is an
interesting aspect of the numerical results.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The subject at hand has already been treated by many authors and different numerical
algorithms have been set-up for its solution.
Dowell [1,2] applied the Galerkin method [3,4] to integrate over the panel surface and to arrive

at a system of non-linear differential equations in time.
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Kuo et al. [5] likewise applied the Galerkin method to limit the variable dependence on time and
utilized trigonometric functions to set-up two systems of equations, whose unknowns are the
vibration frequencies and the temporal coefficients of the describing functions.
Smith and Morino [6] were interested in the general theory of the stability analysis of non-linear

differential systems and built an algorithm, which was applied to the particular case of non-linear
flutter of panels in post-critical conditions.
Also the finite element method (FEM) [7,8] has been utilized for flutter analysis of both

isotropic and composite materials [9], using unsteady third order piston theory aerodynamics
[10,11].
In this work a numerical procedure [12–14], which arises from the Rayleigh–Ritz method [3,15],

has been applied and developed. Since the boundary conditions of the structural problem are
homogeneous, both linear and non-linear structural forces are conservative [4,16] and it is possible
to form their potential function. The knowledge of this, along with the kinetic energy and
aerodynamic forces, allows the application of the Lagrange equations [16] in order to arrive at a
system of differential equations in time. There are appropriate algorithms for the step-by-step
integration process.
It is possible to find the area, where there exists possibility of a limit cycle, from the behaviour

of the modal shape amplitude verses the frequency of the beam flutter without aerodynamic
damping, which lies in the neighbourhood of the solution with minimum amplitude.
Two cases of a simply supported and clamped beam, respectively, have been considered. It has

been possible to verify the presence of the limit flutter cycle in this area, by utilizing the complete
model which takes into account also the aerodynamic damping.
To validate the results of the Ritz procedure, the Galerkin method has been employed in the

simply supported beam case, as in Dowell’s model [1,2], whereas FEM has been used also in the
clamped beam case.

2. Mathematical model

A vibrating beam, simply supported or clamped at both ends, and exposed to a high supersonic
flow along the axis x; must be considered, as in Fig. 1.
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Fig. 1. Beam, simply supported or clamped at both ends, exposed to an high supersonic flow.
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The beam flutter constitutive equation, taking into account also the non-linear structural
contribution, due to axial stretching, reads [1,17]

EI
@4w

@x4
þ m

@2w

@t2
� Nx

@2w

@x2
þ pzbw ¼ 0; ð1Þ

where I is the flexural moment of inertia, E is the modulus of elasticity, m is the beam mass per
unit length, wðx; tÞ is the flexural displacement, and bw is the beam width. The geometric boundary
conditions must be imposed, for which the flexural displacement vanishes at both ends, but in the
case of clamped beam also its first derivative with respect to x vanishes. If the Galerkin method is
utilized in the simply supported beam case, also the natural boundary conditions must be
imposed, for which also the flexural displacement second derivative with respect to x vanishes at
both ends. The resulting axial strength Nx [17] is

Nx ¼ EAs
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where uðx; tÞ is the axial displacement, and As is the beam cross-sectional area. The aerodynamic
pressure pz according the quasi-steady high supersonic theory [1,10], can be written as

pz ¼
2q
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where the notation is defined in Appendix D. This has been obtained by the ‘‘Piston Theory’’ of
an high supersonic idealized flow. The first term give rise to coupling between different vibrating
modes, whilst the second term is the aerodynamic damping, which is not considered when the
undamped vibrating beam solution is requested.
Together with Eq. (1) the axial equilibrium equation has to be considered [17]:
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because there are not axial distributed forces and the section area As is supposed constant. Thus it
is true that the axial strain

exðtÞ ¼
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together with the resulting strength Nx; are constant along the axial beam co-ordinate x, but with
the inherent in time non-linearities.
Since ex is constant versus x and uðx; tÞ ¼ 0 for x ¼ 0 and L; integration of Eq. (5) leads to
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Consequently, the axial strain is equal to half of the mean square value of the first derivative
@w=@x; that is

exðtÞ ¼
1

2

@w

@x

� �2

: ð7Þ
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Thus, Eq. (1) can be also written as
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and in non-dimensional form
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x ¼
x

