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Abstract

A new stochastic controller for a dynamic system under irregular disturbance has been developed and
investigated via Monte-Carlo simulation and physical experiment. In order to design what we called a ‘‘Heo
stochastic controller’’, the system equation is transformed to stochastic domain by F–P–K approach from
physical domain. A ‘‘Heo stochastic controller’’ is designed in stochastic domain by using a conventional
method such as a PI controller.
This paper consists of a basic description of F–P–K equation approach, the design of the ‘‘Heo stochastic

controller’’, realization of the technique and its performance, and simulation results. A thin beam is
adopted as an airfoil model, and then the newly designed ‘‘Heo stochastic controller’’ is implemented to the
system. A flutter control simulation for a thin airfoil exposed to turbulent flow is conducted numerically
and experimentally as well. The newly proposed ‘‘Heo-PI stochastic controller’’ shows promising
performance.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic systems are often exposed to various external disturbances in nature. Especially,
random disturbance is the most common case. These include aerospace systems excited by
atmospheric and boundary layer turbulence and jet noise; aircraft and vehicles subjected to track
induced vibrations; ground based structures excited by earthquakes and wind; and offshore
structures excited by wind and hydrodynamic wave-induced loads. In each case the physical
variables exhibit random fluctuations in both space and time [1,4].
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In recent years, dynamic systems have become larger and more complex. As a result, the
random disturbance/noise effect on systems is receiving more attention in system design.
Accordingly, its control in a more proper way draws a lot of attention. Many controller design
techniques have been tried to reject or suppress random disturbances and have achieved reliable
results. Some stochastic control techniques such as LQR, LQG, HN etc., are effective at
disturbance/noise rejection; these are designed in time domain or frequency domain. Nevertheless,
these techniques don’t use enough noise/disturbance information. LQR design does not use any
random input signal information. LQG uses only correlation values on signal in estimation, such
as Kalman filter and HN filter. HN controller uses noise maximum norm [2]. As an alternative
controller design method for extended use of random signal and system information, a new
concept for stochastic controller design has recently been proposed. Kim et al. (1995) showed the
feasibility of stochastic controllers in stochastic observer design via the Fokker–Plank–
Kolmogrov (F–P–K) approach also, Cho et al. (1998) developed the stochastic controller by
using a GA based fuzzy controller in probabilistic domain. An experimental study for the control
of base excited flexible beam model was carried on with piezo actuator and sensor in 1996. Wind
tunnel models for realistic random disturbance have been used for experiments since 1997 [3,8,11].

2. Stochastic analysis

2.1. F–P–K procedure

The F–P–K method is one way of studying the behavior of a system probability density
function subjected to random fluctuation externally, internally or interactively.
There are two basic assumptions for the derivation of F–P–K equation. First, random input is

always sufficiently small, so that the perturbed motion can be determined by superimposing
random fluctuations of first order smallness to a continuous mean trajectory. Second, the random
process under consideration is a Markov process, and does not depend on its past history. The
general form of the F–P–K equation with drift (increment of first order moment) and diffusion
(increment of second order moment) coefficients is given as

@

@t
pðX ; tÞ ¼ �

Xn

i¼1

@

@t
faiðX ; tÞpðX ; tÞg þ

1

2

Xn

i¼1

Xn

j¼1

@2

@Xi@Xj

fbijðX ; tÞpðX ; tÞg; ð1Þ

where drift coefficient, aiðX ; tÞ and diffusion coefficient, bijðX ; tÞ are defined respectively as [5],

aiðX ; tÞ ¼ lim
Dt-0

1

Dt
E½xiðt þ DtÞ � xiðtÞ	; ð2Þ

bijðX ; tÞ ¼ lim
Dt-0

1

Dt
E½fxiðt þ DtÞ � xiðtÞgfxjðt þ DtÞ � xjðtÞg	:

