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Abstract

In this paper, initial-boundary-value problems for a beam equation (with string effect) are considered.
These problems can be used as simple models to describe the vertical vibrations of a conveyor belt, for
which the velocity is small with respect to the wave speed. In this paper, the belt is assumed to move with a
time-varying velocity V(z) = &(Vy + o sin(Q¢)). Formal asymptotic approximations of the solutions are
constructed to show the complicated dynamical behaviour of the belt. Complicated dynamical behaviour of
the belt system occurs when the frequency Q is the sum or difference of any two natural frequencies of the
system with zero belt velocity. For special values of the belt parameters these sum type and difference type
of internal resonances coincide giving rise to even more complicated dynamical behaviour. Some examples
(including detuning cases) have been studied in detail.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Axially moving systems are present in a wide class of engineering problems which arise in
industrial, civil, aecrospatial, mechanical, electronic and automotive applications. Aerial cables,
tram-ways, oil pipelines, magnetic tapes, power transmission belts, paper sheet and web processes,
fibre winding and band-saw blades are examples of cases where an axial transport of mass can be
associated with transverse vibrations.

Investigating transverse vibrations of a belt system is a challenging subject which has been
studied for many years (see Refs. [1-4] for a recent overview) and is still of interest today. The
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vibrations can be classified into two types, i.e., whether it is of a string-like type or of beam-like
type, depending on the bending stiffness of the belt. If the bending stiffness can be neglected then
the system is classified as string (wave)-like, otherwise it is classified as beam-like. The transverse
vibration of a belt system (with constant belt velocity V') can be modelled as

string-like by

Uy + 2VUX[ + (K V2 - Cz)vxx = 05 (1)

and
beam-like (with a string effect) by
Vi + 2V0y + (K V?— Cz)vxx + % Uxxxx = 0, (2)
where V,x, ¢, Ep, I, p, and A are constants which are described in Section 2.

The main purpose of studying the dynamic behaviour of a belt system is to determine the
natural frequencies of the vibrations. By knowing these natural frequencies, the so-called
resonance-free belt system can be designed (see Ref. [3]). Resonances that can cause severe
vibrations can be initiated by some parts of the belt system, such as the varying belt speed, the roll
eccentricities, and other belt imperfections. The occurrence of resonances should be prevented
since they can cause operational and maintenance problems including excessive wear of the belt
and the support components, and the increase of energy consumption of the system.

In this paper, vibrations of a moving belt which is modelled by a beam equation with a string
effect will be studied. The belt speed is considered to be time-varying and to be small compared to
the wave speed. In Ref. [5], a string-like model for a similar belt system has been studied. It will
turn out that the beam-like model and the string-like model give rise to different behaviour of the
solutions. It is assumed that the low and time-varying belt speed V(¢) is given by &(Vy + o sin(£2¢)),
where ¢, Vp, o, and Q are constants with 0<e<1 and Vy > |a|. It should be observed that the
velocity changes periodically such that the belt moves in one direction. In fact the small parameter
¢ indicates that the belt speed V() is small compared to the wave speed ¢. Recently, the authors of
Ref. [6] also studied the vibrations of an axially moving beam with a time-dependent velocity. As
has been pointed out in Ref. [5] their application of the truncation method does not give
approximations which are valid on long time-scales of order ¢~!'. More results on axially moving
strings and beams can also be found in Refs. [7,8,14]. The variation in V'(¢) can be considered as
some kind of excitation. In relation to excitations, some results in this area have been obtained by
Sack [9] and Archibald and Emslie [10]. Sack considered the problem of a string moving with a
constant velocity at which one of its end (i.e., x = L) is subjected to a harmonic excitation. In Ref.
[9] the vibrations of the string at x = L is forced to be v(x, t) = vy cos(€2¢). Archibald and Emslie
also studied the case where one end of the moving string is subjected to a harmonic excitation to
represent the case of a belt travelling from an eccentric pulley to a smooth pulley. Whereas the
case where both ends of the string are excited is studied by Mahalingham [11]. A moving string
model to study the transverse vibrations of power transmission chains has been used in Ref. [11].
In all of these works, the belt movement is assumed to be constant.

This paper is organized as follows. In Section 2, the equation of motion describing the dynamic
behaviour of a belt moving with a non-constant velocity is derived. The belt is assumed to be
simply supported in the vertical direction. Then in Section 3, the two time-scales perturbation
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method is used to find approximations of the solution of the problem. It will turn out in Section 3
that complicated dynamical behaviour of the belt system occurs when the frequency € is the sum
or the difference of any two natural frequencies w; and w, of the zero belt—velocity system. For
special values of the belt parameters these sum type and difference type of internal resonances can
coincide giving rise to even more complicated dynamical behaviour. In Section 4, the (difference
type) case 2 = w, — w; and the detuned case Q = wy — w; + ¢¢ with ¢ of order one will be
studied. While in Section 5, the (sum type) cases Q = w, + w1, 2 = 2w and Q = w3 + w, will be
considered. For some special values of the beam parameters the case (including detuning) for
which a sum type and a difference type of internal resonance coincide will also be studied: that is,
the case Q = w3 + wy = ws — w,. Finally in Section 6, some remarks and some conclusions will be
drawn.

2. A beam model

If the belt speed V' is not constant but a function of ¢, then Eq. (2) becomes

vy + (x¢ V?_ c2)vxx + 2V + Vv, + % Vyxxx = 0, 3)
for 0<x< L, t >0 and where v(x, t) is the displacement of the belt in the y (vertical) direction, V(¢)
the time-varying belt speed, ¢ the wave speed, Ej, Young’s modulus, /, the moment of inertia with
respect to the x (horizontal) axis, p the mass density of the belt, 4 the area of the cross-section of
the belt, x is a constant representing the relative stiffness of the belt, its value is in [0, 1]. x the co-
ordinate in horizontal direction, ¢ the time and L the distance between the pulleys.

