
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 267 (2003) 355–365

Letter to the Editor

On the eigencharacteristics of multi-step rods carrying a tip
mass subjected to non-homogeneous external viscous damping

M. G .urg .oze*, H. Erol

Faculty of Mechanical Engineering, Technical University of Istanbul, 80191 G .um .u,ssuyu, Istanbul, Turkey

Received 8 October 2002; accepted 9 January 2003

1. Introduction

Recently, an interesting study [1] was published in this journal and in that study the
eigencharacteristics of a continuous beam model with damping was determined using the
separation of variables approach. The beam considered has different physical properties in each of
its two parts. Motivated by that publication, in Ref. [2], the present authors dealt with an axially
vibrating rod consisting of two parts as a counterpart of that publication. Unlike Ref. [1], where
overdamped and underdamped ‘‘modes’’ are investigated separately, both of them were handled
simultaneously in Ref. [2], again via separation of variables approach. The present study is more
general than the previous work because the rod system considered here consists of several
different parts. Besides, a second method is given for the determination of the eigencharacteristics,
and this method also used the separation of the variables approach. The reason the second
method is given is its use in testing the reliability of the first method, besides perhaps being
numerically more advantageous in the case of a large number of rod steps. Probable applications
of these rod systems include rods composed of several different cross-sections with different
dampings subject to impulsive axial forces in civil engineering applications. Such systems can also
be encountered in oil well drilling practices.

2. Theory

Let us assume that an axially vibrating rod carrying a tip mass M consists of n parts, the ith of
which has the length Li; axial rigidity EiAi; viscous damping coefficient ci; and mass per unit
length mi: These parameters are assumed to be constant along each rod segment, and contain
contributions from the rod and any surrounding medium. Fig. 1 shows the rod diagrammatically.
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Due to the presence of external viscous damping, it is more appropriate to work with complex
variables. It will be assumed that the axial displacements wi(x; t) (i ¼ 1;y; n) of several parts of
the rod are the real parts of some complex quantities denoted zi(x; t). Keeping in mind that
actually, one is interested only in the real parts of the expressions below, the equations of motion
of the rod can be written as

kiz
00
i ðx; tÞ � mi .ziðx; tÞ � ci ’ziðx; tÞ ¼ 0 ði ¼ 1;y; nÞ ð1Þ

with ki ¼ EiAi; where x is the axial position along the rod. Dots and primes denote partial
derivatives with respect to time t and position co-ordinate x; respectively.
The corresponding boundary conditions are

z1ð0; tÞ ¼ 0;

zi�1ð %Li; tÞ ¼ zið %Li; tÞ; ki�1z
0
i�1ð %Li; tÞ ¼ kiz

0
ið %Li; tÞ ði ¼ 2;y; nÞ;

knz0nðL; tÞ þ M .znðL; tÞ ¼ 0; ð2Þ

where

%Li ¼
Xi�1
j¼1

Lj; L ¼
Xn

j¼1

Lj: ð3Þ

Let us assume that

ziðx; tÞ ¼ ZiðxÞDiðtÞ ði ¼ 1;y; nÞ ð4Þ

according to the separation of the variables approach, where both functions ZiðxÞ and DiðtÞ are
complex functions in general. Substituting Eq. (4) into Eq. (1) gives

ki

mi

Z00
i ðxÞ

ZiðxÞ
¼

.DiðtÞ þ ci=mi

� �
’DiðtÞ

DiðtÞ
:¼ ki; ð5Þ

where the ki are complex constants to be determined. Here, primes and dots denote derivatives
with respect to position x and time t; respectively. To satisfy the ‘‘second’’ and ‘‘third’’ of the
boundary conditions (2), the corresponding time functions must be equal, so that DiðtÞ ¼ DðtÞ
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Fig. 1. Axially vibrating elastic rod having several parts and carrying a tip mass.
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(i ¼ 1;y; n). Thus, the differential equations for ZiðxÞ may be written using Eq. (5) as follows:

Z00
i ðxÞ �

mi

ki

kiZiðxÞ ¼ 0 ði ¼ 1;y; nÞ: ð6Þ

The time function is assumed now an exponential function:

DðtÞ ¼ elt; ð7Þ

where l represents an eigenvalue of the system which is complex in general. With this DðtÞ; the
second equality in (5) gives

ki ¼
ci

mi

lþ l2 ði ¼ 1;y; nÞ: ð8Þ

Defining

n2i ¼
mi

ki

ki ði ¼ 1;y; nÞ ð9Þ

the first equation in (5) can be written as

Z00
i ðxÞ � n2i ZiðxÞ ¼ 0 ði ¼ 1;y; nÞ: ð10Þ

The general solutions of the differential equation (10) can be expressed as

ZiðxÞ ¼ %Aie
nix þ %Bie

�nix ði ¼ 1;y; nÞ; ð11Þ

where %Ai and %Bi denote complex constants to be determined. In terms of the ZiðxÞ; and with the
aid of Eq. (7), the boundary conditions in (2) can be reformulated:

Z1ð0Þ ¼ 0;

Zi�1ð %LiÞ ¼ Zið %LiÞ; ki�1Z
0
i�1ð %LiÞ ¼ kiZ

0
ið %LiÞ ði ¼ 2;y; nÞ;

knZ0
nðLÞ þ Ml2ZnðLÞ ¼ 0: ð12Þ

The substitution of expressions (11) into (12) yields the following set of 2n homogeneous
equations for the determination of the 2n unknowns %Ai; %Bi (i ¼ 1;y; n):

1 1 0 0 0 0 y 0 0

ev1 %L2 e�v1 %L2 �ev2 %L2 �e�v2 %L2 0 0 y 0 0

k1v1e
v1 %L2 �k1v1e

�v1 %L2 �k2v2e
v2 %L2 k2v2e

�v2 %L2 0 0 y 0 0

0 0 ev2 %L3 e�v2 %L3 �ev3 %L3 �e�v3 %L3 y 0 0

0 0 k2v2e
v2 %L3 �k2v2e

�v2 %L3 �k3v3e
v3 %L3 k3v3e

�v3 %L3 y 0 0

0 0 0 0 ev3 %L4 e�v3 %L4 y 0 0

0 0 0 0 k3v3e
v3 %L4 �k3v3e

�v3 %L4 y 0 0

^ ^ ^ ^ ^ ^ ^ ^ ^

0 0 0 0 0 0 y �kn�1vn�1e
vn�1 %Ln�1 kn�1vn�1e

�vn�1 %Ln�1

0 0 0 0 0 0 y ðknvn þ Ml2ÞevnL �ðknvn � Ml2Þe�vnL

2
66666666666664

3
77777777777775

%A1

%B1
%A2

%B2
%A3

%B3
%A4

^
%An

%Bn

2
666666666664

3
777777777775
¼0:

ð13Þ

Let the ð2n � 2nÞ matrix of coefficients in Eq. (13) be denoted by A. For a non-trivial solution,
the determinant of this matrix should be zero:

detAðn1;y; nnÞ ¼ 0: ð14Þ
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If in Eq. (14) the tip mass M approaches infinity, then the characteristic equation of the axially
vibrating rod fixed at both ends is obtained, which is given in Ref. [2] for n=2. Equating to zero
the tip mass M yields the characteristic equation of the fixed–free rod.
Using the definitions given by (8) and (9), ni (i ¼ 1;y; n) can be expressed as functions of the

eigenvalue l:

niðlÞ ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi

ki

ci

mi

� �
lþ l2


 �s
ði ¼ 1;y; nÞ: ð15Þ

Hence, Eq. (14) becomes

detAðn1ðlÞ;y; nnðlÞÞ ¼ detAðlÞ ¼ 0 ð16Þ

from which l can be obtained, which is a complex number in general. Now via (15) the ni’s can be
obtained. If these are substituted into the coefficients matrix A in Eq. (13), the unknowns %Ai; %Bi

(i ¼ 1;y; n) can be determined up to an arbitrary constant. Hence, ZiðxÞ; (i ¼ 1;y; n) in Eq. (11)
are obtained.
Returning to Eq. (4) and considering expression (11) and introducing

l ¼ lre þ jlim; ni ¼ nire þ jniim;

%Ai ¼ %Aire þ j %Aiim; %Bi ¼ %Bire þ j %Biim ðj ¼
ffiffiffiffiffiffiffi
�1

p
Þ; ð17Þ

the axial displacements of the n portions of the rod, wiðx; tÞ; are determined, after lengthy
calculations, as

wiðx; tÞ ¼ Re ziðx; tÞ½ 	 ¼ elretSiðxÞ cos limt � elretQiðxÞ sin limt; ð18Þ

where the following abbreviations are introduced:

SiðxÞ ¼ enire
x %Aire cos niimx � %Aiim sin niimx
� �

þ e�nire
x %Bire cos niimx þ %Biim sin niimx
� �

;

QiðxÞ ¼ enire
x %Aire sin niimx þ %Aiim cos niimx
� �

þ e�nire
x %Biim cos niimx � %Bire sin niimx
� �

:
ð19Þ

The expressions of the axial displacements can be put in a more compact form as

wiðx; tÞ ¼ elretCiðxÞ cos ðlimt � eiðxÞÞ ð20Þ

with

CiðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2i ðxÞ þ Q2i ðxÞ

q
; tan eiðxÞ ¼ �

QiðxÞ
SiðxÞ

: ð21Þ

wiðx; tÞ (i ¼ 1;y; n) determine the axial displacement distribution over the length of the viscously
damped rod when it vibrates at an eigenvalue l. Due to the apparent presence of a phase which is
a function of the position co-ordinate x, the authors preferred to use the expression ‘‘mode’’ or
‘‘eigenfunction’’ as seldom as possible, unlike in Ref. [1]. Whenever necessary, those words were
used in quotation marks. CiðxÞ which is simply the absolute value of ZiðxÞ; i.e., Abs(ZiðxÞ),
represents the amplitude distribution over the ith step of the rod.
With the method given above, the eigenvalues l of the axially vibrating multi-step rod are found

as the roots of a complex determinant of size (2n � 2n) if the rod under consideration consists of n
portions (steps). In the following, an alternative form of the characteristic equation will be given
which could be preferable for numerical calculations especially for large n values. The second
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form is essentially a transfer matrix method, which also makes use of the separation of variables
approach at the beginning. Li and his co-workers applied it in a series of papers successfully to the
longitudinal vibrations of rods and rod systems with variable cross-sections [3–5].
Here, the cross-sections of the rod are assumed to be constant along a rod portion, but external

viscous damping is allowed to act on the rod.
The axial displacement distribution along the ith portion of the rod given in Eq. (11) can be

rewritten as

ZiðxÞ ¼ %AiSi;1ðxÞ þ %BiSi;2ðxÞ; ð22Þ

where the abbreviations

Si;1ðxÞ ¼ enix; Si;2ðxÞ ¼ e�nix ð23Þ

are introduced. Let us assume in what follows that x ¼ 0 corresponds to the left end of the ith rod
portion. The results in Ref. [3] can be adopted appropriately.
The relationship between the parameters, Zi;1 (axial displacement) and Ni;1 (axial force) at the

right end (denoted by the subscript 1 in Fig. 1) and at the left end of the ith portion (subscript 0 in
Fig. 1) can be expressed in matrix notations as

Zi;1

Ni;1

" #
¼ Ti

Zi;0

Ni;0

" #
; ð24Þ

in which

Ti ¼
Si;1ðLiÞ Si;2ðLiÞ

kiS
0
i;1ðLiÞ kiS

0
i;2ðLiÞ

" #
Si;1ð0Þ Si;2ð0Þ

kiS
0
i;1ð0Þ kiS

0
i;2ð0Þ

" #�1

ði ¼ 1;y; nÞ; ð25Þ

where a prime denotes derivative with respect to x. The matrix Ti is called the transfer matrix
because it transfers the parameters at the end 0 to those at the end 1 of the ith step rod. It can be
shown that the transfer matrix transferring the parameters at the station 0 of the first rod step to
the right end of the multi-step rod carrying the tip mass is

T ¼ TMTn?T1 ¼
T11 T12

T21 T22

" #
; ð26Þ

where

TM ¼
1 0

l2M 1

" #
ð27Þ

accounts for the tip mass.
In case of the system in Fig. 1, the boundary conditions are such that the axial displacement at

the left end and the axial force at the right end of the multi-step rod system vanish. This leads to
the characteristic equation

T22ðn1ðlÞ;y; nnðlÞÞ ¼ T22ðlÞ ¼ 0: ð28Þ
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If there is no tip mass, the matrix TM reduces to the 2� 2 unit matrix. Hence, the overall
transfer matrix T reduces to the product of n sub-transfer matrices Ti:

T ¼ Tn?T1: ð29Þ

The characteristic equation (28) holds formally where T22 denotes this time the (2,2) element of
the matrix T given in Eq. (29). In case the tip mass tends to infinity, i.e., the rod is fixed–fixed, the
boundary conditions impose that the axial displacements at both ends of the multi-step rod vanish
which leads to the characteristic equation

T12ðlÞ ¼ 0; ð30Þ

where the overall transfer matrix T is given by Eq. (29).

