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1. Introduction

This note presents a series of numerical experiments performed on vibrating simply supported
rectangular plates with two rectangular holes with free edges; see Figs. 1-3. The geometric
configurations under study constitute triply connected domains and, apparently no exact
solutions appear to be possible like the case of Laplace’s equation when dealing with steady state
diffusion-type problems.

From the point of view of plates executing transverse vibrations the problem is of direct
technological interest since holes are practiced in plates or slabs in order to allow for the passage
of ducts, conduits, cables, etc. and the designer must (or should) know the effect of these
perturbations upon the dynamic characteristics of the structural element.

The present study is an extension of previous studies [1-3] and shows that the algorithmic
procedure previously developed is efficient and accurate in the case of triply connected
configurations.

The methodology of solution is quite simple and straightforward: it constitutes in the deduction
from the energy functional corresponding to the full plate the subsidiary energy functional
corresponding to the two holes. The Rayleigh—Ritz method is then applied. The approach yields
reasonable results as long as the holes are placed sufficiently apart from each other and their sizes
are moderate when compared with the plate of smaller dimension (less than 20%). Possibly the
approach may be also applicable if more than two holes are practiced but one should be extremely
careful with the validity of the physic-mathematical model. This also applies if the holes
degenerate into slits: the approach will not be valid in this case.
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Fig. 1. Triply connected plate executing transverse vibrations.
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Fig. 2. Case of holes displacing along the middle horizontal axis of the plate.
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Fig. 3. Case of holes displacing along the plate diagonal.

Calculations are performed for isotropic, orthotropic and anisotropic plates. The lower four
natural frequencies are determined. Excellent numerical stability is observed. As expected the
frequencies are lower than those corresponding to a solid plate (no dynamic stiffening effect is

observed for the situations under study).

2. Approximate analytical solution

For the rectangular plate under study, depicted in Fig. 1, the Rayleigh—Ritz variational

approach requires minimization of the functional

JIW=UW'T-T[W,
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Table 1

969

Values of the first four frequency coefficients in the case of an isotropic rectangular plate of aspect ratio 2/3 for two
different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal

(Fig. 3)
Size of the cutouts Cutouts position (o)) (o) (o5 Q4
Fig. 2(a)—(c)
ajfa=0.1=b/b x1/a = 0.40; y; /b = 0.50 31.097 61.167 98.082 110.33
aja=0.1=by/b x2/a = 0.60; y2/b = 0.50
x1/a=0.20; y; /b = 0.50 31.691 60.597 98.097 109.62
x2/a = 0.80; y2/b = 0.50
x1/a=0.05; y1/b = 0.50 32.035 61.449 98.082 110.23
x3/a=0.95; y,/b = 0.50
Fig. 2(a)—(c)
aj/a=02=b,/b x1/a =0.35; y;/b=10.50 29.941 60.222 89.175 105.83
afa=02=by/b x3/a = 0.65; y2/b = 0.50
x1/a=0.20; y; /b = 0.50 30.957 60.550 93.121 111.59
x2/a = 0.80; y2/b = 0.50
x1/a=0.10; y; /b = 0.50 31.558 60.003 94.800 109.47
x2/a=0.90; y»/b = 0.50
Fig. 3(a)—(c)
ajfa=0.1=b/b x1/a=0.40; y; /b = 0.40 31.207 61.152 97.199 110.24
ar/a=0.1=by/b x2/a = 0.60; y,/b = 0.60
x1/a=0.20; y/b=0.20 31.730 61.167 97.503 110.31
x2/a = 0.80; y2/b = 0.80
x1/a =0.05; y; /b = 0.05 31.613 60.761 98.082 109.86
xy/a=0.95; y2/b = 0.95
Fig. 3(a)—(c)
aj/a=02=b,/b x1/a=0.35; y;/b=0.35 30.105 60.035 92.863 105.49
afa=02=by/b Xy /a = 0.65; y2/b = 0.65
x1/a=0.20; y;/b=10.20 30.605 59.847 96.214 108.87
x2/a = 0.80; y,/b = 0.80
x1/a=0.10; y; /b = 0.10 30.285 58.355 96.003 106.55

x2/a=0.90; y2/b = 0.90

where U[W'] is the maximum strain energy and 7[W’] is the maximum kinetic energy for the
(true) displacement amplitude W’ of the plate.