Since the beam is assumed to be simply supported, it will follow that the boundary conditions
are

U(O, Z) = U(L> Z) = vxx(oa t) = Uxx(La Z) =0. (4)
The initial values are given by
U(x, O) :f(X), U[(X, O) = g(X), (5)

where f is the initial displacement of the beam, and where ¢ is the initial velocity of the beam.
Considering the case where V(t) = &(Vy + a sin(Q1)), in which ¥ and o are constants and Vy > |a],
Eq. (3) becomes

Epl, )
Uyt — CUxy + i Uy = — Qo cos(Qt)vy, — 2e(Vy + o sin(Q2¢)) vy,
P

— & 1k(Vy + o sin(Q1)) vy (6)

It should be noticed that Eq. (6) is a subcase of a problem which has been studied by Oz and
Pakdemirli [6].

Solutions of the form v(x, ) = >~ v,(?) sin(nnx/L) certainly satisfy the boundary conditions.
There are two equivalent methods to determine what equations v,(¢) for n =1,2,3, ... have to
satisfy. The first method is based on the principle of reflections. Using this method the initial-
boundary-value problem (3—6) is extended to an initial-value problem. Special attention has to be
paid to the terms v, and v,, on the right side of Eq. (6) when this method is applied. Since this
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method has already been applied in Ref. [5] (and for instance in Refs. [12,13]) one now applies the
other method which is based on the orthogonality properties of the set of functions sin(nnx/L) for
n=1,2,3,... on 0<x<L. The following should be observed:

/L Sin <@> Sin <kTCX> dx _ ? fOr n ?éka (7)
0 L L EL for n =k,
and
I 0 n+k even,
/ cos (E) sin <@> dx = 2Lk (8)
L L
0 n S5 myEy n+k odd.

Substituting v(x, 1) = >~ v,(¢) sin(nnx/L) into Eq. (6) gives

n=1

S|+ { () +a(D) fuufsn ()

n=1

= —¢ ZOO: nZ [0 cos(Qt)v, + 2(Vy + o sin(Q1))D,] cos (nL ) + (&%), 9)

n=1

where 6 = E,I,/pA. Multiplying both sides of Eq. (9) with sin(knx//), and then integrating with
respect to x from x = 0 to L gives (using Egs. (7) and (8))

w{(?)ﬂé(k—;f}w

Z kz)L [42Q cos(Q1)v, + 8(Vo + o sin(Q1))i,] + O(e?), (10)
=1

where the * in " * indicates thdt the summation is only carried out for n+k is odd. For
t = 0, v(?) satisfies: vx(0) = (2/L) fo f(x) sin(knx/L) dx, and 0,(0) = (2/L) fo g(x) sin(kmx/L) dx.
It should be observed that in order to obtain Eq. (10) the terms v, and v, in Eq. (6) are in fact
expanded in eigenfunctions (i.e., in sin(nnx /L)) of the boundary-value problem (4), (6) with ¢ = 0.
In Ref. [6] these terms were not expanded accordingly (see also Appendix C). In the next sections
approximations of the solutions of Eq. (10) will be constructed for different Q-values.

3. Application of the two time-scales perturbation method

Due to occurrence of the so-called secular terms a straightforward perturbation method cannot
be used to solve Eq. (10) approximately. For that reason a two-time-scales perturbation method
(with time scales ¢ty = ¢ and #; = &f) is used. The introduction of these two time scales define the
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transformations

dv,  Owy oWy
E - a_l() ¢ oty ’
d’u; B O wy O*wy ) O*wy,

vi(t; &) = wi(to, 115 €),

. 11
d>  on Conan " o} (1
Substitution of Eq. (11) into Eq. (10) yields
O*wy, O*wy ) O wy, ckm\ 2 e\
2 ; — o\ —
ot * 86t06z1+‘0 on - <L> * (L) Wk
0
B « nk )
= & nE:l m[“-agﬂ/n :| + (9( ) (12)

Assuming that wi(to, t1; &) = wio(to, t1) + ewgi(fo, t1) + >wia(to, t1) + --- then Eq. (12) becomes

62Wk0 0> W1 b azWkO 2
0 2 0
[ al% te ot 2 + ( ):| e [6t0611 + Saloatl + 0 ):|

+ O@) + {(ckn/L) +5(kn/L)4}(wko + ow + 0(2))

azwk 1

W,,,O

Zl kZ)L [4“9Wn0 cos(Qt) + 8(Vo + asin(Q1y))

} + O(&). (13)

By combining terms of equal powers in ¢ from Eq. (13) the ¢(1) and O(¢) equations will be
obtained as

'azwko ckm\? km\*
o(l): o <T> +0 (f) wio = 0,
Pwi *wio ckm\? km\*
1 : 2 - -
0(e) 81% + Bto0t, ( 17 ) +5<L) Wk1
_ oy [4ocQw O
= —_— q0 €OS(Qt9) + 8(Vo + o sm(on)) (14)
; (n*> — KL

The (1) equation can be easily solved, yielding
wiro = Ako(11) sin(wito) + Bro(t1) cos(wilo), (15)

2 4 L
wf = <CkT”> +6 <k—L”> ) Bio(0) :% /0 f(x)sin <k%x)dx

L
Ago(0) = ﬁ /0 g(x) sin <kiLx> da. (16)

where

and
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The Ao(t1) and Byo(ty) in Eq. (15) are still arbitrary and can be used to avoid secular terms in the
solution of the ()(¢) equation (14).
The (O(¢) equation now becomes