3. Numerical evaluations

This section is devoted to the numerical evaluation of the expressions obtained above. The
computation will be demonstrated using a three-step rod with the parameters given in Table 1.
Three cases are considered: In the first case, it is assumed that there is no tip mass, i.e., M ¼ 0

(case I), in the second case, there is a tip mass: Ma0 (case II) and finally, the tip mass is infinite,
i.e., the three-step rod is fixed–fixed (case III). As can be seen from Table 1, in all cases, the
physical parameters of the rod steps are equal. The tip mass in case II is ðM ¼Þ50 kg.
Table 2 gives the ‘‘first’’ six eigenvalues of the system for case I. It is seen that the physical

parameters lead to both overdamped and underdamped ‘‘modes’’. The numerical values in the
first column represent the results of finding the roots of the determinental equation in Eq. (16),
whereas those of the second column are results of Eq. (28) based on the transfer matrix method.
This holds for Tables 3 and 4 also. The numbers in both columns are exactly the same. The upper
parts of Fig. 2 shows for case I the three-dimensional plots of wiðx; tÞ for the first three
overdamped eigenvalues. In the lower part, the amplitude distribution Abs(ZiðxÞ) which is
composed of n curves of Abs(ZiðxÞ) corresponding to n steps on the rod is plotted.
As in Fig. 2, the upper part of Fig. 3 shows for case I, the wiðx; tÞ-surfaces for the ‘‘first’’ three

underdamped eigenvalues. The lower part gives the amplitude distributions.
Table 3 gives the ‘‘first’’ six eigenvalues for case II. Again, both those of the overdamped and

the underdamped ‘‘modes’’ are given. The numerical values in both columns are the same.
Figs. 4 and 5 are concerned with case II. As in Figs. 2 and 3, the upper parts of Figs. 4 and 5

reflect the wiðx; tÞ plots of the ‘‘first’’ three overdamped and underdamped eigenvalues,
respectively. The lower parts give again the corresponding amplitude distributions.
Finally, Table 4 collects the ‘‘first’’ six eigenvalues for case III, where the numerical values in

both columns are the same, as previously. Figs. 6 and 7 are concerned with this case. As above, the
upper parts of these figures give the wiðx; tÞ plots of the ‘‘first’’ three overdamped and
underdamped eigenvalues, respectively. The lower parts give the corresponding amplitude
distributions.
Comparison of the overdamped eigenvalues in Tables 2 and 3 reveals that the attachment of the

tip mass causes the eigenvalues to increase in absolute value and this increases the damping effect.
In comparison to Table 3 (case II), the overdamped eigenvalues in Table 4 (case III) have greater
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absolute values. In other words, the eigenmotions of the fixed–fixed rod corresponding to these
eigenvalues damp out more rapidly than in the case of the rod carrying a tip mass.
Comparison of the underdamped eigenvalues in Tables 2 and 3 shows that the (complex)

‘‘eigenfrequencies’’ of the axial vibrations are decreased due to the inclusion of the tip mass, as
expected. Further, the comparison of numerical values in Tables 3 and 4 reveals that the
‘‘eigenfrequencies’’ in the fixed–fixed rod case are larger than in the case of a tip mass, because the
system is stiffer.
Concerning the number of nodes, the behaviors of the three cases are similar for overdamped

‘‘modes’’. As can be seen from the lower parts of Figs. 2, 4 and 6, the second and third ‘‘modes’’
reveal 1 and 2 nodes, respectively. Further, the nodes are located in the damped portion. On the
contrary, underdamped ‘‘modes’’, reveal no nodes as can be seen from Figs. 3, 5 and 7.
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Table 1

The physical parameters of the rods in cases I–III

Step 1 Step 2 Step 3

Li (m) 1 2 2

mi (kg/m) 20 10 10

ci (kg/ms) 0 0 200

EiAi (N) 200 100 50

Table 2

The ‘‘lower’’ eigenvalues for case I

From Eq. (16) From Eq. (28)