The solution of these equations gives the probabilistic behavior of the system response. In many
cases, however, it is not possible to obtain a closed form analytical solution to the F–P–K
equation of the dynamic system. Instead of seeking stationary or non-stationary solutions for the
F–P–K equation, one can generate a set of differential equations for the response moments.
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Let UðX Þ be a general function of the response co-ordinate vector X

UðX Þ ¼ X k1
1 X k2

2 ?X kn
n ¼

Yn

i¼1

X ki

i ð3Þ

such that the following notation expresses the moments of order ki

mk1;k2;?;kn
¼ E½UðX Þ	 ¼

Z
?
Z

N

�N

UðX ÞpðX ; tÞ dX1 dX2? dXn; ð4Þ

where N ¼
Pn

i ki

The differential equations of the response dynamic moments can be derived by multiplying both
sides of the system F–P–K equation by UðX Þ and integrating by parts over the entire state space
�NoXoN [4,6].
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It can be rewritten for second order moment as
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E½X i
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Z Z
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X i
1X

j
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@

@t
pðX ; tÞ dX1 dX2: ð6Þ

Dynamic moment equations consist of mean (first order moment), mean square (second order
moment), PSD value, system parameters, etc. Any variation of parameters due to external
random fluctuation may be rewritten in terms of PSD-related constants or functions in dynamic
moment equations. System variable in time domain is reformed in terms of moment. These
moments and PSD value are useful to understand system behavior in the sense of stochastic
language. Therefore, dynamic moment equation provides a general description of system behavior
in stochastic domain, that is, it can represent physical characteristics of the dynamic system.
A stochastic model is said to be more realistic than a deterministic model. While a deterministic

model in time domain is concerned with the prediction of the definite state of a phenomenon, the
stochastic model helps to investigate the inherent unavoidable and unexplained variations
observed in almost all physical phenomena. It quantifies these variations and allows a sensitivity
analysis of the phenomena that is due to the uncertainties [2,4,10].

2.2. Flutter model

A flexible airfoil in random flutter is adopted as a physical model for investigation. A flutter
phenomenon is a dynamic instability occurring in an aircraft in flight, at a speed called the flutter
speed, where the elasticity of structure plays an essential part in the instability. There is a typical
flutter model under the turbulent flow in (Fig. 1). In general, a wing can be modelled as a beam
and its movement is addressed in a mode shape function. The bending mode of the system can be
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expressed by the mode shape function

f ðyÞ ¼ coshðlyÞ � cosðlyÞ � kr½sinhðlyÞ � sinðlyÞ	; ð7Þ

where

kr ¼
coshðlyÞ þ cosðlyÞ
sinhðlyÞ þ sinðlyÞ

and the torsion mode shape function follows

gðyÞ ¼ sin
p
2c

y: ð8Þ

Using mode shape Eqs. (7) and (8), the kinetic energy of system is

ET ¼ 1
2
M ’h2 þ 1

2
Ia ’a2 þ Sa ’h’a; ð9Þ

where

M ¼
Z c

0

mðyÞ½f ðyÞ	2 dy;

Ia ¼
Z c

0

IaðyÞ½gðyÞ	2 dy;

Sa ¼
Z c

0

SaðyÞf ðyÞgðyÞ dy

and potential energy of system is

EU ¼ 1
2
khh2 þ 1

2
kaa2; ð10Þ
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where

kh ¼
Z c

0

EIðyÞ
@2

@y2
f ðyÞ

� �
dy;

ka ¼
Z c

0

GJðyÞ
@

@y
gðyÞ

� �2
dy:

The unsteady aerodynamic load on system consists of lift and moment; unsteady aerodynamic
lift L is

L ¼ prb2½ .h þ U ’a� ba.a	 þ 2prbUCðkÞ ’h þ Uaþ b 1
2
� a

� �
’a

	 

ð11Þ

and unsteady aerodynamic moment My is

My ¼ prb2 ba .h þ Ub 1
2
� a

� �
’a� b2 1

8
þ a2

� �
.a

	 