Pw . . .
L 2w = — 204 Aro(tr) cos(@p o) — Bro(ty) sin(wyto)]
ot}

0

nk .
+ ;* T PL (40.Q cos(Q1t9)[Ano sin(w,to) + Buo cos(wy,to)]

+ 8(Vo + o sin(Q1ty))wu[ Ano cos(wyto) — Byuo sin(w,ty)]). (17)

From Eq. (17) it can readily be seen that there are infinitely many values of Q that can cause
internal resonances. In fact these values are (in an ()(¢) neighbourhood of) w, + wi, w, — wy,
o — oy, and —(w, + wg,), where k=n—2j—1, or k=2j+1+nor k=2j+1—n for j=
0,1,2, ... (see also the summation in Eq. (17)). To show how the secular terms can be eliminated
and how the belt system can behave, the (difference type) case 2 = wy — @ and its detuned case
Q = wy; — w1 + &¢ with ¢ of order one will be studied in Section 4 while the (sum type) cases
Q=wy+ w;, 2 =2w, and Q = w3 + w, will be considered in Section 5. For some special values
of the beam parameters the case (including detuning) for which a sum type and a difference type
of internal resonance coincide will also be studied; that is the case Q = w; + w, = ws — ws.

4. The case 2 = wr, — 0| + ¢

In this section, the case 2 = w; — wy, and the case Q = w; — w; + ¢ with ¢ of order one will
be studied.

4.1. The case Q = wy — w

It is shown in Appendix A that for Q = w, — w; the equation Q +®, = + wy only has the rather
trivial solutionsn =2and k = 1if Q@ — w, = —w, andn = 1 and k = 2 if Q + w, = w;. Then, by
separating those terms in the right side of the ()(¢) equation (17) that cause secular terms in
wri(to, 11), it 1s found that Ay and Byy have to satisfy

. —20(wy + ) . 20(w1 + )
Ajygy=——"=BRB Bg=—-——">24
10 301 L 20, 10 301 L 20,
: —2u(w; + wy) . 20w + ®3)
Ay=—"""" "B By="——""4 18
20 3oL 105 20 3oaL 105 (18)

and for k>3,

Aro = By = 0.
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System (18) can readily be solved, yielding

Ao(tr) = —\/Z:?Bzo(o) sin(yt1) 4+ A10(0) cos(yty),
Bio(t1) = \/z:?/lzo(o) sin(yt1) + Bio(0) cos(yt1),
A (t1) = Az (0) cos(yty) — \/2310(0) sin(y?1),

Bao(t1) — Bao(0) cos(yty) + \gmo(m sin(y1), (19)

where y = 20(w; + w,)/3L/w 1w, and for k=3,

Ako(t1) = Aro(0) and  Byo(t1) = Byo(0).
For n>=1, A,4(0) and B,(0) can be determined from Eq. (16). From Eq. (17) a solution wy(z, t1)
can now be obtained without unbounded terms (that is without secular terms). So, a formal
approximation wgo(tg, 1) + ewg(to,t1) of wvi(¢;¢) has been constructed. And finally, an
approximation >~ wxo(to, 1) sin(kmx/L) + O(¢) of the solution v(x, ?) of the initial-boundary-
value problem (3-5) with Q = w, — w; is obtained.

4.2. The detuning case Q@ = wy — w; + e¢

If the frequency of the belt velocity fluctuation is detuned by taking Q = w, — w; + &¢ with
¢ = O(1), then the ()(¢) equation (17) becomes

82 Wil
2
oty

= — 2wi[ Ao cos(wkto) — Byo sin(wyly)]

2
+ wkw}kl

[ee] k '
+ ;* (112:1—kZ)L (40:Q0 cos(R10)[ Ao sin(w, o) + By cos(w,to)]

+ 8(Vo + a sin(Qty))wu[Ano cos(wy,ty) — Byo sin(w,t)]), (20)
where Qp = wy — w;. Now, it should be observed that in Eq. (20)
cos(Q1) = cos((wy — w1)ty + Pt1) = cos(Qty) cos(Ppty) — sin(Qytp) sin(¢pt1),
and
sin(Q¢) = sin((wy — wy)tg + Pt1) = sin(Qytp) cos(Ppty) + cos(Qoto) sin(pty).

Then, by separating those terms on the right side of Eq. (20) that give rise to secular terms in
wr1(to, 1), it 1s found that in order to avoid secular terms, Ayo(?;) and Bio(?1) have to satisfy:

A9 = —psin(¢pt;) Az + p cos(¢t1)Bao, Bio = —p cos(¢pt1) Az — p sin(¢pt1)Bao,
Az = —qsin(¢pt) A1 — g cos(dpti)Bio, By = qcos(¢pt1) Ao — g sin(Pty)Bio, (21)
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and for k>3

A =0 and By =0, (22)
where
—20(w) + wy) 20(w1 + wy)
e Gl B ) _ Ao T @) 23
3oL, ¢ 3oL (23)

Notice that for ¢ = 0, Eq. (21) is reduced to Eq. (18). In Appendix B, the solution of system (21)
has been derived. It turns out that the solution of system (21) is

AlO(Zl) =K sin(ﬁlll) + K5 COS(,Blll) + K;5 sin(ﬁztl) + K4 COS(ﬁztl),
1

Bu(t) == (A5 + (¢ — pg) A1),

Ax(t) = _71 [A10 sin(¢t1) + Big cos(¢piy)],

By(t)) = i [A19 cos(ptr) — Big sin(dpt1)], (24)

and
Aro = Ako(0),  Biro = Bio(0) for k=3.

Note also that in Eq. (24) ¢ #0. In Eq. (24), K|, K>, K3, and K4 are constants of integration, p, g
are given by Eq. (23),

b= U6 2006 — g, and o=\ Y 20+ /o A

As in Section 4.1, an approximation >, wio(to, 1) sin(knx/L) + O(¢) of the solution v(x, ) of
the initial-boundary-value problem (3-5) with Q = w; — ®; + ¢¢ and ¢ = (1) has now been
constructed.