L
; W ðxÞ ¼

w

L
; l ¼

mL4

EIT2
o

; sd ¼
sL3

EI
; ð9bÞ

t ¼
t

To

; a ¼
AsL

2

I
; g ¼

cdL4

EITo

; ð9cÞ

where To is a reference time. A series expansion for W ðxÞ in the form

W ðx; tÞ ¼
XN

i¼1

WiðtÞfiðxÞ ð10Þ

is assumed, where fiðxÞ are polynomial functions satisfying only the geometric boundary
conditions, as in the Ritz method [3,15].
The repeated indices rule will be utilized in the following equations. It is possible to build the

potential of the linear structural forces, corresponding to the fourth derivative of W with respect
to x in Eq. (9a), which can be written as

Ul ¼ 1
2

kijWiWj; i; j ¼ 1; 2;y;N; ð11Þ

where the stiffness matrix elements kij have been already determined [13]. The kinetic energy can
be written as

T ¼ 1
2

mij
’Wi

’Wj; ð�Þ ¼ @ðÞ=@t; i; j ¼ 1; 2;y;N; ð12Þ

where mij are the mass matrix elements:

mij ¼ lcij ð13Þ

and cij are the coupling elements between the describing functions:

cij ¼
Z 1

0

fiðxÞfjðxÞ dx; i; j ¼ 1; 2;y;N ð14Þ

likewise previously determined [13].
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If expression (7) of ex and the series expansion (10) are taken into account, one obtains
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where
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which can be computed as shown in Appendix A.
Since the strain in Eq. (15a) is constant throughout the beam length, the potential of the non-

linear structural forces, corresponding to the fourth term in Eq. (9a), can be easily evaluated and
written as
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If the Lagrangian L [16] is introduced:

L ¼ T�Ul �Unl ; ð17Þ

the generic ith constitutive equation reads

dð@L=@ ’WiÞ
dt
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where F
ðaÞ
i are the generalized aerodynamic forces acting on ith degree of freedom, corresponding

to the generic coefficient Wi of the flexural displacement W series expansion (10), which can be
written as

F
ðaÞ
i ¼ aijWj þ gcij

’Wj; j ¼ 1; 2;y;N; i ¼ 1; 2;y;N: ð19Þ

The first term on the right-hand side of Eq. (19) corresponds to the third term in the constitutive
equation (9a), containing the first derivative with respect to x; and give rise to coupling between
different flutter vibrating modes. If the series expansion (10) is taken into account, it is true
that [13]

aij ¼ sd

Z 1

0

fiðxÞ
@fiðxÞ
@x

dx: ð20Þ

The second term is the aerodynamic damping, and corresponds to the last term in Eq. (9a).
Thus if the expressions of the linear and non-linear structural forces potential, (11) and (16),
respectively, together with the kinetic energy expression (12) and the generalized aerodynamic
forces F

ðaÞ
i expression (19), are substituted into Eq. (18), one obtains

kn

ij þ
a
2
jijjklWkWl

h i
Wj þ mij

.Wj þ gcij
’Wj ¼ 0; j ¼ 1; 2;y;N; i ¼ 1; 2;y;N; ð21Þ
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where the elements

kn

ij ¼ kij þ aij ð22Þ

take into account both the linear structural and aerodynamic forces [13]. The matrix ½B� of the
elements

bij ¼ kn

ij þ
a
2
ðjklWkWlÞjij ð23Þ

and the mass matrix ½M� are introduced. The column vectors ½W� and ½Z� of the series expansions
(10) coefficients Wi and their first derivatives ’Wi versus time t; respectively, are also introduced. If
Eqs. (13) and (14) are taken into account, the system of equations in time (21) is equivalent to the
system written in normal matrix form:

½Z� ¼ ½ ’W�;

½ ’Z� ¼ �½M��1½B�½W� �
g
l
½Z�: ð24Þ

There exist good algorithms for the integration in time, which can give accurate results.
In the simply supported beam case, it is easy to apply the Galerkin method for solving the

differential equations in x; and then to start the integration process in time, as in Dowell’s model
[1]. This is reported in Appendix B.
Also the FEM can be utilized to find a solution of the differential problem in the axial

coordinate x; and reduce the dependence only on time, as shown in Appendix C.