þ 2prUb2 a þ 1

2

� �
CðkÞ ’h þ Uaþ b 1

2
� a

� �
’a

	 

; ð12Þ

where the L and My above are aerodynamic lift and moment along the unit length of wing, so
total external aerodynamic lift and moment on the system can be evaluated by using mode shape
as follows

Qh ¼ Ahh1
.h þ Ahh2

’h þ Aha1U .aþ Aha2U ’aþ Aha3U
2a;

Qa ¼ Aah1
.h þ Aah2U ’h þ Aaa1 .aþ Aaa2U ’aþ Aaa3U

2a: ð13Þ

Dynamics of system is summarized as follows:

ðM þ Ahh1Þ ðSa þ Aha1Þ

ðSa � Aah1Þ ðIa � Aaa1Þ

" #
.h

.a

 !
þ

Ahh2
’hU Aha2U

�Aah2U �Aaa2U

" #
’h

’a

 !

þ
Kh Aha3U

2

0 ðKa � Aaa3U
2Þ

" #
h

a

 !
¼ 0: ð14Þ

If the mass matrix is invertible, then the system can be rewritten as

.q þ *DU ’q þ *Kq ¼ 0; ð15Þ

where

*D ¼
d11 d12

d21 d22

" #

¼
ðM þ Ahh1Þ ðSa þ Aha1Þ

ðSa � Aah1Þ ðIa � Aaa1Þ

" #�1
Ahh2 Aha2

�Aah2 �Aaa2

" #
;
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*K ¼
k11 k12 þ k0

12U
2

k21 k22 þ k0
22U

2

" #

¼
ðM þ Ahh1Þ ðSa þ Aha1Þ

ðSa � Aah1Þ ðIa � Aaa1Þ

" #�1
Kh Aha3U

2

0 ðKa � Aaa3U
2Þ

" #
:

We assume that the Theodorsen function CðkÞ is 1, that is, aerodynamic load is a quasi-steady
case. Air speed U is defined as

U ¼ UN þ Ut; ð16Þ

where Ut is assumed having white noise characteristics with zero mean and PSD Dt [9]
When F–P–K procedure is applied to Eq. (15), we get the first order moment equations and the

second order moment equations as follows
First order dynamic moment equation

’m1000 ¼ m0010;

’m0100 ¼ m0001;

m0010 ¼ �k11m1000 � ðk12 þ k0
12U

2
N

þ k0
12DtÞm0100;

m0001 ¼ �k21m1000 � ðk22 þ k0
22U

2
N

þ k0
22DtÞm0100: ð17Þ

Second order dynamic moment equation

’m2000 ¼ 2m1010;

’m1100 ¼ m0110 þ m1001;

’m1010 ¼ m0020 � k11m2000 � ðk12 þ k0
12U

2
N

þ k0
12DtÞm1100 � k0

12Dtm0110;

’m1001 ¼ m0011 � k21m2000 � ðk22 þ k0
22U

2
N

þ k0
22DtÞm1100 � k0

22Dtm0110;
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12U

2
N

þ k0
12DtÞm0200 � k0

12Dtm0101;

’m0101 ¼ m0002 � k21m1100 � ðk22 þ k0
22U

2
N

þ k0
22DtÞm0200 � k0

22Dtm0101;