For Q in a neighbourhood of w; — w;, now can be concluded (see also Eq. (24)) that no
instabilities for the belt system will occur. A similar analysis as given in this section can be applied
to other cases where €2 is of the difference type (that is Q = w,, — w, for some m and n). However,
in some of these cases instabilities can occur as will be explained in the next section.

5. Q2 is a sum of two natural frequencies

It has been shown in Section 3 that in order to remove secular terms, one has to solve the
equation Q+w, = twg, where k=n—-2j—1, or k=n+2j+1, or k=2j+1—n with j =
0,1,2, ... . In the case Q = w; — wy, it has been shown in Section 4 that the only solutions of the
problem (w; — w1)+w, = +wy (for an arbitrary value of y?> = n*/c?L?) are the trivial solutions
k = 1,n = 2 and symmetrically kK = 2,n = 1. For other values of Q and for certain specific values
of p? solutions other than the trivial ones may occur. Cases Q = v + @, Q = 2w; and Q =
w3 + w; will be considered in this section, other cases can be investigated similarly.
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5.1. The case Q = wy + w;

First, in order to solve the equation Q+ w, = +wy, three cases have to be considered:

(1) —w, — o = 2, which obviously has no solution since the right side is positive while the left
side is negative,
(1) w, + wr = 2, which obviously has only the trivial solution k =2,n=1ork=1,n=2,
(iil)) o — w, = Q2 (or equivalently w,, — w; = Q) which may or may not have solutions depending
on the value of y?. From w; —w, = Q, it follows that k\/1+k2u® = n\/1+n* 2 +
2¢/1 4 4u2 4+ /1 + p2. Since f(k) = k+/1 + u2k? is an increasing function it then follows
from k+/1 + k2 > ny/1 + p2n? that k >n>1. Then from 1<n<k it follows that

I/ 1+ k22 =ny/ 1+ n22 +24/1+4p2 + /1 + 12

<1+ k22 + 231+ k22 + /1 + kK22
=>n<k<n+3, =k=n+1 ork=n+2.

Since k =n—2j—l,ork=n+2j+1, or k =2j+ 1 —n with k,neN" and jeN it follows
that k& can only be equal to k =n+ 1. So, w;r — w, = Q = w, + w; can only have solutions
for k = n+ 1. The possibility of having solutions turns out to be dependent on the values of
12, In Table 1, some of these solutions are given.

Assuming that Q+w, = +wy only has the trivial solutions (k =2 and n =1, and k = 1 and
n = 2) it turns out that no secular terms occur in the solution of Eq. (17) if Ao(¢1) and Byo(21)
satisfy

0.0613

: 20w — w3) 20wy — )
A By, B Ay,
10 3L | 20 10 3L : 20
. 20((0)1 — 0)2) . 20((0)1 - (1)2)
A By, B Ay, 25
20 3L 5 10 20 3L 5 10 ( )
Table 1
Values of k, n, and p? for which w; = w, + @ has solutions
Q= wy + w Q= 2w Q=w3;+ w
k n w2 k n w2 k n w2 k n w2
3 2 — 2 1 0.7143 6 5 — 4 1 0.3851
4 3 0.3851 3 2 0.1664 7 6 — 5 2 0.0732
5 4 0.1607 4 3 0.0773 8 7 0.4588 6 3 0.0349
6 5 0.0926 5 4 0.0451 9 8 0.2124 7 4 0.0211
7 6 6 5 1 9 8 5

0.0297 0.0143
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and for k>3,
Aro = Bro = 0.
The solution of Eq. (25) can readily be determined, yielding
Avo(t1) = A10(0) cosh(ri 1) — \/Z:?Bzo(o) sinh(ry 1),
Ax(t1) = A20(0) cosh(rity) — \/Z:;BIO(O) sinh(ry71),
Bio(t1) = —\/—Z—?Azo(o) sinh(r1£1) + B1o(0) cosh(r 1),

By(t)) = _\/%AIO(O) sinh(r1t1) + Bao(0) cosh(r 1), (26)

where r| = 2a(wy — w1)/3L /w1y, and for k=3, Aro(t1) = Axo(0) and Byo(t1) = Bio(0). It is
obvious from Eq. (26) that instabilities for the belt system will occur. When for instance,
#2 ~0.3851 it turns out that Q+w, = + wy also has other solutions than the trivial ones (see Table
1). To avoid secular terms in the solution of Eq. (17) it then turns out that A4, Bio, A2, and By
still have to satisfy Eq. (25), and that

. —12a . 12a
A = ——— B By=— A
0= T (@3 + w4)Ba, T (@3 + w4)As,
. —12a . 120
Ay = ——— B By =— A 27
0= T (w3 + w4)Bs, 0= T (w3 + w4)A30, (27)

and that for k=5, Ay = Bro = 0. The solution of Eq. (27) can readily be determined, yielding

Azo(t) = — \/Z:: By4o(0) sin(Bt1) + A30(0) cos(ft1),

Ag(t) = — \/Z:i B30(0) sin(B11) + A40(0) cos(ft1),

By(t)) = \/Z::Am(o) sin(ft1) + Bso(0) cos(Bry),

By(t1) = \/Z:j A30(0) sin(Bt;) + Bao(0) cos(fty), (28)

where f = 12a(w3 + w4) /7L /w34 and for k=5, Axo(t1) = Ako(0) and Byo(t1) = Bko(0). Also for
> ~0.3851 it is obvious that instabilities for the belt system will occur. It should be observed that
Q=w)+w =wy — w3 for p”?~0.3851. So, for special values of the beam parameters, also
frequency Q of difference type can lead to instabilities.
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5.1.1. The detuning case Q = w; + w; + &¢
In the detuning case of Q = w, + w; + &¢ secular terms will not occur if