3. Applications and results

The computational algorithms have been applied in two cases of a beam, with both
simply supported and clamped ends (as shown in Fig. 1). The ratio between the beam length L
and its thickness h is supposed equal to 100, and consequently the non-dimensional parameter a is
equal to 120 000. For the number N of the describing functions in Eq. (10), it has been chosen
N ¼ 8:
Different from the linear case, for a pre-established dynamic pressure, there are infinite

solutions for a vibrating mode, which can vary in a frequency range with continuity, and there is
correspondence between the amplitude of a vibrating mode with its frequency, that is each
frequency has its amplitude.
First the case of a simply supported beam is considered. In Fig. 2 the behaviour of the

amplitude am;multiplied by 100, of the first two vibrating modes without damping versus the non-
dimensional frequency parameter od ; which is connected with the true frequency via the following
relation

o2
d ¼ o2 mL4

EI
ð25Þ

is shown with a continuous line for sd ¼ 800: Both modal shapes start from the frequency omin;
where they coalesce, and continue to diverge versus od : Such behaviour has been obtained by the
data points in Table 1, which in Fig. 2 appear as dots.
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It is interesting to remark that in the lower amplitude mode the first derivative @W=@x at x ¼ 0
of the bending displacement, chosen as a variable parameter characterizing the modal shape, at a
frequency a little smaller than oI is positive and very little, becomes zero for oI ¼ 45:06 and then
becomes negative for od > oI ; but its modulus grows with the frequency. This can be deduced
from Figs. 3 and 4, where both modal shapes for od ¼ 44:04 and 48.32, a little lower and higher
than oI ; respectively, are shown. Consequently, from oI and over there is a second half-wave
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Fig. 2. Behaviour of the modal shape amplitude am 	 102 versus the frequency parameter od of the simply supported

undamped beam, and the evolution of the damped beam vibration state towards the limit cycle.

Table 1

Values of the modal amplitude am 	 102 versus the non-dimensional frequency parameter od in the simply supported

beam case

od am 	 102

71.19 5.05

65.66 4.61

56.39 3.83

52.75 3.50

48.32 3.06

44.04 2.55

41.35 2.03

41.11 1.92

41.00 1.81

41.06 1.69

42.04 1.42

44.04 1.22

48.32 1.03

52.75 0.99

56.98 1.01

66.63 1.20

71.19 1.31
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negative. This above-mentioned frequency is particularly important because it separates two
frequency ranges, where there are modal shapes with only one half-wave and two half-waves,
respectively.
As the frequency increases further, the lower modal shape amplitude diminishes till a minimum

in oII ¼ 52:75; then it starts to increase, while the amplitude of the other larger modal shape with
only one half-wave continues to grow indefinitely. In the frequency range oIpodpoII it must be
also pointed out that in this lower mode the negative second half-wave amplitude increases, while
the larger positive half-wave amplitude (which coincides with the whole modal shape amplitude)
decreases. It means that from oI and over, the second natural vibrating mode presence in the
lower mode becomes more and more consistent, besides the first one, while the influence of the
other modes is very small.
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Fig. 3. Modal shapes of the simply supported beam at a frequency a little lower than oI :