’m0020 ¼ 2k11k0
12Dtm1100 þ 2k11m1010 þ ½2ðk12k0

12 þ k02
12UN þ 2k02

12U
2
N
ÞDt þ k02

12D
2
t 	m0200

� 2½ðk12 þ k0
12U

2
N
Þ þ ðk0

12 � 3d11k
0
12UNÞDt	m0110 þ 6d11k0

12UNDtm0101

þ d211Dtm0020 þ 2d11d12Dtm0011 þ d212Dtm0002; ð18Þ

’m0011 ¼ðk11k0
22 þ k21k

0
12ÞDtm1100 � k21m1010 � k11m1001

þ ½ðk12k0
22 þ 2k

0
12k

0
22UN þ 4k0

12k
0
22U

2
N

þ k0
12k22ÞDt þ k0

12k
0
22D

2
t 	m0200

þ ½3ðd21k0
12UN þ d11k

0
22UN � k0

22ÞDt � ðk22 þ k0
22U

2
N
Þ	m0110

þ ½3ðd22k0
12UN þ d12k

0
22UN � k0

12ÞDt � ðk12 þ k0
12U

2
N
Þ	m0101

þ d11d21Dtm0020 þ ðd11d22 þ d12d21ÞDtm0011 þ d12d22Dtm0002;
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’m0002 ¼ 2k21k0
22Dtm1100 þ 2k211m1010 þ ½2ðk22k0

22 þ k02
12UN þ 2k02

22U
2
N
ÞDt þ k02

22D
2
t 	m0200

þ 6d21k0
22UNDtm0110 � 2½ðk22 þ k0

22U
2
N
Þ þ ðk0

22 � 3d21k
0
22UNÞDt	m0101

þ d221Dtm0020 þ 2d21d22Dtm0011 þ d222Dtm0002:

Eqs. (17) and (18) can be simplified as matrix form

’m ¼ A
m

m: ð19Þ

System matrix A
m
is in deterministic form with constant PSD. As shown in Eq. (15), it is a

randomly varying system in time domain, because air speed U varies along time in random
manner. However, the random flutter system is transformed to deterministic form, Eq. (19), in
stochastic domain. Therefore the random flutter system in time domain can be handled like a
deterministic system in stochastic domain [4,10].

3. Controller design in stochastic domain

3.1. Stability in stochastic domain

Relations between system stability in stochastic domain and time domain are important
properties to credit the ability of the proposed stochastic controller. If a system in stochastic
domain has conditions sufficient for stability, the system in time domain can be stabilized or
controlled by using the proposed stochastic controller.
The stability of a system is an important topic in system design and analysis. Before discussing

the stability in stochastic domain, stability in time domain may be considered first. The followings
are widely well known.
In time domain, a system is stable if all states of the system are bounded. That is to say

that

xðtÞj jpA ð20Þ

for all t where A is some finite constant and xðtÞj j denotes the absolute value of xðtÞ: In this case,
the system is stable (or marginally stable). If the state approaches zero as t becomes large, such
systems are considered to be asymptotically stable. These stability definitions can also be stated in
terms of eigenvalues of the system or in terms of the poles of the transfer function of the system.
The system is marginally stable if the poles or eigenvalues of system lie along the imaginary axis,
unstable if one or more poles or eigenvalues lie in the right half-plane, and asymptotically stable if
all of the poles or eigenvalues lie in the left half-plane.
A system may be described in terms of dynamic moment in stochastic domain, and dynamic

moment equations can be rewritten in form of state space equations in time domain. There-
fore, system stability in stochastic domain can be determined in the same manner as in time
domain.
As an example, a one-degree-of-freedom dynamic system is considered. Typical one-degree of

freedom dynamic system under parametric random disturbance and control describe as

.y þ 2zo ’y þ o2y ¼ f ð ’y; yÞ; ð21Þ
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where

f ð ’y; yÞ ¼ fdð ’y; yÞ þ fcð ’y; yÞ

fdð ’y; yÞ is the external random disturbance and fcð ’y; yÞ the control input.
It can be described as a stability problem of parametric system in stochastic sense.