A = 32—()( (02 — w)[ A2 sin(@ty) — Bag cos(p1y)],
w1
By = —% (@2 — w1)[Aao cos(Pty) + B sin(¢p1y)],
Ay = %(wz — w1)[A10 sin(¢pt) — Big cos(oty)],
(00)
By = —% (w2 — w1)[A10 cos(Ptr) + Big sin(gp1y)], (29)

and for k>3,
AkO =0 and Bk() =0.
In the following it will be assumed that o >0 (for o <0 the procedure is the same). By putting

p = Qa/3Lw)(wr — wy) and ¢ = (2a/3Lwy) (w2 — wy), and by differentiating 4,9 once more it
follows that

Ay = pgAdio — ¢Byo. (30)
By differentiating 4o twice and by making use of Eq. (30) it then follows that
A+ (07 = 2p@)Aro + pP*¢* 410 = 0, (31)

where A(;(? is the fourth order derivative of 4,9 with respect to ¢;. This fourth order differential
equation can be solved elementarily, with the result that:

e for ¢° > 4pq the solutions of Eq. (29) will be stable,
e for ¢* = 4pq the solutions of Eq. (29) will be unstable (due to the linear term in #;), and finally
e for ¢> <4pq the solutions of Eq. (29) will increase exponentially.

In Fig. 1, the stability regions for system (29) in («, ¢)-plane for positive values of o have been
given. The bifurcation lines are given by ¢* = 4pg = k2(L, p)o2, where k3(L, u1) = 8(2+/1 + 4p —
V1 12?2 )902/1 + 4u2\/1 + 12, From ¢* = k?o? it follows that (¢ — ko)(¢p + ko) = 0. The
slope k is a function of L and u and for fixed L it can be shown that 8/9L> <k?<4/L?. Values of o
and ¢ located in regions I and IV lead to stable solutions of system (29) while values of & and ¢ in

regions II and III (including the lines ¢*> = k%«?) lead to unstable solutions of system (29).

5.2. The case Q = 2w,

As in Section 5.1, in order to solve the equation Q+w, = +wy, again three cases have to be
considered:

(1) —w, — wr = Q = 2w, which obviously has no solutions.

(1) w, + wr = Q@ = 2w;, which obviously only can be satisfied for kK =n = 1. But since k =
n—2—l,ork=n+2j+1,ork =2j+1—nwithk,neN" and jeN, it follows that there is
in this case no solution.
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Fig. 1. Areas of stability of system (29) for a specific value of k = 1.

(iil)) o — w, = @ =2w; (or equivalently w, — w; = 2), which may or may not have solutions
depending on the value of p?. From w; —w, =2w; it follows that k+/1 + 2k? =

ny/1+ w?n? + 2+/1 + 2. Since f(k) = k+/1 + p2k? is an increasing function it then follows

from k+/1 + u2k? > ny/1 + p2n? that k > n>1. Then, from 1<n<k it follows that
kv 1+ 12k =n\/1+ pi2n? +2+/1 + 2
<ny 1+ p2k? +2+/1 + p2k?

=n<k<n+2=k=n+1.

So, oy — w, = 2w, can only have solutions for k = n + 1. The possibility of having solutions
turns out to be dependent on the values of y. In Table 1, some of these solutions are given.

When p? is not (in neighbourhood of) a value as listed in Table 1 then it easily follows from
Eq. (17) that no secular terms occur in the solution if Axy = Byo = 0 for all k>1. When for
instance u>~0.7143 it turns out that no secular terms occur in the solution of Eq. (17) if Axo(t)
and By(t)) satisfy

. —4q . o
Ajg = (w2 — w1)By, Big = 57— (w2 — w1)Ax,
3La)1 3La)1 (32)
. —8ow . 8oy
Ary = B By = A
20 3L 105 20 3L(D2 105

and for k>3A4;y = Bry = 0. The solution of system (32) can readily be determined, yielding:
Aro(21) = —CBy(0) sin(011) + A1(0) cos(0ry),

A1) = 5 Bio(O)sin(011) + A2 (0) cos(Or).
Bio(t1) = CA20(0) sin(0t1) + B1o(0) cos(0ty),

B(t1) = lCAIO(O) sin(0t,) + By (0) cos(01y), (33)
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where C? = wy(w — w1)/2w?, 0 = (4v/20/3L)\/(w3 — w1)/w; and for k>3,

Ako(t1) = Ako(0),  Bio(t1) = Bio(0).

Obviously, no instabilities for the belt system will occur when u?>~0.7143 or when p° is not (in
neighbourhood of) a value as listed in Table 1. It should be remarked that a similar analysis can
be performed if Q = 2wy for some fixed N > 1.

5.3. The case Q = w3 + wy

As in the previous two Sections 5.1 and 5.2, again the following three cases have to be
considered in order to solve the equation Q+ w, = + . Those cases are:

(1) —w, — o = 2 = wy + w3, which obviously has no solution;

(1) w, + wr = Q = wy + w3, which obviously has the trivial solutions k =2 andn =3, or k=3
and n = 2. In this case additional solutions can only occur if w; + w; = Q = w, + w3 has a
solution. In Appendix A (see the case wr = w, + wy — wp) it has been shown that this is not
possible;

(i) wp —w, = @ = wr + w3 (or equivalently w, — w; = 2), which may or may not have
solutions depending on the value of x?>. From w; — w, = Q it follows that kv/1 + p2k? =
ny/ 1+ 122 + 31 + 9?2 + 24/1 + 4u?. Since (k) = k+/1 + p2k? is an increasing function it

then follows that k> n and k > 3. Then, from k£ >n and k > 3 it follows that

k/1+ 1262 =ny/1 4 1202 4+ 33/1 4912 + 24/1 + 412
<1+ 12i2 + 3/1 + 12k2 + 24/1 + 12k>
=>n<k<n+3+2
=k=n+lork=n+2 ork=n+3ork=n+4.

