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Abstract

An inhomogeneous layer element method is presented to analyze the dispersion of waves and
characteristic wave surfaces in plates of functionally graded piezoelectric material (FGPM). In this method,
the FGPM plate is divided into a number of layered elements. The elemental elastic and electric properties
are assumed as linear functions of the thickness to adopt the variety of the material property of FGPM. The
Hamilton principle is applied to determine the governing equations. The phase velocity surface, phase
slowness surface, phase wave surface, group velocity surface, group slowness surface, and group wave
surface for FGPM plate are formulated using Rayleigh quotient and the orthogonality condition of the
eigenvectors. These six surfaces are then used to illustrate the characteristics of waves in FGPM plates.
Numerical examples are presented using the present formulations to analyze dispersions and characteristics
of waves in FGPM plates.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Materials, which respond not only to mechanical forces but also to electrical charges and
generate electric potential, are named as piezoelectric materials. Piezoelectric materials are very
promising which can be integrated with structural materials to form a class of ‘‘smart structures’’
and capable of altering the structure’s response through sensing, actuation and control. To
enhance the effect of piezoelectric material, a new concept of functionally graded piezoelectric
material has been proposed and termed as FGPM. In the applications of FGPM to the substrate
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of SAW devices, the study of wave dispersion behaviors as well as wave surfaces in FGMP
structures is of considerable importance.
For the characteristic analysis of waves propagating in composite plates, exact methods have

been used for isotropic laminated plates [1] as well as anisotropic laminated plates [2]. Many
effective numerical methods have been proposed to characterize waves in orthotropic [3,4] and
other anisotropic [5,6] laminated plates. In recent years, attention has also been given to FGM
structures. As the material properties of FGM change continuously, wave propagation problems
related to the FGM are generally difficult to analyze. When investigating waves in an FGM plate,
Liu et al. [7] have found in 1991 that Lame waves and SH waves propagate in a form of surface
waves on the softer surface of FGM plates. The results show that the variation of material
properties can be approximated with piecewise linear or quadratic functions of the thickness.
Ohyoshi proposed an analytical method to obtain wave reflection and transmission coefficients
for an FGM plate [8]. Several analytical methods have been proposed for analyzing stress waves
in FGM plates [9,10]. Analytical–numerical methods were also introduced for analyzing
characteristics of waves and transient responses of cylinders of functionally graded material
[11,12]. For waves in laminated piezoelectric structures, matrix formulations have also been used
[13,14]. Shiosaki et al. [15] have investigated Love waves in a three-layered piezoelectric structure,
by using an experimental method with exact theoretical calculations. However, all of these studies
dealt with homogeneous piezoelectric plates. In 1991, a hybrid numerical method was proposed
and extended for FGPM and the responses of the plate excited by mechanical loads and electrodes
were computed [16,17]. To the best of the authors, this is the first paper on mechanical problems
for FGPM. Numerical methods for wave propagation problems for composite FGM and FGPM
plates have been collected in Liu’s monograph [18]. Recently, some works on free vibration
problems for FGPM plates and shells were reported by Chen et al. [19,20], in which two
decoupled state equations are derived with variable coefficients through the introduction of
displacement and stress functions and free vibrations of functionally graded piezoceramic hollow
spheres were analyzed.
In this paper, an inhomogeneous layer element method is suggested to investigate the wave

characteristics of FGPM plates. In the present method, the FGPM plate is firstly divided
into layered elements in the thickness direction. As the material property and electrical
property do not change very sharply in the thickness direction for practical FGPM plates, the
variation of the property (material and electric) within an element can be assumed as linear
function in the this direction. It is also assumed that the material property is anisotropic in the
plane of the plate. As the special attribute of FGPM that the material property and electric
property change continuously in the thickness direction has been taken into account in each
element, much less numbers of layer elements are needed to model the variation of the property.
The displacement and electrostatic potential within each element are described using second order
shape functions in the thickness direction. The Hamilton’s principle is used to develop
approximate dynamic equilibrium equations. The phase velocity surface (PVS), phase slowness
surface (PSS), phase wave surface (PWS), group velocity surface (GVS), group slowness
surface (GSS), and group wave surface (GWS) are formulated using the Rayleigh quotient and
the orthogonality condition of the eigenvectors considering the effects of piezoelectricity.
Six characteristic surfaces can be used to illustrate the characteristics of plane waves in an
FGPM plate.
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Numerical examples are presented for investigating the dispersion relations, group velocities,
and mode shapes of harmonic plane waves propagating in a hypothetical FGPM plate. The
comparisons of the characteristics of waves between the FGPM plate and those of the
corresponding FGM plate are presented to investigate the piezoelectricity effect.