.y þ 2zoð1þ gzÞ ’y þ o2ð1þ gkÞy ¼ 0; ð22Þ

where gk is white noise type random fluctuation of stiffness having power spectral density Dkk and
gz is white noise type random fluctuation of damping having power spectral density Dzz:
Introducing the co-ordinates transformation Eq. (23), Eq. (22) can be written in the Ito’s

stochastic differential equation (24).

y ¼ X1;

’y ¼ X2; ð23Þ

dX1 ¼ X2 dt;

dX2 ¼ f�o2ð1þ gkÞX1 � 2zoð1þ gzÞX2g dt: ð24Þ

The evolution of transitional joint probability density function of the response co-ordinates
PðX ; tÞ can be described by the F–P–K equation.

@

@t
PðX ; tÞ ¼ �

X2
i¼1

@

@Xi

½aiðX ; tÞPðX ; tÞ	 þ
1

2

X2
i¼1

X2
j¼1

@2

@Xi@Xj

½bijðX ; tÞPðX ; tÞ	; ð25Þ

where aiðX ; tÞ is the 1st incremental moment or drift coefficient, bijðX ; tÞ the second incremental
moment or diffusion coefficient.
The general differential equation for moments is

@

@t
E½X i

1X
j
2	 ¼

Z Z
N

�N

X i
1X

j
2

@

@t
PðX ; tÞ dX1 dX2: ð26Þ

Thus the first order moment equations and the second order moment equations are obtained as
Eq. (27).

’m10 ¼ m01;

’m01 ¼ �2zom01 � o2m10;

’m11 ¼ m02 � 2zom11 � o2m20 þ 4zo3Dkzm11;

’m20 ¼ 2m11 þ 2zo4Dkkm20;

’m02 ¼ �4zom02 � 2o2m11 þ 2o4Dzzm02: ð27Þ

The influence on the stability of the system due to the degree of random fluctuation of damping
and stiffness is examined along the variation of power spectral densities ðDkk;Dzz;DkzÞ: The stable
and unstable regions are shown in Figs. 2 and 3, respectively.
Responses of dynamic moment in stable region (Lower space: Zone 1) and unstable region

(Upper space: Zone 2) are shown in Figs. 4 and 5.
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According to ‘‘Stability Analysis of a Dynamic System under Random Parametric Excitation’’
by Heo et al. in 1997, if a system in the stochastic domain is stable, then it is also stable in time
domain. Therefore, dynamic system in time domain can be controlled or stabilized by the control
of dynamic moment in stochastic domain [7,10].
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Fig. 2. Stability region on P.S.D plane.

Fig. 3. Stability region on P.S.D space.
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3.2. Proposed stochastic controller

Fig. 6 is a schematic diagram that shows the concept of the proposed stochastic controller.
The proposed stochastic controller can be designed as follows. First, system dynamics may be

derived in time domain, and then it is transformed to dynamic moment equations in stochastic
domain by F–P–K procedure. Next, the controller can be designed in stochastic domain by using
dynamic moment equations. In designing a controller in stochastic domain, most of controller
design techniques used in time domain can be applied. The object of controller design here is to
reduce the dynamic moment response. Finally, using the obtained PSD in stochastic domain, the
control signal can be generated by using Monte-Carlo method in physical time domain [4,10].
When control force is applied to the system in flutter that is mentioned above, Eq. (17) and

Eq. (18) can be rewritten as matrix form

’m ¼ D
m

m þ BmDC : ð28Þ

ARTICLE IN PRESS

Fig. 4. Stable moment response of the system (Zone 1).

Fig. 5. Unstable moment response of the system (Zone 2).
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Control gain matrix can be modelled through the F–P–K procedure. Control PSD value can be
obtained by applying Eq. (28) to any general control design procedure in time domain.