Fig. 4. Modal shapes of the simply supported beam at a frequency a little higher than oI :
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The two modal shapes at the frequency oII without damping, corresponding in Fig. 2 to point
U of minimum amplitude and V of the bigger amplitude mode, respectively, are shown in Fig. 5.
In Fig. 6 the lower amplitude mode is the flutter limit cycle modal shape, obtained taking into
account the aerodynamic damping, corresponding to point T of Fig. 2, while the higher amplitude
mode is the same as Fig. 5. From Figs. 5 and 6 it is possible to deduce that the modal shape of the
beam flutter limit cycle (point T in Fig. 2) is nearly coincident with the one of the beam without
damping for od ¼ oII and with minimum amplitude (point U in the same Fig. 2).
In Fig. 2 also the behaviour of the beam flutter state evolution, obtained by the complete model

with aerodynamic damping, towards point T of the limit flutter conditions, very close to point U
of the minimum amplitude undamped solution, is sketched with two dashed lines for two cases
with different starting conditions. The dots in the upper and lower branches of the system
evolution, correspond to different dynamic states of the beam at various values of the
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Fig. 5. Modal shapes of the simply supported beam at the frequency oII without aerodynamic damping.

Fig. 6. Modal shapes of the simply supported beam higher amplitude mode at the frequency oII without aerodynamic

damping, and in limit cycle flutter conditions.
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non-dimensional time t: The corresponding data points have been reported in Table 2. The
aerodynamic damping force is supposed to be equal to 0:005sd@W=@t:
The behaviours of the three frequencies omin; oI and oII versus the dynamic pressure non-

dimensional parameter sd ; are shown in Fig. 7 with three dashed lines, together with the
behaviour sd � od of the linear case with a continuous line. It is quite evident that the behaviours
of omin and oI converge at two points on the left branch of the idealized and linearized model
curve without damping, whereas oII converges towards the critical conditions point of the same
linear beam model. This fact can be explained considering that the minimum mode amplitude at
o ¼ oII diminishes with sd ; and vanishes when this parameter reaches the linear beam flutter
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Table 2

Values of the modal amplitude versus the non-dimensional frequency parameter od at various time instants in the

simply supported beam flutter case with aerodynamic damping

t am 	 102 od

Upper

0.0 58.97 3.82

0.18 48.0 2.6

0.21 46.7 2.2

0.36 46.18 1.93

0.50 47.58 1.54

0.88 52.12 1.15

1.0 52.55 1.13

Lower

0.0 44.07 0.10

0.14 48.87 0.39

0.51 52.55 1.13

Fig. 7. Behaviours of the three frequencies omin; oI and oII versus sd ; and the behaviour of sd versus od of the

linearized model of the simply supported beam.
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critical value, and the non-linear force contribution becomes more and more negligible with the
diminishing modal amplitude.
The data points by which the three behaviours of the simply supported beam have been built,

corresponding to the dots of Fig. 7, are reported in Table 3.
Now the results obtained for the beam clamped at both ends will be analyzed. In Fig. 8 the

behavior of the amplitude am of the first two vibrating modes, multiplied by 100, versus frequency
without damping and in steady conditions, for sd ¼ 1000; is shown with a continuous line, where
the dots are the data points of Table 4. In this case of a beam clamped at both ends, the first
derivative ð@W=@xÞ at x ¼ 0; cannot be a significative parameter because it vanishes at the ends,
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Table 3

Values of the frequencies omin; oI and oII versus the non-dimensional dynamic pressure parameter sd in the simply

supported beam case

sd omin oI oII

800 41.00 45.06 52.75

700 38.17 41.68 49.19

600 35.12 38.16 45.20

500 31.74 34.32 40.86

400 27.90 30.03 35.79

370 34.05

350 27.66 33.08

343.356 32.433

320 26.13

300 23.34 25.06

294.6 24.76

250 20.65

214 18.46

Fig. 8. Behaviour of the modal shape amplitude am 	 102 versus the frequency parameter od of the clamped undamped

beam, and the evolution of the damped beam vibration state towards the limit cycle.
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and the second derivative @2W=@x2 at x ¼ 0 is chosen as a parameter characterizing the modal
shape of the clamped vibrating beam.
It must be pointed out that this parameter of the curvature at x ¼ 0; for the lower amplitude