As has been shown elsewhere, see for example Ref. [4], in the case of a plate of general
anisotropy, that each term in Eq. (1) can be written
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Table 2
Values of the first four frequency coefficients in the case of an isotropic square plate for two different sizes of the cutouts
when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts Cutouts position (o)) Qs Qs Qq
Fig. 2(a)—(c)
ajfa=0.1=by/b x1/a = 0.40; y; /b = 0.50 19.324 48.769 49.136 78.035
aja=0.1=by/b x2/a = 0.60; y»/b = 0.50
x1/a=0.20; y1/b = 0.50 19.550 48.265 48.946 78.621
x3/a = 0.80; y,/b = 0.50
x1/a=0.05; y;/b=0.50 19.707 48.816 49.035 77.722

x2/a=0.95; y2/b = 0.50
Fig. 2(a)—(c)

ajfa=02=>b/b x1/a=0.35; y1/b=0.50 19.066 46.324 47.300 74.957
ar/a=02=by/b x2/a = 0.65; y,/b = 0.50
x1/a = 0.20; y; /b = 0.50 19.121 47.009 47.778 75.402
x2/a = 0.80; y2/b = 0.50
x1/a =0.10; y; /b = 0.50 19.332 46.972 47.058 74.066

x2/a=0.90; y,/b = 0.50

Fig. 3(a)-(c)

arfa=0.1=b/b x1/a = 0.40; y1 /b = 0.40 19.339 48.605 49.050 78.160
afa=0.1=by/b x2/a = 0.60; y2/b = 0.60
x1/a =0.20; y;/b=10.20 19.527 48.660 49.160 78.074
x2/a = 0.80; y2/b = 0.80
x1/a=0.05; y;/b = 0.05 19.402 48.316 49.347 77.644

x2/a=0.95; y,/b =0.95
Fig. 3(a)—(c)

ajfa=02=>b/b x1/a=0.35; y1/b=0.35 18.902 46.988 48.308 77.417
ar/a=02=by/b x2/a = 0.65; y2/b = 0.65
x1/a=0.20; y;/b=0.20 18.863 47.980 48.511 79.667
x2/a = 0.80; y2/b = 0.80
x1/a=0.10; y; /b = 0.10 18.503 45.816 49.191 74.792

xy/a=0.90; y,/b = 0.90

where the well-established Lekhnitskii’s notation [4] for the flexural rigidities D;; of the plate has
been used, and

’h
T =2 (’; / W2 dx dy'. (3)
The integrals in expressions (2) and (3) extend over the actual area of the triply connected plate
under study.

Taking the lengths of the sides of the rectangular plate to be ¢ and b in the x and y directions
respectively, and introducing the non-dimensional variables

W=W'/a, x=x'Ja, y=)'/b and r=b/a, 4)
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Table 3
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Values of the first four frequency coefficients in the case of an isotropic rectangular plate of aspect ratio 3/2 for two
different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal

(Fig. 3)
Size of the cutouts Cutouts position (o)) Q Q3 Q4
Fig. 2(a)—(c)
ajfa=0.1=b/b x1/a = 0.40; y; /b = 0.50 13.910 27.324 43.050 48.855
ar/a=0.1=by/b x2/a = 0.60; y,/b = 0.50
x1/a =0.20; y; /b =0.50 14.074 27.128 42.417 49.058
x2/a = 0.80; y2/b = 0.50
x1/a =0.05; y; /b =0.50 14.214 26.996 43.371 49.230
xy/a=0.95; y,/b = 0.50
Fig. 2(a)—(c)
ajfa=02=b/b x1/a=0.35; y1/b=10.50 13.714 26.261 40.566 50.488
afa=02=by/b x2/a = 0.65; y2/b = 0.50
x1/a=0.20; y;/b = 0.50 13.542 26.066 41.199 48.582
x2/a = 0.80; y2/b = 0.50
x1/a=0.10; y; /b = 0.50 13.722 25.800 40.136 48.363
x2/a=0.90; y2/b = 0.50
Fig. 3(a)—(c)
ar/a=0.1=b/b x1/a = 0.40; y /b = 0.40 13.871 27.175 43.199 48.996
ar/a=0.1=by/b x2/a = 0.60; y>/b = 0.60
x1/a=0.20; y;/b=0.20 14.097 27.183 43.332 49.027
x2/a = 0.80; y»/b = 0.80
x1/a = 0.05; y;/b = 0.05 14.050 27.003 43.589 48.832
x2/a=0.95; y2/b = 0.95
Fig. 3(a)—(c)
ajfa=02=b/b x1/a=0.35; y1/b=0.35 13.378 26.683 41.269 46.886
afa=02=by/b xy/a = 0.65; y2/b = 0.65
x1/a=0.20; y/b=10.20 13.605 26.597 42.761 48.386
x2/a = 0.80; y2/b = 0.80
x1/a =0.10; y; /b = 0.10 13.457 25.933 42.667 47.355

