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1. Introduction

Asymptotical approaches devoted to the analysis of strongly non-linear dynamical systems still
need to be developed. A special attention of this research is focused on an analysis of low
dimensional systems, which is motivated by the following observations:

1. The fundamental behaviour of high order dimensional systems can be adequately modelled by
systems of low dimension [1–3].

2. A concept of non-linear normal modes very often allows one to reduce a high dimensional
system to one with a few degree of freedom [2–6].

3. Recent results show that approximate analytical solutions of strongly non-linear systems can be
obtained with an emphasis paid to strong non-linearity [2,5,7–9]. As a zero order
approximation a so-called vibro-impact system is used, and thereafter either a method of
iteration [2,7] or asymptotic techniques [5,8,9] are applied. However, during this procedure the
following drawback occurs: non-smooth solutions with a constant period of oscillations
appear.

Contrary to that approach, in this paper, another construction of smooth solutions is proposed
using an asymptotical approach. Proposed asymptotics use a concept of generalized functions
[10–12].
Consider the following Cauchy problem:

.x þ 2k ’x þ x þ cxn ¼ 0; n ¼ 2p þ 1; p ¼ 0; 1; 2;y; ð1Þ

xð0Þ ¼ 1; ’xð0Þ ¼ 0: ð2Þ
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The asymptotical problem of Eqs. (1) and (2) has been considered in Ref. [7]. A saw-tooth time
transformation [8, 9] has been applied, as well as the asymptotics generated by an exact solution
for a certain parameter set of the Eq. (1) has been proposed [5].

2. Introduction of a small parameter

In the first step, the damping term is excluded from Eq. (1) using the following standard change
of variables [6]:

x ¼ y expð�ktÞ:

The result gives the following Cauchy problem:

.y þ ð1� k2 þ kÞy þ expð�kðn � 1ÞtÞyn ¼ 0; ð3Þ

yð0Þ ¼ 1; ’yð0Þ ¼ k: ð4Þ

As it has been shown in many references [2,5,8–12], a construction of asymptotics to the systems
with high power form non-linearity xn for n-N is very important, and can be effectively applied
to the analysis of non-linear dynamical systems. In Eq. (3) two parameters occur, k and n: The
traditional asymptotical methods are oriented rather to the use of the parameter k; and then both
cases, i.e., small values ðk-0Þ [1] as well as large values ðk-NÞ [13] of the k parameter are
considered.
In this paper another approach is proposed: for k � const the case n-N is analyzed.
In Eq. (3) there is the coefficient expð�kðn � 1ÞtÞ; and the problem stated reduces to that of an

explicit isolation of the large parameter n: In order to realize this approach one can use the
formula presented in Ref. [14, p. 410]:

HðtÞexpð�ltÞB
XN
K¼0

ð�1ÞkdðkÞðtÞ

lkþ1
ð5Þ

for l-N valid in the space P0ðRÞ; where d is the Dirac delta function. This means that if fAP;
the following expansions

fðlÞ ¼
Z

N

0

expð�ltÞfðtÞ dtB
fð0Þ
l

þ
f0ð0Þ

l2
þ

f00ð0Þ

l3
þ?

of the Laplace transform fðlÞ holds as l-N:
The space P0ðRnÞ consists of those smooth functions fðxÞ that satisfy limt-N e�g tj jDbfðtÞ ¼ 0

for each g > 0 and each bANn with seminorms

fj jg;b¼ sup
Rn

expð�g tj jDbfðtÞ
�� ��:

The dual space P0ðRnÞ consists of distributions of exponential decay at infinity. So, formula (5)
is rigorously mathematically valid in the framework of the asymptotic expansions of generalized
functions of a rapid decay [14,15].
A construction of the formula (5) can be described in the following way. First, the Laplace

transformation [16] is applied to the function expð�ltÞ: Secondly, the obtained transformation is
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developed into an analytical series with respect to 1=n: Third, after a successive return to the
original one gets the formula (5).
For the case considered one gets

expð�kðn � 1ÞtÞ ¼
dðtÞ

kðn � 1Þ
�

d0ðtÞ

k2ðn � 1Þ2
þ

d00ðtÞ

k3ðn � 1Þ3
þ?; ð6Þ

where dðtÞ; d0ðtÞ; d00ðtÞ;y are the Dirac’s delta functions and their derivatives.