Since k=n—-2j—1, or k=n+2j+1, or k=2j+1—-n with kneN" and jeN
it follows that k& can only be equal to n+1 or n+3. The possibility to have
solutions turns out to be dependent on the values of x?. In Table 1, some of these solutions
are given.

Assuming that Q+w, = +w; only has the trivial solutions (k =2 and n =3, and k = 3 and
n = 2) it turns out that no secular terms occur in the solution of Eq. (17) if Axo(¢;) and Byo(t;)
satisfy

. 6o . o
Ay = ——2 (w3 — w)B Bao = —2 (@ — an)d
20 SLos (w3 — w2)Bsy, 20 SLos (w3 — w2)A30,
. 6o . 60
A3y = ———— (w3 — w2) By, B3y = ——— (w3 — w2) A, (34)

5LCU3 5LCO3
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and for k = 1,4,5,6, ..., Axy = Bio = 0. The solutions of system (34) can readily be determined,
yielding:

(0)) .

A1) = = [ Bao(0) sinh(s111) + Az(0) cosh(sity)
@ .

A1) = = [ 2 Bao(0) sinh(s111) + Azo(0) cosh(si )
(0)) .

Ba(t1) = —4 /w—z A30(0) sinh(s 1) + Bao(0) cosh(si 1),

Bi(t1) = — \/Z:j A2(0) sinh(s;71) + B30(0) cosh(si 1), (35)

where 51 = 6a(w3 — w2)/5L /w3y, and for k = 1,4,5,6, ...,

Aro = Ako(0) and  Byo(t1) = Byo(0).
From Eq. (35) it is obvious that instabilities for the belt system will occur. When for instance
1> = 0.0732 it turns out that Q+w, = +wy also has other solutions than the trivial ones (see

Table 1). To avoid secular terms in the solution of Eq. (17) it now turns out that Ayy(#;) and
Bio(21) have to satisfy

Ay = —522)2 (w3 — 02) B3 — 2112 (s + m2)Bso,

By = _SE—OC (w3 — m2)A30 + 2112 (s + m2)Asp,

Az = —520;3 (w3 — m2) B, By = —527 (w3 — m2) A,

Aso = —21122)5 (w5 + w2) By, Bsy = 21122)5 (s + w2) A, (36)

and for k =1,4,6,7,8, ...,
Aro = By = 0.
The solution of Eq. (36) can readily be determined, yielding
Aao(t) = K sin(sat1) + A20(0) cos(saty),
Boy(t1) = K sin(saty) + Bao(0) cos(saty),

d K d\B d| K

Azo(t1) = S;wj cos(sy11) — — 220( )Sln(Szll) + <A30(O) 1 2)
di K d K

Bio(t1) = ——cos(sat1) — 1420 )Sln(Szfl) + (330(0) 1 1>
w3 S20 S23
K d> Bro(0 K

Aso(ty) = sja)j cos(s2t1) — — 220( )S n(sat1) + <A50(0) 2 2)

A
cos(s t)—i—a’2 2(0)
S2Ws5

Bso(t)) = waK sin(sat1) + <Bso(0)+ w5> (37)
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E < H(wy + ws)? (9 Y3 — m)?
27 [\21 W5 5 W33 ’

K = SZI [dl B30(0) + — % 350(0)]

where

1[—d d
Ky =— [—1 Bso(0) + — 350(0)],
S| @
o 60((603 — (1)2)
d] - 5L 5
b 10o(ws + w»)
2 20

and for k=1,4,6,7,8, ...,
Ao(t1) = Axo(0) and  Byo(t1) = Bio(0).

From Eq. (37) it is obvious that now no instabilities for the belt system will occur. It should be
observed that Q = w, + w3 = ws — w, for u?~0.0732. So, for special values of the beam
parameters also frequencies 2 of sum type can lead to stable behaviour. To obtain more insight in
the complicated dynamical behaviour of the belt system, in the next section the beam parameter
p? will be detuned (keeping Q fixed).

5.3.1. The detuned case ui>~0.0732

In the previous Section 5.3 it has been shown that if Q = w, 4+ w3 (and p? is not in the
neighbourhood of a value as listed in Table 1) then the belt system is unstable. For u?~0.0732,
however, the belt system is stable. To obtain more insight in this different behaviour W2 in a
neighbourhood of 0.0732 will be detuned. By observing that y? = on/c?L? with § = Eul,/pA,
detuning of > can be achieved by detuning § in the original PDE (6). For that reason it will be
considered that p? = 12, + ey with p2, = 0.0732 and ¥ an arbitrary constant of ¢(1), and & =

der + &v with = (n?/2L*)v and 12, = (n*/?L*)d.,. The frequency Q is kept fixed, that is, Q =

\/(2C7I/L)2+5cr(2ﬂ?/L)4+ \/(3cn/L)2+5c,(3n/L)4. It should be observed that this type of

detuning is different from the one studied in Section 4. By replacing ¢ in Eq. (6) by d, + ¢v the
same analysis as presented in Sections 2 and 3 can be repeated. To avoid secular terms in the
approximation it turns out that Axo(¢;) and Byo(t1) now have to satisfy (¢ = nv/cL?, and @y =

kv/1+ p2,k?* for k = 2,3, and 5)