x2/a=0.90; y2/b = 0.90

Egs. (2) and (3) above can be recast in a non-dimensional form. One gets for the functional for the
whole system of Fig. 1,
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Table 4
Values of the first four frequency coefficients in the case of an orthotropic rectangular plate of aspect ratio 2/3 for two
different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal
(Fig. 3)

Size of the cutouts Cutouts position (o)) (o) (o5 Q4
Fig. 2(a)—(c)
ajfa=0.1=b/b x1/a = 0.40; y; /b = 0.50 30.019 63.746 79.128 114.80
aja=0.1=by/b x2/a = 0.60; y2/b = 0.50
x1/a=0.20; y; /b =0.50 30.144 63.691 78.652 114.60
x2/a = 0.80; y2/b = 0.50
x1/a=0.05; y1/b = 0.50 30.207 63.785 78.363 114.64

x3/a=0.95; y,/b = 0.50
Fig. 2(a)—(c)

aj/a=02=b,/b x1/a = 0.35; y; /b = 0.50 30.363 64.488 74.113 110.80
afa=02=by/b x3/a = 0.65; y2/b = 0.50
x1/a=0.20; y; /b = 0.50 30.066 65.496 75.074 114.51
x2/a = 0.80; y2/b = 0.50
x1/a =0.10; y; /b = 0.50 29.988 63.496 74.847 111.08

x2/a=0.90; y»/b = 0.50

Fig. 3(a)—(c)

ajfa=0.1=b/b x1/a=0.40; y; /b = 0.40 30.074 63.660 78.855 114.69
ar/a=0.1=by/b x2/a = 0.60; y,/b = 0.60
x1/a=0.20; y/b=0.20 29.863 63.683 79.011 114.72
x2/a = 0.80; y2/b = 0.80
x1/a =0.05; y; /b = 0.05 29.449 62.457 78.472 112.81

xy/a=0.95; y2/b = 0.95
Fig. 3(a)—(c)

arja=02=b /b x1/a = 0.35; y1 /b= 035 30.160 63.636 77.957 110.11
afa=02=by/b Xy /a = 0.65; y2/b = 0.65
x1/a=0.20; y;/b=10.20 28.785 63.027 78.339 112.88
x2/a = 0.80; y,/b = 0.80
x1/a=0.10; y; /b = 0.10 27.589 59.417 76.769 108.53

x2/a=0.90; y2/b = 0.90

where, as usual, Q; = +/ph/Djjw;a* is the non-dimensional frequency coefficient and dij =
Dij/Dll for (laj) = (15 2: 6)
Expressing the displacement amplitude W(x, y) in terms of a double Fourier series,

nmy

: ©)

N M
. mnx .
W)= Wax,) =Y D by sin—=sin

n=1 m=1

and minimizing the governing functional with respect to the b,,s, expression (5) yields an
(M x N) homogeneous, linear system of equations in the b,,s. A secular determinant in the
natural frequency coefficients of the system results from the non-triviality condition. The present
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Table 5
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Values of the first four frequency coefficients in the case of an orthotropic square plate for two different sizes of the

cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts Cutouts position (o) Qs Qs Qq
Fig. 2(a)—(c)
ajfa=0.1=by/b x1/a = 0.40; y; /b = 0.50 19.894 43.292 50.800 78.605
aja=0.1=by/b x2/a = 0.60; y»/b = 0.50
x1/a=0.20; y1/b = 0.50 19.925 42.824 50.542 99.816
x3/a = 0.80; y,/b = 0.50
x1/a=0.05; y;/b=0.50 19.964 42.527 50.941 78.042
x2/a=0.95; y2/b = 0.50
Fig. 2(a)—(c)
ajfa=02=>b/b x1/a=0.35; y1/b=0.50 20.292 41.324 50.207 76.183
ar/a=02=by/b x2/a = 0.65; y,/b = 0.50
x1/a = 0.20; y; /b = 0.50 19.785 40.777 50.972 77.441
x2/a = 0.80; y2/b = 0.50
x1/a =0.10; y; /b = 0.50 19.699 40.105 49.527 74.214
x2/a=0.90; y,/b = 0.50
Fig. 3(a)-(c)
ajfa=0.1=b/b x1/a = 0.40; y; /b = 0.40 19.894 43.285 50.808 78.910
afa=0.1=by/b x2/a = 0.60; y2/b = 0.60
x1/a =0.20; y;/b=10.20 19.738 43.308 50.894 79.175
x2/a = 0.80; y2/b = 0.80
x1/a=0.05; y;/b = 0.05 19.457 42.496 50.496 76.894
x2/a=0.95; y,/b =0.95
Fig. 3(a)—(c)
ajfa=02=>b/b x1/a=0.35; y1/b=0.35 19.988 43.175 50.425 75.675
ar/a=02=by/b x2/a = 0.65; y2/b = 0.65
x1/a=0.20; y;/b=0.20 19.027 42.894 50.464 77.753
x2/a = 0.80; y2/b = 0.80
x1/a=0.10; y; /b = 0.10 18.214 40.378 49.480 73.691

xy/a=0.90; y,/b = 0.90

study is concerned with the determination of the first four frequency coefficients, Q;_Q4, in the

case of plates with two rectangular cutouts.

3. Numerical results

All calculations were performed for simply supported rectangular plates of uniform thickness
and for three different types of constitutive relations, i.e., isotropic, orthotropic and general
anisotropic plates. For simplicity, in all cases the cutouts have been chosen to be of the same
aspect ratio as the original whole plate. For each situation, three tables are presented, each with a
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Table 6
Values of the first four frequency coefficients in the case of an orthotropic rectangular plate of aspect ratio 3/2 for two
different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal
(Fig. 3)

Size of the cutouts Cutouts position (o)) (o) (o5 Q4
Fig. 2(a)—(c)
ajfa=0.1=b/b x1/a = 0.40; y; /b = 0.50 14.628 26.394 43.527 44.246
aja=0.1=by/b x2/a = 0.60; y2/b = 0.50
x1/a=0.20; y; /b =0.50 14.707 26.035 59.089 65.316
x2/a = 0.80; y2/b = 0.50
x1/a=0.05; y1/b = 0.50 14.785 25.792 43.332 44.480

x3/a=0.95; y,/b = 0.50
Fig. 2(a)—(c)

arfa=02=b/b x1/a=0.35; y1 /b = 0.50 14.738 25.472 42.324 45222
afa=02=by/b x3/a = 0.65; y2/b = 0.50
x1/a=0.20; y1 /b = 0.50 14.308 24.683 42.472 43.082
x2/a = 0.80; y2/b = 0.50
x1/a=0.10; y; /b = 0.50 14.347 24.042 55.808 62.964

x2/a=0.90; y»/b = 0.50

Fig. 3(a)—(c)

ajfa=0.1=b/b x1/a=0.40; y; /b = 0.40 14.605 26.402 43.378 44.347
ar/a=0.1=by/b x2/a = 0.60; y,/b = 0.60
x1/a = 0.20; y1 /b= 0.20 14.644 26.386 43.316 44.488
x2/a = 0.80; y2/b = 0.80
x1/a =0.05; y; /b = 0.05 14.503 25.832 42.628 44.519

xy/a=0.95; y2/b = 0.95
Fig. 3(a)—(c)

aj/a=02=b,/b x1/a=0.35; y;/b=0.35 14.386 26.449 58.011 67.464
afa=02=by/b Xy /a = 0.65; y2/b = 0.65
x1/a=0.20; y;/b=10.20 14.113 25.902 42.402 44.027
x2/a = 0.80; y,/b = 0.80
x1/a=0.10; y; /b = 0.10 13.707 24.488 41.027 43.503

x2/a=0.90; y2/b = 0.90

different value of the aspect ratio b/a: 2/3, 1 (square plate) and 3/2 to make a total of nine tables.
In each table, in turn, two different values for the sizes of the cutouts are taken as they are placed
along the middle horizontal line of the plate and along its diagonal.