2. Formulation

Consider an FGPM plate with a thickness H; as shown in Fig. 1. The plate is divided into N
layer elements in z direction. The thickness of the nth element is denoted by hn: The mass density,
elastic coefficient matrix, piezoelectric and dielectric material constant matrices on the lower and
upper surfaces of the nth element are denoted by rL

n ; r
U
n ; c

L
n ¼ ðcijÞ

L
n ; c

U
n ¼ ðcijÞ

U
n ði; j ¼ 1; :::; 6Þ;

eL
n ¼ ðeijÞ

L
n ; e

U
n ¼ ðeijÞ

U
n ði ¼ 1; 2; 3; j ¼ 1; :::; 6Þ; gL

n ¼ ðgijÞ
L
n ; g

U
n ¼ ðgijÞ

U
n ði; j ¼ 1; 2; 3Þ; respectively,

where the superscript ‘‘L’’ and ‘‘U ’’ stand for the lower and upper surfaces, respectively. It is
assumed that the material mechanical property as well as the electrical one of the nth element
change linearly in the thickness direction

rn ¼ rL
n þ ðrU

n � rL
n Þ

z

hn

; ð1Þ

cn ¼ cL
n þ ðcU

n � cL
n Þ

z

hn

; ð2Þ
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Fig. 1. An FGPM plate and the nth isolated layer element with linear variation on material property.
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en ¼ eL
n þ ðeU

n � eL
n Þ

z

hn

; ð3Þ

gn ¼ gL
n þ ðgU

n � gL
n Þ

z

hn

: ð4Þ

For FGPM plates with large property variation in the thickness direction, more elements
should be used. The constitutive relations in the nth element expressing the coupling between the
elastic and the electric field can be written as

r ¼ cðzÞe � eTðzÞE;

D ¼ gðzÞEþ eðzÞe; ð5Þ

where (r; e; D and E) are stress tensor, strain tensor, electric displacement vector, and electric field
vector, respectively, and (c, e and g) are the elastic, piezoelectric and dielectric material matrices,
accordingly. For convenience, their subscripts n’s are omitted. The electrical field E is related to
the electrical potential j by

E ¼ �gradj ð6Þ

and the mechanical strain e to the mechanical displacement U by

e ¼ LdU: ð7Þ

The electric behavior is described by Maxwell’s equation considering that the piezoelectric
media are insulating

divD ¼ 0: ð8Þ

We approximate the displacement U and electric static potential j within an element as

Uðx; y; z; tÞ ¼ NdðzÞdðx; y; tÞ; ð9Þ

jðx; y; z; tÞ ¼ NfðzÞ/ðx; y; tÞ; ð10Þ

where d and / are nodal displacement and nodal electric potential vectors

dT ¼ f dTl dTm dTu g;

/T ¼ fjT
l jT

m jT
u g; ð11Þ

in which dTi ¼ f u v w gi; and subscript i stands for the lower, middle or upper surface of an
element. respectively.
In Eq. (9), Nd is the matrix of shape functions given by

Nd ¼ ½ð1� 3%z þ 2%z
2ÞI 4ð%z � %z

2ÞI ð2%z2 � %zÞI	; ð12Þ

in which %z ¼ z=hn; and I is a 3
 3 identity matrix. The vector Nf in Eq. (10) can be obtained
similarly.
The governing equations of the nth element may be developed by means of Hamilton’s

principle

d
Z

L dt ¼ 0; ð13Þ
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in which d denotes the first order variation and Lagrangian term L is determined by