�0.06379 �0.06379
�0.85199 �0.85199
�3.59985 �3.59985
�0.3737373.22304i �0.3737373.22304i
�0.4151775.76661i �0.4151775.76661i
�0.7228179.02664i �0.7228179.02664i

Table 3

The ‘‘lower’’ eigenvalues for case II

From Eq. (16) From Eq. (28)

�0.06452 �0.06452
�1.14637 �1.14637
�7.19848 �7.19848
�0.8392671.33153i �0.8392671.33153i
�0.3741073.22334i �0.3741073.22334i
�0.4151875.76657i �0.4151875.76657i
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In accordance with the fact that the third portion of the rod is damped and the first two are not,
one observes that the majority of the displacements in the ‘‘lower’’ underdamped ‘‘modes’’ is local
to the undamped, i.e., to the first two parts of the rod.

4. Conclusions

This study is concerned with the establishment of two methods for computing the
eigencharacteristics of a continuous rod, carrying a tip mass, consisting of several parts having
different physical parameters and subjected to external viscous damping. Both methods use
separation of variables approach at the beginning and differ, actually, in the solution of the
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Table 4

The ‘‘lower’’ eigenvalues for case III

From Eq. (16) From Eq. (28)

�0.30937 �0.30937
�1.84783 �1.84783
�7.64425 �7.64425
�0.3739473.22334i �0.3739473.22334i
�0.4151975.76658i �0.4151975.76658i
�0.7228079.02662i �0.7228079.02662i
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Fig. 2. Three-dimensional plots of wiðx; tÞ-surfaces and amplitude distributions Abs(ZðxÞ), corresponding to the first
three overdamped eigenvalues for case I.
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corresponding ordinary differential equation. The second method is referred to as the transfer
matrix method in the literature. Excellent agreement of the numerical results for three sample
systems obtained via the two methods justifies the reliability of the formulae established.
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Fig. 6. Three-dimensional plots of wiðx; tÞ-surfaces and amplitude distributions Abs(ZðxÞ), corresponding to the first
three overdamped eigenvalues for case III.

M. G .urg .oze, H. Erol / Journal of Sound and Vibration 267 (2003) 355–365364



References

[1] M.I. Friswell, A.W. Lees, The modes of non-homogeneous damped beams, Journal of Sound and Vibration 242

(2001) 355–361.

[2] M. G .urg .oze, H. Erol, On the ‘‘modes’’ of non-homogeneously damped rods consisting of two parts, Journal of

Sound and Vibration 260 (2003) 357–367.

[3] Q.S. Li, Exact solutions for longitudinal vibration of multi-step bars with varying cross-section, Transactions of the

American Society of Mechanical Engineers, Journal of Vibration and Acoustics 122 (2000) 183–187.

[4] Q.S. Li, Exact solutions for free longitudinal vibrations of non-uniform rods, Journal of Sound and Vibration 234

(2000) 1–19.

[5] Q.S. Li, G.Q. Li, D.K. Liu, Exact solutions for longitudinal vibration of rods coupled by translational springs,

International Journal of Mechanical Sciences 42 (2000) 1135–1152.

ARTICLE IN PRESS

0
1

2
3

4
5 0

0.2

0.4

0.6

0.8

1

-1

0

1

2

0
1

2
3

4
5 0

1

-1

0

1

0
1

2
3

4
5 0

1

-1
-0.5

0
0.5

1 2 3 4 5
x

λ = -0.37394 ± 3.22334i

1 2 3 4 5
x

1

λ = -0.41519 ± 5.76658i

1 2 3 4 5
x

0.2

0.4

0.6

0.8

1

λ = -0.72280 ± 9.02662i 

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

A
bs

 [
Z

(x
)]

A
bs

 [
Z

(x
)]

A
bs

 [
Z

(x
)]

w
i (

x,
t)

x
t

Fig. 7. Three-dimensional plots of wiðx; tÞ-surfaces and amplitude distributions Abs(ZðxÞ), corresponding to the ‘‘first’’
three underdamped eigenvalues for case III.

M. G .urg .oze, H. Erol / Journal of Sound and Vibration 267 (2003) 355–365 365


	On the eigencharacteristics of multi-step rods carrying a tip mass subjected to non-homogeneous external viscous damping
	Introduction
	Theory
	Numerical evaluations
	Conclusions
	References


