
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 268 (2003) 15–31

Dynamic analysis of an optical fiber coupler in
telecommunications

Gong Cheng, Jean W. Zu*

Department of Mechanical & Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ont.,

Canada, M5S 3G8

Received 22 October 2001; accepted 4 November 2002

Abstract

This paper studies the vibration of an optical fiber coupler which is used in telecommunications subjected
to a half sine shock. The emphasis is focused on analyzing the vibration response of the optical fibers inside
the coupler and examining the influence of various coupler parameters on the vibration of the optical fibers,
since their dynamic behavior is a critical factor in optical fiber communications. A simplified model of the
optical fiber coupler is proposed, which consists of a beam and a string representing the substrate and the
bundle of the optical fibers of the coupler, respectively. The beam and the string are bonded at four points
using adhesive material, and therefore the boundary conditions for their equations of motion are coupled,
which increases the complexity of the problem. For the string, two models are developed— the linear model
assumes that the tension in the string is constant, while the non-linear one takes into account large
transverse deflection and tension variation. With each model, both analytical study and numerical
simulations for the vibration of the system under a half shock are carried out. Furthermore, numerical
results are compared between the two models. Finally, parametric study leads to conclusions which are of
practical importance to the design of optical fiber couplers.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

The term ‘‘optical fiber coupler’’ began to appear in many optics and telecommunications
papers, e.g., Refs. [1–3], after the late 1970s when the glass fiber with adequate performance was
developed. It refers to a basic interconnection element for assembling a variety of distribution
networks that employ optical fibers. Its function is to demultiplex or multiplex optical signals
from one fiber or optical signal path to more fibers or signal paths. For a majority of
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communication networks, the performance of the coupling elements rather than the transmission
characteristics of the fiber lines themselves limits the performance of the networks and determines
the optimum network configuration. Therefore, optical fiber couplers play a very important role
in optical fiber communications.

A typical optical fiber coupler is composed of a bundle of fused optical fibers, a substrate, and a
steel tube. The bundle of optical fibers is bonded to the substrate at several points using adhesive
material, as shown in Fig. 1. The substrate provides the housing for the optical fibers. The
substrate and the fibers are wrapped inside the steel tube. In addition, rubber pads are placed
between the steel tube and the substrate at each end of the coupler to cushion the impact on
communication lines.

Under shocks and impacts on communication lines, optical fibers in couplers may experience
large vibrations and occasional breaks, which severely interfere with proper signal transmission.
For example, the coupler may exhibit excess insertion loss, potential modal distortion, dispersion
and bandwidth-limiting effects. A major reason for the problem is the lack of proper design of the
coupler to satisfy its required dynamic characteristics. Vibration analysis is essential to
understanding the dynamic characteristics of a coupler. Moreover, the mechanical component
of couplers presently available on the market is designed mainly based on experience and on trial
and error. Hence, the vibration analysis of an optical fiber coupler has become imperative.

Since the 1980s, optical fiber couplers have been attracting the attention of many researchers.
Most of their work is, however, concentrated on the material structures, optical characteristics
and the manufacturing methods of the couplers. No research has hitherto been found on the
vibration analysis of the coupler, to the authors’ knowledge. It is, therefore, the objective of this
paper to investigate the vibration of the optical fiber coupler.

In the present paper, an analysis model of an optical fiber coupler is introduced, with the
substrate modeled as a beam supported at each end by a spring representing the rubber pads and
the optical fibers as a string, as shown in Fig. 2. The beam and the string are connected at four
points representing four adhesive bonding points, and the problem thereby turns into a coupled
beam-string vibration problem differing from other string or beam vibration problems which have
been extensively studied [4–11]. Two models are developed for the string—the linear model
assumes that the transverse deflection of the string is small and the tension in the string is
constant, while the non-linear one takes into account large transverse deflection and tension
variation. The study is focused on the analysis of the vibration response of the system, especially
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that of the optical fibers, under a half sine shock, and on the analysis of the influence of various
coupler parameters upon the response of the optical fibers.