Tables 1-3 depict values for the first four frequency coefficients for an isotropic rectangular
plate with its Poisson coefficient being y = 0.3. The same scheme is repeated in Tables 46 for an
orthotropic rectangular plate, where u, = 0.3; D,/Dy = 1/2 and Dy /D; = 1/2. Finally in Tables
7-9, results for a rectangular plate of general anisotropy are depicted. In this case calculations
were carried out taken D]z/DH =10.3; Dzz/D]] = D66/D11 = 1/2 and D16/D11 = D26/D11 = 1/3

For the double Fourier series, Eq. (6), N = M = 30 has been used, that is to say a secular
determinant of order 900 was generated for all situations. Although satisfactory convergence is
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Table 7

Values of the first four frequency coefficients in the case of a rectangular plate of general anisotropy and aspect ratio 2/3
for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the
diagonal (Fig. 3)

Size of the cutouts Cutouts position (o)) (o) (o5 Q4
Fig. 2(a)—(c)
ajfa=0.1=b/b x1/a = 0.40; y; /b = 0.50 26.902 54.105 76.433 90.792
aja=0.1=by/b x2/a = 0.60; y2/b = 0.50
x1/a=0.20; y; /b =0.50 26.988 54.050 76.097 90.902
x2/a = 0.80; y2/b = 0.50
x1/a=0.05; y1/b = 0.50 26.980 54.066 76.121 90.363

x3/a=0.95; y,/b = 0.50
Fig. 2(a)—(c)

ai/a=02=b/b x1/a = 0.35; y; /b = 0.50 26.949 54.589 70.550 88.894
afa=02=by/b x3/a = 0.65; y2/b = 0.50
x1/a=0.20; y; /b = 0.50 26.574 54.714 73.269 89.621
x2/a = 0.80; y2/b = 0.50
x1/a =0.10; y; /b = 0.50 26.402 53.105 73.300 86.777

x2/a=0.90; y»/b = 0.50

Fig. 3(a)—(c)

ajfa=0.1=b/b x1/a=0.40; y; /b = 0.40 27.035 54.042 75.800 90.816
ar/a=0.1=by/b x2/a = 0.60; y,/b = 0.60
x1/a = 0.20; y1 /b= 0.20 27.042 54.019 76.472 91.082
x2/a = 0.80; y2/b = 0.80
x1/a =0.05; y; /b = 0.05 25.667 53.449 74.097 91.089

xy/a=0.95; y2/b = 0.95
Fig. 3(a)—(c)

aj/a=02=b,/b x1/a=0.35; y;/b=0.35 27.386 53.222 74.566 90.722
afa=02=by/b Xy /a = 0.65; y2/b = 0.65
x1/a=0.20; y;/b=10.20 26.480 53.175 76.519 90.199
x2/a = 0.80; y,/b = 0.80
x1/a=0.10; y; /b = 0.10 24.496 52.394 71.738 90.535

x2/a=0.90; y2/b = 0.90

achieved for N = M = 20, such high values of M and N have been used taking advantage of the
speed of modern desktop computers. As usual, special care has been taken to manipulate such
large determinants and 80 bits floating point variables (IEEE-standard temporary reals) have been
used to satisfy accuracy requirements.

It is worth noting that computations are very stable and all frequency coefficients uniformly
converge as the number of terms in the Fourier series is increased. Typically, the values for the
frequency coefficients differ by less than 0.5% when M and N are increased from 20 to 30.