60 10 8t

Ay = — — @)B3) — = Bs) — ——B
20 5Lan (3 — @2) B 2Ly (s + @2)Bso — — DL A 20
. 60 10c 8t
By = — D3 — 1)A A —A
20 5Las (3 — @) 30+21L‘ (s + @2)As0 + — B, LA20
. 60 81n*ep
Az = — D3 — @2)Br) — ——B
30 5L (@3 — @2)Bao N 305
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. 60 81n*g
By = — By — @) Asg + oA
30 5L, (3 — @2) A0 + N
. 10 6251* ¢
Aso = — Bs + @)By — ———B
0= 31Los (s + @2) B0 — = 5oL4 D0
. 1000 _ _ 6251*¢p
Bsy = Lo (s + @2) Az + ﬁflso, (38)
and for k = 1,4,6,7,8, ...,
. v (kn\* . v (kn\*
AkO = _ﬂ (T) Bk() and BkO = ﬁ(r) AkO- (39)

Obviously, system (39) has a bounded solution. The characteristic equation of system (38) is
28+ (1502.1631¢% + 1.87875°)7% + (0.88245* — 1230.29725° ¢p*

+ 170023.50614%)12 + 874.7894n*p? + 0.1876 107¢p° — 81019.09275%p* = 0, (40)

where 1 = a/L. By putting J? = a in Eq. (40) the following cubic equation for a is obtained
a® + (1502.1631¢* + 1.87875°)a” + (0.8824n* — 1230.29725° >

+ 170023.5061p%)a + 874.7894n*¢p* + 0.1876 107 $p° — 81019.0927n*¢* = 0. (41)

Eq. (41) can be solved by using the Cardano’s formula. The radicand R (of the reduced form of the
cubic equation (41)) plays an important role in the solution structure. When the radicand R is
positive the reduced cubic equation of Eq. (41) will have one real, and two complex conjugate
solutions. Since a = A% it follows that at least two roots of the characteristic equation (40) will
have a positive real part. Consequently, the solution of system (38) will be unstable. For R<0 the
cubic equation (41) will have three distinct real roots, and for R = 0 there are three real roots of
which two coincide. For R<0 it requires an additional analysis to determine whether system (38)
is stable or not.

In Fig. 2 the bifurcation values of R as a function of ¢ and # have been given. In this figure it
has been assumed that # and so o (the amplitude of the speed fluctuation) are positive. Similar
results can be found for n<0. When ¢ and n are in the areas Il and V then the solutions of
Eq. (41) are positive, leading to the unstable solutions for Eq. (38), whereas when ¢ and # are in
the areas I, ITI, IV or VI the solutions of Eq. (41) will be negative leading to stable solutions for
Eq. (38). When ¢ and 5 are exactly on the curves the solutions of Eq. (41) will be also negative
which leads to stable solutions of Eq. (38).

6. Conclusions and remarks

In this paper, initial-boundary-value problems for a beam equation have been studied. The
equations can be used as simple models to describe the vertical vibrations of a conveyor belt for
which the time-varying belt velocity is small with respect to the wave speed. It is assumed that the
belt velocity V(t) = e(Vy + a sin(2¢)) where ¢, Vy, o, and Q are constants with 0 <e< 1 and |o| < V5.
Complicated dynamical behaviour of the belt system occurs when the frequency £ is the sum or
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Fig. 2. Bifurcation values of R as a function of # and ¢.

difference of any two natural frequencies of the system for which the belt velocity is equal to zero.
For special values of the belt parameters these sum type and difference type of internal resonances
can coincide giving rise to even more complicated dynamical behaviour. For both sum type and
difference type of internal resonances instabilities for the belt system can occur.

In this paper, the following cases have been studied in detail with the following results:

(1) Q = wy — wy; interaction between the first and the second vibration modes; no instabilities
for the belt system (also for the detuned case).

(1) Q = w, + wy; interactions between the first and the second vibration modes, and for special
values of the beam parameters (see Table 1) additional interactions; there will always be
unstable behaviour of the belt system.

(iii) The detuned case Q = w;, + w; + €¢; interactions occur between the first and the second
vibration modes. Solutions will be unstable if ¢* <4pg, while for ¢*> > 4pq the solutions are
stable (p = (20/3Lw;)(w; — wy) and ¢ = 2o/3Lwy)(wr — wy)).

(iv) Q = 2wy; only for special values of the beam parameters (see Table 1) there will be an
interaction between two different vibration modes; there are no instabilities for the belt system.

(v) Q = wy 4+ w;; interaction between the second and the third vibration modes, and for special
values of beam parameters (see Table 1) there are additional interactions; in general there will
be instabilities for the belt system. However, for special values of the beam parameters there
can be stable behaviour of the belt system. When some of these beam parameters are detuned
unstable behaviour can occur again (see Section 5.3.1 where 2 = wy + w3 = ws — w, for
w? = Epl,n? /pAPL*~0.0732).

It is expected that for other values of Q, the same techniques (as presented in this paper) can be
applied to determine the stability properties of the belt system.
Appendix A

In this appendix it will be shown that the equation @+ w, = + w; with Q = @w, — w; only has as
solutionsn=2and k=1if Q —w, = —wi, and n=1and k = 2 if Q + w, = wy. To prove this,
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the following four cases have to be considered: wp = w, + wy — w;, Wr = —w, + W, — w1,
—0 =0, + 0y —w, and —w; = —w, + Wy —w;. Note that k=n—-2j— 1, or k=n+2j+ 1,
or k =2j+1—n with k,neN" and jeN.