2. Dynamic analysis of the substrate

Considering the material construction and the size of the substrate and the optical fibers in a
coupler, it is reasonable to model them as a beam and a string, respectively. In the following
discussion, two assumptions are made: (1) the influence of the string on the vibration of the beam
is neglected so that the equation of motion for the beam, together with its boundary conditions, is
independent. (2) axial vibration of the beam and of the string is negligible, and only their
transverse vibration is considered.

The whole system is subjected to a half sine shock motion along its length whose acceleration is
in the form

d2ysðtÞ
dt2

¼ F sin ot 0ptp
p
o

� �
; ð1Þ

where ys is the displacement of the base of the system, as shown in Fig. 2, and F, o are the
amplitude and the circular frequency of the acceleration, respectively. In this study, the shock
motion is assumed to be a 1000 g 0.5ms half sine one which is commonly adopted in industry. It
should also be pointed out that only the response during the shock period is considered as this is
the time when the optical fiber breaks usually occur.

Let y1(x, t) be the beam deflection and y2(x, t) be the string deflection, where x is a position
variable, as shown in Fig. 2. The equation of motion for the beam during 0rtrp=o is derived as

EJ
@4y1

@x4
þ r1A1

@2y1

@t2
¼ �r1A1F sin ot; ð2Þ
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Fig. 2. A simplified model of an optical fiber coupler.
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with boundary conditions

@2y1

@x2

����
x¼0

¼ 0;
@2y1

@x2

����
x¼l

¼ 0; EJ
@3y1

@x3

����
x¼0

¼ �Ky1 0; tð Þ; EJ
@3y1

@x3

����
x¼l

¼ Ky1 l; tð Þ; ð3Þ

where E, J, r1, A1, l are Young’s modulus, the moment of inertia of the cross-section, the mass
density, the cross-sectional area and the length of the beam, respectively, and K denotes the spring
stiffness.

The above equation of motion for the beam belongs to the classical beam problems with
standard solution procedures available. The solution procedures are restated briefly below to
obtain the beam response for future use in the vibration analysis of the string. Suppose the
solution for the free vibration of the beam takes the form

%y1 x; tð Þ ¼ AsinK�x þ BcosK�x þ CsinhK�x þ DcoshK�x
� �

sin pt þ jð Þ; ð4Þ

where p is the natural frequency, j the phase angle, A, B, C, D the unknown coefficients, and

K� ¼
r1A1

EJ
p2

� �1=4
: ð5Þ

The mode shapes of the beam for the boundary conditions (3) are derived as

Y1n xð Þ ¼ KAsinK�x þ cosK�x þ KCsinhK�x þ coshK�x ðn ¼ 1; 2; :::Þ; ð6Þ

where

KA ¼
cosK�l � coshK�l þ 2KsinhK�l= EJK�3

� �
sinhK�l � sinK�l

;

KC ¼
cosK�l � coshK�l þ 2KsinK�l= EJK�3

� �
sinhK�l � sinK�l

: ð7Þ

The natural frequencies pn (n=1, 2,y) of the beam can be obtained numerically from the
equation

EJK�3 �KAcosK
�l þ sinK�l þ KCcoshK�l þ sinhK�l

� �
� K KAsinK�l þ cosK�l þ KCsinhK�l þ coshK�l

� �
¼ 0: ð8Þ

Assume that the solution to Eq. (2) during 0ptpp=o is of the form

y1 x; tð Þ ¼
XN
n¼1

Y1n xð Þq1n tð Þ: ð9Þ

Inserting Eq. (9) into Eq. (2) and reducing the resulting equation yieldsXN
n¼1

Y1n .q1n þ p2
nq1n

� �
¼ �F sin ot: ð10Þ

Introduce the orthogonality relationship between the mode shapes,Z l

0

Y1nY1m dx ¼ 0 namð Þ; ð11Þ
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and Eq. (10) can be simplified into a set of uncoupled equations