3.3. System modelling

A general flutter model for a wing has already been introduced and its F–P–K equation is
derived in the previous section. Using the strip theory in aerodynamic modelling, the system
equation for an aeroelasticity model under control can have the following form

M .h þ cs
’h þ khh ¼ �L þ F ; ð29Þ

where

M ¼
Z c

0

mðyÞ½f ðyÞ	2 dy;

kh ¼
Z c

0

EIðyÞ
@2

@y2
f ðyÞ

� �2
dy:

Unsteady aerodynamic lift can be rewritten as

L ¼ Ahh1
.h þ Ahh2U ’h; ð30Þ

where

Ahh1 ¼
Z c

0

prb2½f ðyÞ	2 dy;

Ahh2 ¼
Z c

0

2prbCðkÞ½f ðyÞ	2 dy:

ARTICLE IN PRESS

Fig. 6. Conceptual diagram of proposed stochastic controller.
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For the purpose of demonstrating the proposed controller, only one bending mode is
considered here, and then from Eq. (29) and Eq. (30) a system dynamic follows [9]

.h þ ð *C1 þ Ut
*C2Þ ’h þ *Kh ¼ *F; ð31Þ

where CðkÞ ¼ 1

*C1 ¼
cs þ UNAhh2

ðM þ Ahh1Þ
; *C2 ¼

Ahh2

ðM þ Ahh1Þ
; *K ¼

kh

ðM þ Ahh1Þ
; *F ¼

F

ðM þ Ahh1Þ
:
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Fig. 7. Structure of airfoil model in control.

Fig. 8. Dynamic moment response on step input (PSD ¼ 0Þ:
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Piezo ceramic is modelled to be placed on the root section as an actuator and piezo film
is also modelled to be placed on one side of the airfoil as a sensor, respectively. The schematic
diagram of airfoil with an actuator and a sensor is shown in (Fig. 7). Also control force is
defined as

F ðtÞ ¼ CpV ðtÞd0ðx � cÞ ¼ *BV ðtÞ; ð32Þ

where the coefficient *B does not depend on time but the geometric co-ordinate of the beam [4].
Aeroelastic structure is assumed to be exposed to turbulent flow having white noise type random
fluctuation component with power spectral density Dt: Control voltage VðtÞ also satisfies the
condition of white noise type random fluctuation and its PSD value is DV : As shown in Eq. (31),
one bending mode flutter model is formed to time-varying system in a random manner, which is a
random parametric system.
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Fig. 9. Dynamic moment response on step input (PSD ¼ 894).
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Fig. 10. Dynamic moment response under control.
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Fig. 11. Physical response under control.
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When the F–P–K procedure is applied to Eq. (31), the first order moment equations and the
second order moment equations are obtained as follows

’m10 ¼ m01;

’m01 ¼ � *Km10 � *C1om01;

’m11 ¼ � *C1m11 þ m02 � *Km20;

’m20 ¼ 2m11;

’m02 ¼ �2 *Km11 � ð2 *C1 � *C2DtÞm02 þ *B2DV : ð33Þ

Since first order moments of dynamic moment equation are converse to zero in steady state
cases, controller design is focused in second order moment equations [4,8,10].

’m ¼ Am þ Bu; ð34Þ

where system matrix:

½A	 ¼

� *C1 � *K 1

2 0 0

�2 *K 0 �2 *C1 þ *C2Dt

2
64

3
75:

Control gain matrix:

½B	 ¼

0

0

*B2

2
64

3
75:

Control signal: u ¼ DV

4. Simulation and result

The flutter speed of the airfoil under clean air from U-g method is 16m/s. For the sake of
verifying the controller effect, the mean air velocity for turbulent flow-induced flutter is set to
15.5m/s, and the numerical value of PSD of turbulent flow is 894. The controller is designed in
stochastic domain to minimize the dynamic moment response so the airfoil will be stable under
flutter in turbulent flow induced disturbance and the PI method is utilized as a control strategy in
the study.
Fig. 8 shows uncontrolled dynamic moment response when the airfoil is exposed to clean

airflow without turbulence. When the airfoil is under flutter in turbulent flow, step responses of
the unstable system in terms of dynamic moments are shown in Fig. 9.
Fig. 10 shows dynamic moment response under control. As shown in the figures, the controller

was turned on at 5 s. Time response of the system is shown in Fig. 11, in the same manner as in
dynamic moment response, the controller was turned on at 5 s after the airfoil encountered flutter.
Velocity and displacement response of the system was reduced about by 10 times. ‘‘Heo-PI
controller’’ shows good performance in flutter suppression even though the system experiences
very high level of disturbance. Also the performance of the proposed stochastic controller in
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physical experiment is compared with that of well-known conventional controller, LQG, in
Fig. 12 [11].