L ¼ Ekin � Est þ Ed þ W ð14Þ

with elastic energy Est

Est ¼
1

2

Z hn

0

eTr dz ð15Þ

and dielectric energy Ed

Ed ¼
1

2

Z hn

0

ETD dz ð16Þ

and kinetic energy Ekin

Ekin ¼
1

2

Z hn

0

rn
.U
T .U dz ð17Þ

where the superscript T denotes the transposed matrix. W is generated by external mechanical or
electrical excitation with the form of

W ¼ dTFþ /TQz; ð18Þ

where F is a nodal external force vector, and Qz is a nodal charge vector in the z direction.
Substituting Eqs. (15)–(18) into Eqs. (14), (13) with the application of Eqs. (1)–(10), we obtain a

set of differential equations with respect to x; y and t for the nth element

Tn ¼ Mn
.nn þ KDnnn: ð19Þ

Assembling the matrices of all the elements, the system differential equation for the
whole FGPM plate can be obtained which is similar to Eq. (19) except that all the
subscripts ‘‘n’’ are replaced by ‘‘t’’. Here ‘‘t’’ indicates the matrices correspond to the
whole FGPM plate, the matrices KDt; Mt; Tt and nt can be obtained by assembling the
corresponding matrices of adjacent elements. The detailed formulations can be referred in
literature [17,18,21].

3. Analysis

3.1. Equations in transform domain

We introduce the Fourier transformations with respect to the horizontal co-ordinates x and y as
follows:

*ntðkx; ky; tÞ ¼
Z

N

�N

Z
N

�N

ntðx; y; tÞe
�ikxxe�ikyy dx dy; ð20Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
; kx and ky are the wave numbers for wave propagation in the x- and y-axis,

respectively. The application of Fourier transformations by Eq. (20) to system equations leads to
the following governing equation in wave number domain:

*Tt ¼ Mt
.*nt þ Kt

*nt: ð21Þ
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In this equation, *Tt; .nt and *nt are the transformations of Tt; .nt and nt; respectively, and Kt is given
by

Kt ¼
At Ct

CT
t Gt

" #
; ð22Þ

where At is the mechanical stiffness matrix given by

At ¼ k2
xA1t þ kxkyA2t þ k2

yA3t þ ikxA4t þ ikyA5t þ A6t: ð23Þ

The piezoelectric coupling matrix, Ct; and dielectric stiffness matrix, Gt; are of the same form as
Eq. (23), with A replaced by C and G, respectively.

3.2. PVS and PSS

Under the action of harmonic force, *nt is also in harmonic form of

*nt ¼ *ntðkx; kyÞexpð�iotÞ: ð24Þ

When no external forces Ft or charges Qzt are applied to the plate, we obtain the following
eigenvalue problem after the substitution of the above equation into Eq. (21):

Kt
*nt � o2Mt

*nt ¼ O; ð25Þ

where o is the angular frequency and O is a zero vector. For a plane wave propagating in the
direction of y; we have

kx ¼ k cos y; ky ¼ k sin y; ð26Þ

where k is the wave number of the plane wave.
The mth eigenvalues and eigenvectors of Eq. (25) can be written in the form of the well-known

Reyleigh quotient

o2
m ¼

*w
L

mKt
*w

R

m

*w
L

mMt
*w

R

m

; ð27Þ

*w
L

m ¼ fKL
m /L

mg; ð *w
R

mÞ
T ¼ fðKR

mÞ
T ð/R

mÞ
Tg; ð28Þ

where superscripts ‘‘L’’ and ‘‘R’’ stand for the left and right eigenvectors, and Km and /m are the
mth displacement and electropotential eigenvectors, respectively.
Applying the reduction technique with the help of Eqs. (21) and (22), Eq. (25) can be changed

into

Kst
*dt � o2Mst

*dt ¼ O; ð29Þ

Kst ¼ At þ CtG
�1
t CT

t : ð30Þ

From the solutions of the above two equations, we can get om; Km and then /m can also be
obtained from

/m ¼ G�1
t CT

t Km: ð31Þ
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The phase velocity of the mth mode is defined as

cmðyÞ ¼ omðyÞ=k ð32Þ

and the phase slowness sm is the reciprocal of the phase velocity cm:When wave propagation angle
y changes from 0 to 2p; we can plot the PVS and thereafter the PSS.