.q1n þ p2
nq1n ¼ Cn sin ot ðn ¼ 1; 2; :::Þ; ð12Þ

where

Cn ¼ �F

Z l

0

Y1n dx=

Z l

0

Y 2
1n dx: ð13Þ

The solution for Eq. (12) is

q1n ¼
Cn

p2
n � o2

sin ot ðn ¼ 1; 2; :::Þ: ð14Þ

It is noted that Eq. (14) is valid when the shock frequency is not equal to the natural frequencies of
the system. From Eq. (9) the response of the beam becomes

y1 x; tð Þ ¼
XN
n¼1

CnY1n xð Þ
p2

n � o2
sin ot ð0ptpp=oÞ; ð15Þ

which in turn leads to the vibration amplitude of the beam

*Y1 xð Þ ¼
XN
n¼1

CnY1n xð Þ
p2

n � o2
: ð16Þ

3. Linear dynamic analysis of the optical fibers

In this section, it is assumed that the tension in the string is constant. The time period
0ptpp=o is no longer explicitly specified from now on, though all the vibration analysis is still
limited in this period. The equation of motion for the string is obtained as

a2@
2y2

@x2
�
@2y2

@t2
¼ F sin ot; ð17Þ

where

a ¼

ffiffiffiffiffiffiffiffiffiffi
T0

r2A2

s
; ð18Þ

in which T0, r2, A2 are the constant tension, the mass density and the cross section area of the
string, respectively. The boundary conditions for Eq. (17) are

y2ð0; tÞ ¼ y1ð0; tÞ; y2ðL0; tÞ ¼ y1ðL0; tÞ; y2ðl � L0; tÞ ¼ y1ðl � L0; tÞ; y2ðl; tÞ ¼ y1ðl; tÞ; ð19Þ

in which x=0, L0, l�L0, l indicate the positions where the string is bonded to the beam, as shown
in Fig. 2. Clearly, the boundary conditions for the string are coupled with the response of the
beam, which distinguishes this problem from other string or beam problems and adds to its
complexity.

In order to uncouple the boundary conditions for the string from the beam response, introduce
the following transformation which yields new variables indicating the relative deflection of the
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string with respect to the beam:

z2i ¼ y2i � y1 ði ¼ 1; 2; 3Þ; ð20Þ

where y21, y22 and y23 denote the string deflection y2 at position x in different ranges of [0, L0), [L0,
l-L0) and [l-L0, l], respectively. Replacing y2 with the above variables in Eqs. (17) and (19)
results in

a2@
2z2i

@x2
�
@2z2i

@t2
¼ F sin ot � a2@

2y1

@x2
�

@2y1

@t2

� 

ði ¼ 1; 2; 3Þ ð21Þ

with the new boundary conditions

z21 0; tð Þ ¼ 0; z21 L0; tð Þ ¼ 0 ; ð22Þ

z22 L0; tð Þ ¼ 0; z22 l � L0; tð Þ ¼ 0 ; ð23Þ

z23 l � L0; tð Þ ¼ 0; z23 l; tð Þ ¼ 0 : ð24Þ

In what follows, each of the three sections of the string is treated separately. First, the natural
frequencies and the mode shapes for the free vibration are obtained; then, assume the response to
the forced vibration in a series form, and the response in analytical form is derived with the aid of
the orthogonality relationship between the mode shapes.

Substituting Eq. (15) into Eq. (21) yields

a2@
2z2i

@x2
�

@2z2i

@t2
¼ f x; tð Þ ¼ %f xð Þsin ot ði ¼ 1; 2; 3Þ: ð25Þ

where

%f xð Þ ¼ F � a2
XN
n¼1

Cn

p2
n � o2

d2Y1n

dx2
� o2

XN
n¼1

CnY1n

p2
n � o2

: ð26Þ

For the following free vibration equation which corresponds to Eq. (25)

a2@
2z2i

@x2
�

@2z2i

@t2
¼ 0 ði ¼ 1; 2; 3Þ; ð27Þ

it is supposed that the solution takes the form

%z2i x; tð Þ ¼ A�
2isin

p�2i

a
x þ B�

2icos
p�
2i

a
x

� 

sin p�2it þ j�

2i

� �
ði ¼ 1; 2; 3Þ; ð28Þ

where A�
2i and B�

2i are undetermined constants, and p�
2i and j�

2i are the natural frequency and the
phase angle, respectively. Substituting Eq. (28) into the boundary conditions for the section of
string lying in [0, L0], i.e., Eq. (22), gives