As a general conclusion one may say that the mathematical model seems to be quite realistic
and accurate, within the realm of the classical theory of vibrating plates. Even though from a
mathematical viewpoint it may be possible, in principle, to obtain correct results, it may not be
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Table 8

Values of the first four frequency coefficients in the case of a square plate of general anisotropy for two different sizes of

the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts Cutouts position (o) Qs Qs Qq
Fig. 2(a)—(c)
ajfa=0.1=by/b x1/a = 0.40; y; /b = 0.50 18.082 36.660 49.972 60.941
aja=0.1=by/b x2/a = 0.60; y»/b = 0.50
x1/a=0.20; y1/b = 0.50 18.082 36.425 49.566 60.480
x3/a = 0.80; y,/b = 0.50
x1/a=0.05; y;/b=0.50 18.089 36.402 49.902 59.449
x2/a=0.95; y2/b = 0.50
Fig. 2(a)—(c)
ajfa=02=>b/b x1/a=0.35; y1/b=0.50 18.308 35.636 47.621 60.949
ar/a=02=by/b x2/a = 0.65; y,/b = 0.50
x1/a = 0.20; y; /b = 0.50 17.746 35.191 48.910 58.691
x2/a = 0.80; y2/b = 0.50
x1/a =0.10; y; /b = 0.50 17.613 34.660 47.832 56.347
x2/a=0.90; y,/b = 0.50
Fig. 3(a)-(c)
ajfa=0.1=b/b x1/a = 0.40; y; /b = 0.40 18.128 36.644 49.816 60.863
afa=0.1=by/b x2/a = 0.60; y2/b = 0.60
x1/a =0.20; y;/b=10.20 18.097 36.652 50.230 60.808
x2/a = 0.80; y2/b = 0.80
x1/a=0.05; y;/b = 0.05 17.191 36.277 48.496 60.910
x2/a=0.95; y,/b =0.95
Fig. 3(a)—(c)
ajfa=02=>b/b x1/a=0.35; y1/b=0.35 18.402 35.949 49.503 60.847
ar/a=02=by/b x2/a = 0.65; y2/b = 0.65
x1/a=0.20; y;/b=0.20 17.683 35.980 50.347 60.035
x2/a = 0.80; y2/b = 0.80
x1/a=0.10; y; /b = 0.10 16.371 35.589 46.910 60.308

xy/a=0.90; y,/b = 0.90

meaningful, from a structural mechanics viewpoint, to extend the procedure to a larger number of

holes.
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Table 9

Values of the first four frequency coefficients in the case of a rectangular plate of general anisotropy and aspect ratio 3/2
for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the
diagonal (Fig. 3)

Size of the cutouts Cutouts position (o)) (o) (o5 Q4
Fig. 2(a)—(c)
ajfa=0.1=b/b x1/a = 0.40; y; /b = 0.50 13.621 23.300 37.097 42.980
aja=0.1=by/b x2/a = 0.60; y2/b = 0.50
x1/a=0.20; y; /b =0.50 13.699 23.042 36.660 42.464
x2/a = 0.80; y2/b = 0.50
x1/a=0.05; y1/b = 0.50 13.769 22.910 36.175 43.214

x3/a=0.95; y,/b = 0.50
Fig. 2(a)—(c)

ai/a=02=b/b x1/a = 0.35; y; /b = 0.50 13.613 22.613 38.292 39.832
afa=02=by/b x3/a = 0.65; y2/b = 0.50
x1/a=0.20; y; /b = 0.50 13.175 21.933 35.621 41.238
x2/a = 0.80; y2/b = 0.50
x1/a =0.10; y; /b = 0.50 13.199 21.441 34.605 40.113

x2/a=0.90; y»/b = 0.50

Fig. 3(a)—(c)

ajfa=0.1=b/b x1/a=0.40; y; /b = 0.40 13.613 23.292 36.941 43.019
ar/a=0.1=by/b x2/a = 0.60; y,/b = 0.60
x1/a=0.20; y/b=0.20 13.738 23.371 36.589 43.136
x2/a = 0.80; y2/b = 0.80
x1/a =0.05; y; /b = 0.05 13.292 22.558 36.417 43.058

xy/a=0.95; y2/b = 0.95
Fig. 3(a)—(c)

aj/a=02=b,/b x1/a=0.35; y;/b=0.35 13.433 23.105 36.308 41.074
afa=02=by/b Xy /a = 0.65; y2/b = 0.65
x1/a=0.20; y;/b=10.20 13.316 22.894 35.574 42.636
x2/a = 0.80; y,/b = 0.80
x1/a=0.10; y; /b = 0.10 12.714 21.816 35.246 41.722

x2/a=0.90; y2/b = 0.90
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