3.3. Phase wave surface

PWS of the mth mode is found by calculating the envelope formed by straight lines of plane
wave fronts. PWS for anisotropic laminated plates without piezoelectricity is given by Liu and
Tani, et al. [22]. PWS can be drawn in the polar co-ordinate ð rmj j;bPÞ; where

rmj j ¼ cm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2s

q
; bP ¼ tan�1 as þ y; ð33Þ

as ¼
*w

L

mKt;y *w
R

m

2 *w
L

mKt
*w

L

m

; ð34Þ

Kt;y ¼
@Kt

@y
¼

At;y Ct;y

CT
t;y �Gt;y

" #
; ð35Þ

At;y ¼
@At

@y
¼ � A1tk

2 sin 2yþ A2tk
2 cos 2y:

þ A3tk
2 sin 2y� iA4tk sin yþ iA5tk cos y; ð36Þ

Ct;y and Gt;y can be deduced in the same way.

3.4. GVS and GSS

GVS shows the dependence of the energy propagation velocity of a plane wave on the direction
of propagation y: Using its definition and Eq. (27), we obtain the group velocity for the mth mode
of the plane wave as

cgm ¼
do
dk

¼
*w

L

mKt;k
*w

R

m

2om
*w

L

mMt
*w

R

m

; ð37Þ

where

Kt;k ¼
@Kt

@k
¼

At;k Ct;k

CT
t;k �Gt;k

" #
; ð38Þ

At;k ¼
@At

@k
¼ 2kA1t cos

2 yþ 2kA2t cos y sin y

þ 2kA3t sin
2 yþ iA4t cos yþ iA5t sin y: ð39Þ
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Similarly, Ct;k and Gt;k can be obtained from Eq. (23) in the same way. The group slowness for
the mth mode is the reciprocal of the group velocity. The GSS shows the dependence of the
relative arrival time of the energy of a plane wave on the direction of wave propagation.

3.5. Group wave surface

GWS shows the envelope of group propagation front. It also can be drawn in the polar co-
ordinate ð Rmj j; bGÞ; where

Rmj j ¼ cgm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2q

q
; bG ¼ tan�1 aq þ y; ð40Þ

aq ¼
*w

L

mKt;ky *w
R

m � *w
L

mKt;y *w
R

mcgm=om

*w
L

mKt;k
*w

R

m

; ð41Þ

where

Kt;ky ¼
@2Kt

@k@y
¼

At;ky Ct;ky

CT
t;ky �Gt;ky

" #
; ð42Þ

At:ky ¼
@2At

@k@y
¼ � 2A1tk sin 2yþ 2A2tk cos 2y

þ 2A3tk sin 2y� iA4t sin yþ iA5t cos y: ð43Þ

Ct;ky and Gt;ky are in the same form as Eq. (43) with A replaced by C and G, respectively.
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Table 1

Natural frequencies of the lowest six modes for the FGPM and FGM plate (y ¼ 0)

%k Plate M1 M2 M3 M4 M5 M6

3.436 FGPM 4.4809 5.4231 7.2377 7.9438 8.2469 11.495

(0.36%) (0.43%) (0.21%) (0.23%) (0.21%) (0.03%)

FGM 4.4648 5.3999 7.2224 7.9254 8.2299 11.492

16.20 FGPM 16.637 18.634 22.968 23.677 27.228 28.348

(1.18%) (2.54%) (0.56%) (0.88%) (1.5%) (0.25%)

FGM 16.443 18.173 22.840 23.469 26.820 28.272

Table 2

Dimensionless group velocities of the lowest six modes for the FGPM and FGM plate (y ¼ 0)

%k Plate M1 M2 M3 M4 M5 M6

3.436 FGPM 1.7377 1.1124 1.1202 0.78056 1.6809 1.7911

(0.15%) (0.55%) (0.72%) (3.2%) (0.31%) (0.06%)

FGM 1.7351 1.1063 1.1283 0.75660 1.6757 1.7900

16.20 FGPM 0.87358 1.0418 1.0907 1.1213 1.2440 1.1379

(2.4%) (3.7%) (0.13%) (5.9%) (0.80%) (1.1%)

FGM 0.85284 1.0050 1.0921 1.0586 1.2341 1.1252
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Up to now, the six characteristic wave surfaces have been formulated considering the
piezoelectric effect of an FGPM plate.