B�
21 ¼ 0; p�n

21 ¼
nap
L0

ðn ¼ 1; 2; :::Þ; ð29Þ

which, together with Eq. (28), leads to the mode shapes of the section of string lying in [0, L0]

Zn
21 xð Þ ¼ sin

np
L0

x ðn ¼ 1; 2; :::Þ: ð30Þ
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Similarly, the natural frequencies and the mode shapes of the sections of the string in [L0, l-L0]
and [l-L0, l] are obtained

p�n
22 ¼

nap
l � 2L0

;

Zn
22 xð Þ ¼ sin

np
l � 2L0

x � tan
npL0

l � 2L0
cos

np
l � 2L0

x; ðn ¼ 1; 2; :::Þ; ð31Þ

p�n
23 ¼

nap
L0

;

Zn
23 xð Þ ¼ sin

np
L0

x � tan
npl

L0
cos

np
L0

x; ðn ¼ 1; 2; :::Þ: ð32Þ

Assuming that z2i(x, t) takes the form

z2i x; tð Þ ¼
XN
n¼1

Zn
2i xð Þqn

2i tð Þ ði ¼ 1; 2; 3Þ ð33Þ

and substituting it into Eq. (25), it is derived that

XN
n¼1

Zn
2i .qn

2i þ p�n2
2i qn

2i

� �
¼ �f x; tð Þ ði ¼ 1; 2; 3Þ: ð34Þ

Applying the orthogonality relationship between the mode shapes,Z
%l

Zn
2iZ

m
2i dx ¼ 0 namð Þ ði ¼ 1; 2; 3Þ; ð35Þ

where %l denotes the integration domain, Eq. (34) can be reduced to a set of uncoupled equations

.qn
2i þ p�n2

2i qn
2i ¼ Cn

2isinot ði ¼ 1; 2; 3; n ¼ 1; 2; :::Þ; ð36Þ

where

Cn
21 ¼ �

Z L0

0

%f xð ÞZn
21 xð Þ dx=

Z L0

0

Zn2
21 xð Þ dx;

Cn
22 ¼ �

Z l�L0

L0

%f xð ÞZn
22 xð Þ dx=

Z l�L0

L0

Zn2
22 xð Þ dx;

Cn
23 ¼ �

Z l

l�L0

%f xð ÞZn
23 xð Þ dx=

Z l

l�L0

Zn2
23 xð Þ dx: ð37Þ

Obviously, from Eq. (36) we have

qn
2i tð Þ ¼

Cn
2i

p�n2
2i � o2

sin ot ði ¼ 1; 2; 3; n ¼ 1; 2; :::Þ: ð38Þ
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Making use of Eqs. (20), (30)–(33) and (38), the deflection of the string can be obtained:

y21 x; tð Þ ¼
XN
n¼1

sin
np
L0

x �
Cn

21

p�n2
21 � o2

sin ot þ y1 x; tð Þ;

y22 x; tð Þ ¼
XN
n¼1

sin
np

l � 2L0
x � tan

npL0

l � 2L0
cos

np
l � 2L0

x

� 

Cn

22

p�n2
22 � o2

sin ot þ y1 x; tð Þ;

y23 x; tð Þ ¼
XN
n¼1

sin
np
L0

x � tan
npl

L0
cos

np
L0

x

� 

Cn

23

p�n2
23 � o2

sin ot þ y1 x; tð Þ; ð39Þ

where y1(x, t) is the deflection of the beam as in Eq. (15). Finally, the vibration amplitude of the
string is derived from Eq. (39):

*Y2 xð Þ ¼

P
N

n¼1 sin
np
L0

x �
Cn

21

p�n2
21 � o2

þ Y1n xð Þ
Cn

p2
n � o2

� �
; xA 0;L0½ 	;