mode and at a frequency a little smaller than oI is positive and very small, vanishes for oI ¼ 58:15
and then becomes negative for od > oI ; but its modulus grows with the frequency. This can be
deduced from Figs. 9 and 10, where both modal shapes for the two frequencies od ¼ 57:52 and
61.79, a little lower and higher than oI ; respectively, are shown.
As the frequency increases further, the lower mode amplitude diminishes till a minimum at

oII ¼ 68:03; then it starts to increase, while the amplitude of the other larger modal shape with
only one half-wave continues to grow indefinitely. The whole behaviour is very similar to the
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Table 4

Values of the modal amplitude am 	 102 versus the non-dimensional frequency parameter od in the clamped beam case

od am 	 102

84.70 4.33

73.36 3.54

68.03 3.13

61.79 2.55

59.70 2.32

57.52 1.90

57.082 1.72

57.04 1.64

57.21 1.50

57.52 1.41

59.20 1.17

61.79 1.022

68.03 0.911

77.39 1.01

84.70 1.17

Fig. 9. Modal shapes of the clamped beam at a frequency a little lower than oI :
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previous one of the simply supported beam, and the same characteristics of the flutter vibration
versus the frequency can be seen.
The modal shapes at the frequency oII are shown in Fig. 11 in the undamped beam case,

corresponding to points U and V in Fig. 8, respectively, whereas in Fig. 12 the lower amplitude
mode corresponds to the limit flutter cycle of the damped beam (point T in Fig. 8), and the higher
amplitude mode is the same as in Fig. 11. From Figs. 11 and 12 it is possible to emphasize that
also in the clamped beam case the modal shape of the limit cycle flutter solution is nearly
coincident with the corresponding one of a beam without damping for od ¼ oII and with
minimum amplitude (point U of the same Fig. 8).
In Fig. 8 also the behaviour of the beam flutter state evolution, obtained by the complete model

with aerodynamic damping, towards point T of the limit cycle flutter solution, is sketched with
two dashed lines for two cases with different starting conditions, if the aerodynamic damping
force is supposed to be equal to 0:01sd@W=@t: The dots in the left and right branch of the system
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Fig. 10. Modal shapes of the clamped beam at a frequency a little higher than oI :

Fig. 11. Modal shapes of the clamped beam at the frequency oII without aerodynamic damping.
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evolution, correspond to different dynamic states of the beam at various values of the non-
dimensional time t; as reported in Table 5.
It is possible to notice that also in the clamped beam case the fluttering state evolution with

aerodynamic damping converge towards a point T, corresponding to the limit flutter conditions,
which is very close to point U representative of the vibrating beam solution without damping and
with minimum amplitude.
The behaviours of the three frequencies omin; oI and oII versus the dynamic pressure non-

dimensional parameter sd ; are shown in Fig. 13 with three dashed lines. It is evident enough that
the behaviour of omin and oI converge at a point on the left branch of the idealized and linearized
flutter model curve, shown in the same figure with a continuous line, whereas oII converges
towards the critical conditions point of the same linear beam model, like in the simply supported
beam case.
The data points, which appear as dots in Fig. 13, are reported in Table 6.
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Fig. 12. Modal shapes of the clamped beam higher amplitude mode at the frequency oII without aerodynamic

damping, and in limit cycle flutter conditions.

Table 5

Values of the modal amplitude versus the non-dimensional frequency parameter od at various time instants in the

clamped beam flutter case with aerodynamic damping

t am 	 102 od

Left

0.0 46.51 2.15

0.359 54.9 2.02

0.725 57.09 1.89

1.815 66.81 0.993

Right

0.0 87.22 0.0003

0.378 76.03 0.93

2.364 70.57 1.076

8.034 66.81 0.993
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4. Conclusions

This numerical procedure, which utilizes the Rayleigh–Ritz method, is very efficient to
determine approximately all the possible solutions without damping in the frequency range from a
minimum omin and over, after an integration process in time. Also the Galerkin method in the first
case, with N ¼ 20 in Eq. (B.1), as in Dowell’s numerical model [1], and the FEM with NE ¼ 12; in
both cases have been employed in the same solving approach, and the same results have been
obtained, but with a lower convergence rate.
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Fig. 13. Behaviours of the three frequencies omin; oI and oII versus sd ; and the behaviour of sd versus od of the

linearized model of the clamped beam.