4. Numerical results and discussions

Based on the foregoing formulations, a FORTRAN 90 program has been developed. In this
section, numerical results are presented to illustrate the piezoelectric effect on the dispersion and
characteristics of waves, the displacement mode shapes, as well as the electric potential
distribution of a hypothetical FGPM plate.
The material properties on the upper surface ðz ¼ HÞ of the hypothetical FGPM plate are the

same as those of the homogeneous z � x LiTaO3 plate (see Ref. [23] for material constants), i.e.,

cU ¼ c; eU ¼ e; gU ¼ g; rU ¼ r; ð44Þ

where c, e and g are the elastic, piezoelectric and dielectric constant matrices of z � x LiTaO3

plate, respectively. The material properties on the lower surface of the plate ðz ¼ 0Þ are assumed
to be

cL ¼ 12c; eL ¼ 0:1e; gL ¼ 0:5g; rL ¼ 1:8r: ð45Þ

In the thickness direction, the elastic constants are assumed to vary as the following function:

cðzÞ ¼ cU þ ðcL � cU Þð1� z=HÞ2 ð46Þ
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Fig. 2. Frequency spectra of the lowest eight modes for an FGM plate (solid line) and an FGPM plate (dashed line)

ðy ¼ 0:0Þ:

G.R. Liu et al. / Journal of Sound and Vibration 268 (2003) 131–147 139



and the same function is applied to e(z), g(z) and rðzÞ; respectively. For convenience, we
introduced the following non-dimensional parameters in the following calculation:

%x ¼ x=H; %z ¼ z=H; %k ¼ kxH; %cg ¼ cg=c0; c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c066=r0

q
; ð47Þ

where r0 is the mass density and c066 is the elastic constant c66 of the z–x LiTaO3 plate [23].
In order to investigate the piezoelectricity effect, we consider a corresponding FGM plate

whose material property is the same as the FGMP mentioned above but without piezoelectricity.
Firstly we investigate the piezoelectricity effect. The natural frequencies and group velocities are

calculated and listed in Tables 1 and 2, respectively. The comparisons of the natural frequencies
and group velocities between the FGPM plate and the corresponding FGM plate are also
presented in these tables. Our calculations indicate that the effect of piezoelectricity changes the
natural frequencies and group velocities less than 2% and 3% on the average, respectively,
compared with FGM plate.
The frequency spectra of the lowest eight modes are plotted in Fig. 2 when wave propagates in

x-axis direction. The comparison of the frequency spectra between the FGPM and FGM plate is
also illustrated in this figure. It can be seen that the frequency increases when wave number or the
order of mode becomes larger. For a definite mode, the piezoelectric effect becomes stronger as
wave number increases. The phase velocities will stop decreasing when wave number becomes
large enough and their final values range from 1.0 to 2.0 for the lowest eight modes. Fig. 3 gives
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comparison of the phase velocity spectra of the lowest eight modes between the FGPM and
FGM plate. The similar phenomena as Fig. 2 can be observed. Fig. 4 shows the group velocity
spectra of the lowest five modes of FGM and FGPM plates. It is shown that the smaller the
wave number, the more sharply the group velocity curves oscillate. Similar to the phase velocities,
group velocity curves will get almost unchangeable within the range 1.0–1.5 for the lowest
eight modes when wave number gets large enough. The group velocities are generally smaller than
the corresponding phase velocities. In our computations, group velocities are observed in a
smaller wave number range for the seventh and eight mode for this case. This means that the
energy propagates in the opposite direction to that of the phase propagation. From these figures
the dispersion behaviors have been clearly demonstrated for functionally graded piezoelectric
plate. Comparing the curves for FGM and FGPM plate in Figs. 2–4, we can see that the
piezoelectric effect is small, less than 5% on average. However, the effects become significant for
large wave number or small wavelength. Therefore, in micro-scale SAW devices, the operating
frequency is usually very high and the wavelength is very small, the piezoelectric effects will be
prominent.
The piezoelectricity effect on wave surfaces is also investigated. The characteristic surfaces of