P
N

n¼1

sin
np

l � 2L0
x � tan

npL0

l � 2L0
cos

np
l � 2L0

x

� 

Cn

22

p�n2
22 � o2

�
þY1n xð Þ

Cn

p2
n � o2

�
;

xA L0; l � L0½ 	;

P
N

n¼1 sin
np
L0

x � tan
npl

L0
cos

np
L0

x

� 

Cn

23

p�n2
23 � o2

þ Y1n xð Þ
Cn

p2
n � o2

" #
; xA l � L0; l½ 	:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð40Þ

4. Non-linear dynamic analysis of the optical fibers

In this section, geometrical non-linearity is incorporated in the modelling to describe large
transverse vibration of the string. The tension in the string varies with deflection and thereby is a
function of time. It is assumed, however, that the tension does not vary with position, namely, it is
a constant with respect to different positions. It is also noted that the symbols defined in the
previous section keep the same here.

For the string, the total length is now a function of time t:

%l tð Þ ¼
Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@y2

@x

� 
2
s

dx; ð41Þ

and the tension in the string becomes

T ¼ T0 þ Ks
%l � l
� �

; ð42Þ

where T0 is the initial tension and Ks is the elastic coefficient of the string. The governing equation
of motion for the string is obtained as

Ks

Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@y2

@x

� 
2
s

dx þ T0 � Ksl

2
4

3
5@2y2

@x2
� r2A2

@2y2

@t2
¼ r2A2F sin ot ð43Þ
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whose boundary conditions remain the same:

y2ð0; tÞ ¼ y1ð0; tÞ;

y2ðL0; tÞ ¼ y1ðL0; tÞ;

y2ðl � L0; tÞ ¼ y1ðl � L0; tÞ;

y2ðl; tÞ ¼ y1ðl; tÞ: ð44Þ

With the approximation ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@y2

@x

� 
2
s

E1þ
1

2

@y2

@x

� 
2

; ð45Þ

Eq. (43) can be expressed as

1

2
Ks

Z l

0

@y2

@x

� 
2

dx þ T0

" #
@2y2

@x2
� r2A2

@2y2

@t2
¼ r2A2F sin ot: ð46Þ

It is easily seen that the above equation is a non-linear one, which makes the problem more
complex. As in the last section, the following transformation is introduced to solve the coupling in
the boundary conditions for the string, Eq. (44):

z2i ¼ y2i � y1 ði ¼ 1; 2; 3Þ: ð47Þ

Substituting Eq. (47) into Eq. (46) yields(
T0 þ

1

2
Ks

R L0

0

@z21

@x
þ
@y1

@x

� 
�
:2 dx þ

R l�L0

L0

@z22

@x
þ

@y1

@x

� 
2

dx

þ
R l

l�L0

@z23

@x
þ

@y1

@x

� 
2

dx

#)
@2z2i

@x2
þ

@2y1

@x2

� 

� r2A2

@2z2i

@t2
þ

@2y1

@t2

� 

¼ r2A2F sin ot; ði ¼ 1; 2; 3Þ;

ð48Þ

with the boundary conditions

z21 0; tð Þ ¼ 0; z21 L0; tð Þ ¼ 0; ð49Þ

z22 L0; tð Þ ¼ 0; z22 l � L0; tð Þ ¼ 0; ð50Þ

z23 l � L0; tð Þ ¼ 0; z23 l; tð Þ ¼ 0: ð51Þ

In the following discussion, a similar approach is taken to solve the vibration response of the
string, namely, three sections of the string are dealt with separately. The response solution is
supposed to take a series form satisfying the boundary conditions, and the differential equations
are simplified into a set of uncoupled equations. However, the final solution can not be reached in
analytical form due to the complexity caused by the non-linear factor.