3. Asymptotics construction

At the first stage, substituting the series (6) into both Eq. (3) and the initial conditions (4), one
gets to a first order approximation (for n-N):

.y0 þ a2y0 ¼ 0; ð7Þ

y0ð0Þ ¼ 1; ’y0ð0Þ ¼ k; ð8Þ

where a2 ¼ 1� k þ k2:
As a result, a solution to the Cauchy problem Eqs. (7) and (8) has the form

y0 ¼ cosðatÞ þ
k

a
sinðatÞ: ð9Þ

However, a construction of higher approximations does not belong to a trivial process. Some of
the necessary descriptions needed for further considerations are introduced using the
fundamentals given in Ref. [16].
Consider the following non-linear equation

.x þ g ’x þ o2x þ exn ¼ 0; n ¼ 3; 5; 7;y : ð10Þ

For ej j51 and relatively small values of n (n ¼ 3; 5) a solution to Eq. (10) can be obtained using
either the standard Lindstedt–Poincar!e or averaging methods [1]. For the large values of n the
standard approach seems not to lead to correct results. Suppose that one is going to find a
solution to Eq. (10) in the form

x ¼ x0 þ ex1 þ e2x2 þ? ð11Þ

then the non-linear term is approximated by the formula

ðx0 þ ex1 þ e2x2 þ?Þn ¼ xn
0 þ enxn�1

0 x1 þ? :

Thus, a role of the real ‘‘small’’ parameter plays en instead of e: It seems that this change is not
so important for n ¼ 3 and n ¼ 5; however it is expected to play a crucial role for large values of n

(especially for n-N).
In this contribution the following transformation is introduced:

x ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ en

x1

x0
þ?n

r
: ð12Þ

For small n values the expressions (11) and (12) are equivalent. For n-N; a high order of
singularity caused by the nth root seems to play an important role.
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The term x1 can be obtained from the equation in a typical quasi-linear approach

.x1 þ g ’x1 þ o2x1 ¼ �xn
0:

In other words, known quasi-linear solutions [1] can be transformed to formula (12).
In the present case, a solution to the Cauchy problem Eqs. (3) and (4) has the form

y ¼ y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

y1

y0
þ

y2

y0
þ?n

r
: ð13Þ

Therefore, one obtains

y ¼ y0 þ
y1

n
þ? ; ; ð14Þ

yn ¼ yn
0 þ

yn�1
0 y1

n
þ? : ð15Þ

Observe that in formulas (14), (15) ‘n � 1‘ is approximated by ‘n’ for large n:
In the first order approximation, the following Cauchy problem is obtained

.y1 þ a2y1 ¼ �
1

k
dðtÞyn

0ð0Þ; ð16Þ

y1ð0Þ ¼ ’y1ð0Þ ¼ 0: ð17Þ

In addition, the problem of satisfying the initial conditions does not belong to the trivial
problems. As it has been pointed out in Ref. [17] the following approach can be used. In zero
order approximations some of the parameters are left undefined, and they are estimated in the
next successive approximations (a request to satisfy the initial conditions). In this case one takes

y0 ¼ C1 cosðatÞ þ C2 sinðatÞ; ð18Þ

where C1; C2 are the constants going to be estimated further. Eq. (16) is transformed to the form

.y1 þ a2y1 ¼ �
Cn

1

k
dðtÞ: ð19Þ

A solution to the Cauchy problem Eqs. (18) and (19) can be found using the Laplace
transformation [18]

y1 ¼
kCn

1

a
sinðatÞ: ð20Þ

Substituting Eqs. (18) and (20) into Eq. (15) and satisfying the conditions (4) gives

C1 ¼ 1; C2 ¼
kn

aðn þ 1Þ

and finally

x ¼ expð�ktÞ

(
cosðatÞ þ

kn

aðn þ 1Þ
sinðatÞ

� �n

þ
k

a
cosðatÞ þ

kn

aðn þ 1Þ
sinðatÞ

� �n
)1=n

:: ð21Þ
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4. Results and discussion

In order to estimate the approximation given by formula (21), the results have been compared
with the numerical integration of the Eq. (1) using the 4th order Runge–Kutta method for some
values of k and n:
For a given damping coefficient value k and for fixed c ¼ 1 a comparison with formula (21) has

been carried out for different n values. The results are shown in Fig. 1, where the dashed curves
correspond to the numerical solutions.
In all cases considered, i.e., for k ¼ 0:01; 0.1; 0.5 the analytical approximations increase with an

increase of n: In addition, the proposed analytical approximations work better for smaller values
of the damping coefficients k:
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Fig. 1. A comparison between analytical (——) and numerical (- - - - -) solutions for different values of k and n

coefficients.
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