the fourth and fifth mode are selected and plotted in Figs. 5 and 6, respectively. Both the FGPM
plate and the corresponding FGM plate are presented together. Comparing the characteristic
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Fig. 8. Displacement distribution in the thickness direction of an FGPM plate ( %k=30.042, y=0, solid line: u; dotted
line: v; dashed line: w).
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surfaces of the first several lower modes, we notice that, all the PVS, PSS and PWS are
similar to irregular eclipses while GVS, GSS and GWS changes significantly in shapes and
are also different from mode to mode accordingly. All the six surfaces have only one symmetric
axis. All the piezoelectrically stiffened and unstiffened wave surfaces are direction dependent.
From these figures, it can be seen that PVS, PSS and PWS are generally in considerable
difference from GVS, GSS and GWS for all modes due to the strong dispersion. Comparing PVS
and GVS, we can conclude that the direction in which the plane wave propagates fastest is
different from that of the fastest energy propagation. However, it is still possible in piezoelectric
plate that the energy propagation concentrates in the same directions since many modes
propagate with the same group velocity in those directions. Note that, although the above
comments are derived from modes 4 and 5, they are also applicable to other lower modes not
plotted here.
The displacement mode shapes and the electric potential distribution of the FGPM plate are

also investigated. Figs. 7 and 8 show the lowest 12 displacement mode shapes of the FGPM plate
for %k=5.007 and 30.042. It can be seen that the displacements in FGPM plate decay with distance
from the upper to lower surface, especially for the lowest modes. As the wave number increases,
they will decay more significantly from the upper surface. Figs. 9 and 10 give the corresponding
electrostatic potential modes for %k=5.007 and 30.042, respectively. The similar phenomenon as
illustrated in Figs. 7 and 8 occurs in these two figures.
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Fig. 9. Electric potential distribution in the thickness direction of an FGPM plate ( %k=5.007, y=0).

G.R. Liu et al. / Journal of Sound and Vibration 268 (2003) 131–147144



5. Conclusions

The dispersion behaviors and characteristics of wave in functionally graded piezoelectric plates
are investigated. Piezoelectricity effects on the dispersion and characteristics of waves are
provided by comparison between the FGPM plate and the corresponding FGM plate. With the
six wave surfaces, the characteristics of the dispersive and anisotropic waves in graded
piezoelectric plates can be clearly revealed. The displacements decay with distance from softer
surface to the harder surface of FGPM plates. The larger the wave number, the stronger the
confinement of the displacements to the softer surface. The penetration depth of surface waves in
FGPM plates can therefore be controlled by adjusting the gradient of the material properties.

Appendix A. Nomenclature

c matrix of elastic constants
cm phase velocity
cgm group velocity
d nodal displacement vector
*d Fourier transformation of nodal displacement vector
D electric displacement vector
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Fig. 10. Electric potential distribution in the thickness direction of an FGPM plate ( %k=30.042, y=0).
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e piezoelectric matrix
E electric field vector
Ed dielectric energy
Ekin kinetic energy
Est elastic energy
F external force vector
*F Fourier transformation of external force vector
H thickness of the plate
hn thickness of the nth layer element
i ¼

ffiffiffiffiffiffiffi
�1

p
imaginary unit

I 3
 3 identity matrix
K stiffness matrix
k wave number
M mass matrix
N shape function matrix
sm phase slowness
t time
T general force vector
u, v, w displacement components
x, y, z Cartesian co-ordinates
r vector of stresses
e vector of strains
*w eigenvector
n general displacement vector
*n Fourier transformation of general displacement vector
o angular frequency

Superscripts

D additional matrix due to the variation of material properties in thickness
l matrices for homogeneous element constants at its lower surface
L, U lower, and upper nodal surface of a layer element for plate, respectively
R, L right and left eigenvectors
T transposed matrix

Subscripts

l, m, u lower, middle and upper surface of a layer element for plate, respectively
t variables related to the total structure
1; 2;?; n number of layer elements
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