Suppose

z2i x; tð Þ ¼
XN
n¼1

Cin xð Þqin tð Þ i ¼ 1; 2; 3ð Þ; ð52Þ
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where

C1n xð Þ ¼ sin
npx

L0
; ð53Þ

C2n xð Þ ¼ sin
npx

l � 2L0
� tan

npL0

l � 2L0
cos

npx

l � 2L0
; ð54Þ

C3n xð Þ ¼ sin
npx

L0
� tan

npl

L0
cos

npx

L0
: ð55Þ

It can be easily seen that Eq. (52) satisfies the boundary conditions, Eqs. (49)–(51). Inserting
Eq. (52) into Eq. (48) gives

T0 þ
1

2
Ks

R L0

0

P
N

n¼1 C
0

1n xð Þq1n þ *Y
0

1 xð Þsinot
� �h� 2

dx þ
R l�L0

L0

P
N

n¼1 C
0

2n xð Þq2n þ *Y
0

1 xð Þsinot
� �2

dx

þ
R l

l�L0

P
N

n¼1 C
0

3n xð Þq3n þ *Y
0

1 xð Þsin ot
� �2

dx
io

�
P

N

n¼1 C
00

in xð Þqin þ *Y
00

1 xð Þsin ot
� �

�r2A2

P
N

n¼1 Cin xð Þ .qin � o2 *Y1 xð Þsin ot
 !

¼ r2A2F sin ot; ði ¼ 1; 2; 3Þ;

ð56Þ

where

C
0

1n xð Þ ¼
np
L0

cos
npx

L0
; ð57Þ

C
0

2n xð Þ ¼
np

l � 2L0
cos

npx

l � 2L0
þ tan

npL0

l � 2L0
sin

npx

l � 2L0

� 

; ð58Þ

C
0

3n xð Þ ¼
np
L0

cos
npx

L0
þ tan

npl

L0
sin

npx

L0

� 

; ð59Þ

*Y
0

1 xð Þ ¼
XN
n¼1

CnK�

p2
n � o2

KAcos K�x � sin K�x þ KCcosh K�x þ sinh K�x
 !

ð60Þ

in which K� is the same as in Eq. (5) and KA, KC the same as in Eq. (7). By using the following
definition

Kcoe q1n; q2n; q3n; tð Þ ¼
Z L0

0

XN
n¼1

C
0

1n xð Þq1n þ *Y
0

1 xð Þsinot

 !2

dx

þ
Z l�L0

L0

XN
n¼1

C
0

2n xð Þq2n þ *Y
0

1 xð Þsinot

 !2

dx þ
Z l

l�L0

XN
n¼1

C
0

3n xð Þq3n þ *Y
0

1 xð Þsinot

 !2

dx; ð61Þ

T0� ¼ T0=r2A2; Ks� ¼ Ks=r2A2; ð62; 63Þ

Eq. (56) can take a simpler form

T0� þ
1

2
KcoeKs�

� 

�
XN
n¼1

C
00

in xð Þqin þ *Y
00

1 xð Þsinot

 !
�
XN
n¼1

Cin xð Þ .qin

þ o2 *Y1 xð Þsinot ¼ F sin ot i ¼ 1; 2; 3ð Þ: ð64Þ
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Multiplying Eq. (64) by Cin(x) (i=1,2,3; n=1,2,y) and performing the integration results in a
group of equations where the time derivative terms .qinði ¼ 1; 2; 3; n ¼ 1; 2;?Þ are uncoupled:

T0� þ
1

2
Ks�Kcoe

� 
 XN
m¼1

Z L0

0

C
00

1m xð ÞC1n xð Þ dx

� 

q1m þ

Z L0

0

*Y
00

1 xð ÞC1n xð Þ dxsin ot

" #

�
Z L0

0

C2
1n xð Þ dx .q1n þ o2

Z L0

0

*Y1 xð ÞC1n xð Þ dxsin ot ¼
Z L0

0

C1n xð Þ dxF sin ot n ¼ 1; 2;?ð Þ;

ð65Þ

T0� þ
1

2
Ks�Kcoe

� 
 XN
m¼1

Z l�L0

L0

C
00

2m xð ÞC2n xð Þ dx

� 

q2m þ

Z l�L0

L0

*Y
00

1 xð ÞC2n xð Þ dx sin ot

" #

�
Z l�L0

L0

C2
2n xð Þ dx .q2n þ o2

Z l�L0

L0

*Y1 xð ÞC2n xð Þ dxsin ot ¼
Z l�L0

L0

C2n xð Þ dxF sin ot n ¼ 1; 2;?ð Þ;