A.1. The case w, = w, + wy — W

Since w} = (ckn/L)* + d(kn/L)*, it follows from w; = w, + w; — w; that
k\/l—l—,u2k2_n\/1—|—u2n2+2 1—1—;4222_1
V14 p? V1+ 2 V 1+ 2 ’

where p? = 6n?/c2L?. Tt can easily be shown that f(k) = kv/1 + u2k2/\/1 + u? is an increasing
function in k, and that k<f(k)<k?. Then it follows from Eq. (A.1) that

ny/1 +,uzn2<k\/1 +,u2k2<n\/1 +u2n2+2\/1 + u?2? (A2)
V142 V1+@? V14w NiEST '

Since f(k) is increasing in k it follows from the first inequality in Eq. (A.2) that 1 <n<k. From
the second inequality in Eq. (A.2) it then follows that

k\/m<n\/1 + 12n2 N 2¢/1+ ,u222<n\/1 + 12k2 . 24/1 4 u2ic2
N A A RV RV T
=k<n—+2. (A.3)
Consequently, k = n + 1, and Eq. (A.1) becomes

(n+ Dy/1 4+ 2+ 1) /It 2T+ 22 T+ 2

/1_|_‘u2 /1_|_M2 o /1+H2 /1_‘_#2'
Denoting the left side of the last equation by g(n) then the right side of the equation is just g(1).

It is not too difficult to show that g(n) is an increasing function, so the last equation can only be
satisfied if n = 1. Since k = n + 1 it follows that the only solution in this case is k =2 and n = 1.

(A.1)

A.2. The case wp = —w, + wy — W

In this case it follows from w; = —w, + wy — w; that
k\/m—z—k—f: n\/1+,u2n2+2\/1+u222_1 (Ad)
VIt Vit o VTeeE |
The only candidate for a solution of this equation is # = 1 since the left side is always positive

while the right side is negative for n>2. Accordingly, by substituting n = 1 into Eq. (A.4) it will
follow that:

ky/1+ 02k 24/1+ 1222 5

V1 + 2 V1 + u? .

Now it should be observed that the left side of Eq. (A.5) is between k and k2, and that the right
side is between 0 and 2. So, the only candidate for a solution is k =1 (and n = 1). Since k =

(A.5)
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n—2—1l,ork=n+2+1,ork=2j+1—nwith k,neN* and jeN it easily follows that there
are no solutions in this case.

A.3. The case —w; = w, + wy — w

In this case it follows from —w; = w, + wy — w; that
ky/1+ 022 ny/1+2n2 24/1+ 222 .
/1+H2 /1+N2 /1+M2

Now the left side is always negative while the right side is always positive. So, there are no
solutions in this case.

A.4. The case —wy = —w,, + Wy — 0

In this case it follows from —w; = —w,, + wy — w; that
TR k/TER 2T |
Vit o Vit Ve
By interchanging »n and k, this case becomes the first case. So, the only solution in this case in

k=1and n=2.
This completes the proof of the statement at the beginning of this appendix.

Appendix B

In this appendix the solutions of Eq. (21) will be determined, that is, the solutions of:
Ao = —psin(¢p11) Az + p cos(¢t1)Bay,
Big = —pcos(pt1) Az — p sin(pt1)Ba,
Ay = —gsin(¢pt1)A10 — g cos(pt1)Bio,
By = qcos(¢pt1) A1y — g sin(¢t1)Big, (B.1)

where p and ¢ are given by Eq. (23).
By differentiating the first and the second equation in Eq. (B.1) it follows that

Ay = — po cos(pt1) Az — p sin(pt1)Azg — pe sin(pt1)Bag + p cos(pt1)Bag
= @[—p cos(dpt1) A — p sin(Ppt1)Bayo] — p sin(p11)[—q sin(Pty) Ao
— qcos(¢t1)Bio] + p cos(dp)lg cos(Ppti)A1o — g sin(¢pt — 1)Bi]
= ¢Bio + pgAo, (B.2)

Big = —¢ Ao + pqBo. (B.3)
Differentiating Eq. (B.2) and using Eq. (B.3), results in
AY — pgdig = pBig = —p* Ao + pad Buo, (B.4)
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and finally by differentiating (B.4) and using (B.2) it follows that
AL+ (@ = 209 A1 + (pg)* 410 = 0, (B.5)
The characteristic equation corresponding to Eq. (B.5) is r* + (¢* — 2pq)r* + (pg)* = 0, with
solutions r; = \/%[qu —¢* + \/B], ry = \/%[2pq . — \/5], ry = —ry, and r4 = —r, and where
D = ¢* — 4pgd*. Since p and ¢ are of opposite sign it follows that ¢* — 4pgep? >0 and 2pg —
¢><0. Therefore, r, and r4 are purely imaginary. And, since ¢* —2pq = /(> — 2pq)*

V&' — 4pad? + 4p2g> > \/¢" — 4pge” it follows that |2pg — ¢°| > /§* — 4pgd. Accordingly r,
and r; are also purely imaginary. So, all the solutions of the characteristic equation can be written
in the form

ry = ﬁli, ry = ﬁzi, r3 = —ry, and rqg = —rp,

By = \/5 (¢ — 2pq — \/¢* — 4pgd’] and B, = \/5 [¢7 = 2pq + 1/ ¢* — 4pgd’]
The solution of Eq. (B.5) now becomes
A]()(Zl) =K sin(ﬂltl) + K5 COS(ﬁlﬁ) + Kj sin(ﬂztl) + K4 COS(ﬁzll),

where K|, K>, K3, and K4 are constants of integration.
From Eq. (B.4) Bjo(#;) can be derived, yielding

Blo(zl)—ﬁ[A<3>+(¢ —pg)Ail, P #0.

From the first two equations in Eq. (B.1), 429 and By can now readily be determined, yielding

Ax(ty) = _pl [410 sin(¢ptr) + Big cos(pty)],

where

Boy(11) :1%[12110 cos(¢t1) — Big sin(¢ry)].

So, the solutions of Eq. (21) have been derived.
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