Table 6

Values of the frequencies omin; oI and oII versus the non-dimensional dynamic pressure parameter sd in the clamped

beam case

sd omin oI oII

1000 57.04 58.15 68.03

900 53.89 54.67 64.38

800 50.50 51.01 60.36

700 46.83 47.11 56.02

650 53.07

640 52.54

636.569 52.358

600 42.76 42.86

500 38.16 38.17

480 37.16 37.16

460 36.12 36.12

443.3 35.22 35.22
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The starting conditions ðt ¼ 0Þ of the resulting mode components necessary to find all the
stationary solutions of the undamped beam are not known a priori, but they can be determined by
an approximate method where the axial strain is supposed constant versus the time, after an
appropriate correction is performed.
The final purpose of the work focuses on the possibility of foreseeing with a good

approximation the main characteristics of the beam dynamic solution in limit cycle flutter
conditions with aerodynamic damping, and explains the reason for that. In fact by the model
utilized it has been possible to perform a complete analysis of the all the solutions of the fluttering
beam without damping to individuate the area where there is possibility of finding the flutter limit
cycle presence, which lies in the neighbourhood of the one with minimum amplitude.
This can be deduced by intuitive considerations for the following reasons. Since the

aerodynamic damping is small, the limit flutter cycle solution lies in the neighbourhood of some
undamped beam vibration solution, and this must be the one with minimum amplitude. In fact
starting from higher amplitude values, although there exist permanent solutions without damping,
the presence of these passive aerodynamic forces diminishes in time the modal shape amplitude
and the point representative of the vibration state moves towards point T, which is very close to
the undamped beam minimum amplitude point U, as in Figs. 2 and 8. On the other hand, starting
from lower amplitude values, the coupling aerodynamic forces are large enough to increase the
vibrating mode amplitude, and for this reason there is no possibility of permanent vibration
solutions with and without aerodynamic damping, and likewise the representative point moves
towards point T in the same figures. Consequently, it is possible to find the limit flutter cycle only
around this minimum amplitude undamped beam solution. It has been possible to verify such
limit cycle presence in this area by the complete model with damping.
This procedure has been applied to uni-dimensional vibrating structures, but surely the same

concluding remarks are valid for bi-dimensional vibrating panels cases.

Appendix A

The expressions of the describing functions of the series expansion (10), when a procedure
which arises from the Rayleigh–Ritz method is utilized, must be considered.
For the simply supported beam these describing functions, which satisfy only the geometric

boundary conditions, for which they vanish at both ends, are:

fiðxÞ ¼ xið1� xÞ; fjðxÞ ¼ xjð1� xÞ; i; j ¼ 1; 2;y;N ðA:1Þ

whose first derivatives with respect to x can be easily determined, and consequently the integrals
jij of Eq. (15b), are equal to

jij ¼
ij

ði þ j � 1Þ
�

iðj þ 1Þ þ ði þ 1Þj
ði þ jÞ

þ
ði þ 1Þðj þ 1Þ
ði þ j þ 1Þ

: ðA:2Þ

In the case of the clamped beam these describing functions, which for the geometric boundary
conditions vanish with their first axial derivatives at both ends, can be written as

fiðxÞ ¼ xiþ1ð1� xÞ2; fjðxÞ ¼ xjþ1ð1� xÞ2; i; j ¼ 1; 2;y;N ðA:3Þ
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and also as

fi ¼ skx
iþ1þk; fj ¼ slx

jþ1þl ; k; l;¼ 0; 1; 2; ðA:4aÞ

s0 ¼ 1; s1 ¼ �2; s2 ¼ 1: ðA:4bÞ

Thence, after their first derivatives have been evaluated, the same integrals can be obtained:

jij ¼ ði þ 1þ kÞðj þ 1þ lÞ
1

ði þ j þ k þ l þ 1Þ
sksl ; k; l ¼ 0; 1; 2: ðA:5Þ

Appendix B

As in the Ritz procedure the linear terms of the Galerkin method in the case of a simply
supported beam have been previously evaluated [13], and so only the non-linear ones are
considered.
A trigonometric series expansion for the bending displacement W is chosen, as follows:

W ðx; tÞ ¼ WiðtÞ sinðipxÞ; i ¼ 1; 2;y;N; ðB:1Þ

because these describing functions sinðipxÞ satisfy both the geometric and the natural boundary
conditions, for which these along with their second axial derivatives vanish at both ends.
This series expansion can be substituted into Eq. (9a), then by pre-multiplying by the generic

describing function and integrating one obtains the dynamic constitutive equation:

½linear terms�i þ aðipÞ2ex
WiðtÞ
2

¼ 0; i ¼ 1; 2;y;N ðB:2Þ

similar to Eq. (21), where from expression (15a) of ex it is true that

ex ¼
p2

4
k2W 2

k ; k ¼ 1; 2;y;N: ðB:3Þ

An equations system in normal matrix form, as in Eq. (24), is obtained, where both the mass
matrix ½M� and the stiffness matrix ½K� are diagonal.

Appendix C

Also the FEM can be utilized in both cases. As for the Ritz and Galerkin procedures the linear
terms in the dynamic constitutive equation have been previously determined [13], and
consequently only the non-linear ones will be taken into account.
The beam is divided into NE elements and the ieth element lies between the sections Sie�1 and

Sie ; with non-dimensional axial co-ordinates xie�1 and xie ; respectively.
It is useful to introduce a non-dimensional normalized axial co-ordinate for each ieth element,

as follows:

xn ¼ ðx� xie�1ÞNE ; xie�1pxpxie ; 0pxnp1: ðC:1Þ
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The non-dimensional flexural displacement W ðxÞ expression in the ieth element versus this
normalized axial co-ordinate is [13]

W ðxnÞ ¼ C
ðieÞ
ip

fðieÞ
ip
ðxnÞ; ip ¼ 1; 2; 3; 4; ðC:2Þ

where:

C
ðieÞ
1 ¼ Wie�1; fðieÞ

1 ¼ 1� 3x2n þ 2x3n;

C
ðieÞ
2 ¼ yie�1; fðieÞ

2 ¼ xn � 2x2n þ x3n;

C
ðieÞ
3 ¼ Wie ; fðieÞ

3 ¼ 3x2n � 2x3n;

C
ðieÞ
4 ¼ yie ; fðieÞ

4 ¼ x3n � x2n ðC:3Þ

and Wie is the non-dimensional flexural displacement on the section Sie ; yie is a rotation parameter,
equal to the true rotation on the same section divided by NE :
The expression of W throughout the beam length can be written in a series expansion form, as

in Eq. (10):

W ðxÞ ¼ WifiðxÞ; i ¼ 1; 2;y;N; ðC:4Þ

where the generic coefficient Wi in the ieth element is equal to one of the four coefficients C
ðieÞ
ip

; and
the generic describing function fiðxÞ is equal to an introduced one fðieÞ

ip
in Eq. (C.2). These

describing functions at the beam ends, as in the Ritz procedure, satisfy only the geometric
boundary conditions.
The indices i and ip for the simply supported beam in the ieth element are connected via the

following relation:

i ¼ 1þ 2ðie � 2Þ þ ip; ip ¼ 1; 2; 3; 4 ðC:5Þ

if 1oieoNE ; while for the clamped beam one has for the same values of ie:

i ¼ 2ðie � 2Þ þ ip; ip ¼ 1; 2; 3; 4: ðC:6Þ

For ie ¼ 1 and the simply supported beam, expression (C.5) is valid, but for ip ¼ 2; 3; 4; while
for the clamped beam expression (C.6) is valid, but with ip ¼ 3; 4:
For ie ¼ NE and the simply supported beam, Eq. (C.5) must be changed into