5. Conclusion

Most of dynamic system may be disturbed in random manner internally or externally. Up to
now, many controllers for stochastic dynamic systems have been designed in time domain or
frequency domain. However, a newly proposed methodology designed in stochastic domain is
introduced and applied successfully to a flexible airfoil in random flutter.
In the system, the PSD value for the control signal obtained in stochastic domain is realized to

time series by the Monte-Carlo method in physical domain. Accordingly, the physical system is
controlled by random type control force in time domain. Controller gains are tuned along with
random disturbance and system parameters as well. It improves the system ability to suppress
random disturbances.
The major merit of the ‘‘Heo stochastic control method’’ is that it easily deals with the systems

random characteristics, which can be described as a constant or simple function in terms of PSD.
Although the controller mentioned here is designed in a simple classical way in stochastic domain,
the performance of the proposed ‘‘Heo stochastic controller’’ seems to open new horizon in the
area of stochastic control. In stochastic domain, controllers can be designed using already
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developed controllers such as PID etc. Other types of combined controllers can be designed
according to the system conditions or environment. As shown the proposed stochastic controller
reveals remarkable performance compared to that of the conventional one. Much of the study is
on the way to figure out more detailed characteristics of the proposed new ‘‘Heo stochastic
controller’’.
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Appendix A. Nomenclature

a� angle of attack
aðtÞ torsional displacement
z damping ratio
a ¼

e

b
location of elastic axis measured from aerodynamic center

A
m

system matrix in stochastic domain
AC aerodynamic center
aiðX ; tÞ drift coefficient
bijðX ; tÞ diffusion coefficient
b semi chord of airfoil
Bm control gain matrix in stochastic domain
*B modal control force coefficient for bending motion in airflow
CðkÞ Theodorsen function
cs structural damping
*Ci ith modal bending damping coefficient in airflow

Cp piezo-ceramic coefficient
Dt power spectral density of turbulent airflow
Dc power spectral density of control signal
Dv power spectral density of control voltage
*D modal damping matrix of wing in airflow

Dzz auto power spectral density of damping fluctuation
Dkk auto power spectral density of stiffness fluctuation
Dkz cross-power spectral density of stiffness fluctuation and damping fluctuation
E½:	 expectation operator
EA elastic axis
EI elastic axis
ET kinetic energy of wing
EU potential energy of wing
e distance between AC and EA
f ðyÞ bending mode shape function
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fdð ’y; yÞ external random disturbance
fcð ’y; yÞ control input
F control force
*F modal control force for bending motion in airflow

GJ torsion stiffness
gðyÞ torsional mode shape function
gk white noise type random fluctuation of stiffness
gz white noise type random fluctuation of damping
hðtÞ bending displacement
Ia mass moment of inertia about elastic axis of wing
*K modal stiffness matrix of wing in airflow

*K modal bending stiffness matrix of wing in airflow

kh bending stiffness of wing
ka torsional stiffness of wing
k ¼

ob

U
reduced frequency

c half-span of wing
L aerodynamic lift
My aerodynamic moment
M mass matrix of wing
mij ¼ E½X i

1X
j
2	 moment

m 3
 1 Dynamic moment vectors
PðX ; tÞ transitional joint probability density function
q modal co-ordinate
Sa static unbalance of wing
U air speed
UN mean air speed
Ut component of turbulent airflow
V ðtÞ control voltage
y span wise co-ordinate of wing
o frequency
r air density
d Dirac delta function
d0 derivative of Dirac delta function
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