i ¼ 1þ 2ðie � 2Þ þ ip �
ip

3
; ip ¼ 1; 2; 4; ðC:7Þ

that is ip cannot be equal to 3, while for the clamped beam equation (C.6) is valid, but with
ip ¼ 1; 2:
For the above-mentioned reasons the whole number N of Lagrangian degrees of freedom is

connected with the number NE of elements of FEM model via the following expression:

N ¼ 2NE ðC:8aÞ

for the simply supported beam and:

N ¼ 2ðNE � 1Þ ðC:8bÞ

for the clamped beam.
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The integrals in Eq. (15b) can be thus obtained:

jij ¼ NE

Z 1

0

@fðieÞ
ip

@xn

@fðjeÞ
jp

@xn

dxn; i ¼ iðie; ipÞ; j ¼ jðje; jpÞ; ðC:9Þ

taking into account that dx ¼ dxn=NE : From integral (C.9) it is possible to evaluate the strain ex:
Also in the FEM model the stiffness and mass matrices have been already determined [13], which
allows one to arrive at the constitutive equation (21) and a system of equations written in normal
matrix form, as in Eq. (24).

Appendix D. Nomenclature

As beam cross-sectional area equal to bwh
bw beam width
cd dimensional aerodynamic damping coefficient
cij coupling elements between the describing

functions of the bending displacements
C

ðieÞ
ip

generic coefficient of the non-dimensional flexural displacement
behaviour series expansion in the ieth element of FEM model

E elasticity modulus
F

ðaÞ
i aerodynamic generalized forces

fiðxÞ trial describing functions of the non-dimensional flexural displacement
behaviour throughout the beam length

h thickness of the beam rectangular cross-section
I flexural moment of inertia of the beam equal to bwh3=12
h beam thickness
kij stiffness matrix elements
kn

ij linear structural and aerodynamic forces
resultant matrix elements

L beam length
Mach Mach number
mij mass matrix elements
N whole number of the degrees of freedom
Nx resulting axial strength
q dynamic pressure equal to

1

2
r u2

N

t state evolution time
To reference time
UN speed of flow
u axial displacement
w flexural displacement
Wi generic coefficient of the non-dimensional flexural displacement

behaviour series expansion
W non-dimensional flexural displacement
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Wie non-dimensional flexural displacement in a generic ieth section
of the beam FEM model

x beam axial axis

Greek symbols
a beam axial rigidity non-dimensional parameter
b non-dimensional Mach number parameter equal to ðM2

ach � 1Þ1=2

g non-dimensional aerodynamic damping coefficient
ex beam axial strain
yie rotation parameters in a generic ieth section of the beam FEM model
l non-dimensional mass distribution parameter
m mass per unit length of the beam
x non-dimensional axial co-ordinate of the beam
xn normalized non-dimensional axial co-ordinate of a beam

element in FEM model
r air density
s dimensional dynamic pressure parameter
sd non-dimensional dynamic pressure parameter
t non-dimensional time
fip

describing function in the ieth element of the beam FEM model
jij integral of the product between the first derivatives of

the describing functions fiðxÞ and fjðxÞ
o angular frequency
od dimensionless frequency parameter

Special symbols
@ partial differentiation
½B� structural and aerodynamic forces matrix
½K� stiffness matrix
½M� mass matrix
T kinetic energy expression
Ul potential of the linear structural forces
Unl potential of the non-linear structural forces

Subscripts
i; j subscripts referring to functions and coefficients of

the flexural displacement behaviour series expansion
ie subscript referring to the ðie þ 1Þth section of

FEM model
ip; jp subscripts in the series expansion of the flexural displacement

in the generic element of the beam FEM model

Superscripts
ðieÞ; ðjeÞ superscripts referring to the ieth, jeth element of

FEM model
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