ð66Þ

T0� þ
1

2
Ks�Kcoe

� 
 XN
m¼1

Z l

l�L0

C
00

3m xð ÞC3n xð Þ dx

� 

q3m þ

Z l

l�L0

*Y
00

1 xð ÞC3n xð Þ dx sin ot

" #

�
Z l

l�L0

C2
3n xð Þ dx .q3n þ o2

Z l

l�L0

*Y1 xð ÞC3n xð Þ dx sin ot ¼
Z l

l�L0

C3n xð Þ dxF sin ot n ¼ 1; 2;?ð Þ:

ð67Þ

Employing numerical methods, q1n, q2n and q3n (n=1,2,y,nmax) can be solved from the above
equations with a given nmax, where nmax is the highest order of the modal functions used in
evaluating the vibration response and is chosen on the basis of the precision requirement of the
response. With q1n, q2n and q3n (n=1,2,y,nmax) solved, z2i and y2i (i=1,2,3) can be obtained from
Eqs. (52) and (47), respectively.

5. Numerical results

For both linear and non-linear models, numerical simulations are performed to study the
vibration of an optical fiber coupler subject to a 1000 g, 0.5ms half sine shock motion. The basic
system parameters used are given in Table 1, while K, L0, T0 and Ks are chosen as parameters for
study, whose scope of values is provided in Table 2. Table 3 shows the default values of these
parameters—since only one parameter is studied at a time, the other parameters are assumed to
take the default values. The parameter values used for numerical simulations are set according to
physical properties of real substrates and fibers.

For the linear model, the numerical results are shown in Figs. 3–5, where curves of the vibration
amplitude of the string and the beam versus the position are drawn. It should be mentioned that in
these figures the beam deflection is actually curved, although it looks like a straight line due to the
very small deflection. It is noted that in the following analysis, the vibration amplitudes of the
string for different values of a parameter are compared on the basis of the middle span. In Fig. 3,
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the spring stiffness K is taken as a parameter which ranges from 1000 to 40000N/m. It is shown
that the vibration of the string is the largest at K=10000 N/m and decreases as K increases or
decreases further. It is also found that for K equal to 1000 N/m, the vibration of the string is the
smallest. Interestingly, the beam amplitude increases as the spring stiffness K increases for
relatively small K values (1000–10000 N/m), and the effect is just opposite for relatively large K
values (10000–40000 N/m).

Fig. 4 shows the vibration amplitude as a function of the position for various locations of
bonding points. It is seen that the vibration is largest when the bonding points are most evenly
distributed along the span. It is also shown that when the bonding points are farthest from the
ends of the span, the vibration of the string becomes the smallest.

In Fig. 5, with the initial tension T0 from 0.02 to 0.60N selected as the parameter, no clear
change tendency of the vibration amplitude along with the parameter T0 appears. It is only shown
that the vibration of the string is the largest when the initial tension is at 0.1N and is the smallest
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Table 2

Parameter range for parametric study

The string (initial) tension T0 0.01–0.60N

The spring stiffness K 1000–40000N/m

The position of bonding points L0 0.005–0.0175m

The elastic coefficient of the string Ks 0–20000N/m

Table 3

Default parameter values

The string (initial) tension T0 0.06 N

The spring stiffness K 5000N/m

The position of bonding points L0 0.01m

The elastic coefficient of the string Ks 5000N/m

Table 1

System parameters

The length of the beam l 0.04m

The area of cross section of the beam A1 6.61� 10�6m2

The mass density of the beam r1 2200 kg/m3

Young’s modulus of the beam E 7.24� 1010 Pa

The moment of inertia of the beam cross-section J 4.34� 10�12m4

The area of cross-section of the string A2 3.1� 10�8m2

The mass density of the string r2 2200 kg/m3

The acceleration of the shock motion F 9800m/s2

The circular frequency of the shock motion o 2p� 103 rad/s
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when the initial tension is at 0.6N. However, if we divide the initial tensions into two groups, i.e.,
{0.40N, 0.60N} and {0.02N, 0.06N, 0.10N}, it is seen that the group of larger initial tensions
corresponds to smaller string amplitude, which is physically reasonable. Furthermore, this
tendency holds for the relatively large parameter values, namely, 0.40N and 0.60N.
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Fig. 4. Amplitude response of the string and the beam with bonding location as parameter in linear model analysis:

——, beam; ........, L0=13mm; . . . . , L0=16mm; - - - - -, L0=17.5mm; . ... ..., L0=7mm; — — —, L0=5mm; - – - –,
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Fig. 3. Amplitude response of the string and the beam with spring stiffness as parameter in linear model analysis: ——,

beam; ........, K=10000N/m; . . . . , K=5000N/m; - - - - -, K=2500N/m; . ... . ... , K=1000N/m; — — —,

K=40000N/m; - – - –, K=20000N/m.
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For the non-linear model, the simulation results are shown in Figs. 6–9, in which curves of the
relative vibration amplitude of the string with respect to the beam versus the position are
plotted. In Fig. 6, the support stiffness K is chosen as a parameter whose value lies bet-
ween 1000 and 40 000N/m. It is obvious that the vibration of the string is the largest at
K=10000N/m and decreases as K increases or decreases from that value. This trend agrees with
that predicted by the linear model. It is also shown that for K=1000N/m, the vibration of the
string is the smallest.
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Fig. 6. Relative amplitude response of the string with spring stiffness as parameter in non-linear model analysis: ........,

K=10000N/m; . . . . , K=5000N/m; - - - - -, K=2500N/m; . ... ..., K=40000N/m; — — —, K=1000N/m; - – - –,
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Fig. 5. Amplitude response of the string and the beam with initial tension as parameter in linear model analysis: ——,

beam; ........, T0=0.40N; . . . . , T0=0.60N; - - - - -, T0=0.02N; . ... ..., T0=0.10N; — — —, T0=0.06N.
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In Fig. 7, the curves of the relative vibration amplitude of the string versus the position are
plotted for various locations of bonding points. It is seen that the closer the two middle bonding
points are from the ends of the span, the larger the vibration is. This is expected since it is
physically reasonable. The result is different from that from the linear model.

Fig. 8 shows the situation when the initial tension T0 is a parameter ranging from 0.02 to
0.60N. It is found that the larger the initial tension, the smaller the vibration of the string, which
makes sense since larger initial tension makes the string stiffer and thus reduces the vibration. In
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Fig. 7. Relative amplitude response of the string with bonding location as parameter in non-linear model analysis:

........, L0=5mm; . . . . , L0=7mm; - - - - -, L0=10mm; . ... ..., L0=16mm; — — —, L0=13mm; - – - –, L0=17.5mm.
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Fig. 8. Relative amplitude response of the string with initial tension as parameter in non-linear model analysis: ........,

T0=0.02N; . . . . , T0=0.06N; - - - - -, T0=0.10N; . ... ..., T0=0.60N; — — —, T0=0.40N.
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contrast, this physically reasonable tendency holds only for some (but not all) parameter values in
the linear model simulations. This shows that the linear model is not adequate to describe the
vibration of the optical fibers.

From Fig. 9, where the relative vibration amplitude of the string is plotted against the position
with the elastic coefficient of the string Ks as a parameter which varies from 0 to 20 000N/m, it is
seen that as the string gets stiffer with larger Ks, the vibration gets smaller. This is right as stiffer
strings will vibrate less.

6. Conclusions

In this paper, the vibration of an optical fiber coupler subject to a half sine shock is studied
analytically and numerically, with emphasis laid on the dynamic behavior of the optical fibers
inside the coupler and the influence of various coupler parameters upon the vibration of the
optical fibers. Both linear and non-linear models are developed for the optical fibers. The non-
linear model is a big improvement over the linear model, since the results predicted by this non-
linear model are physically sound while the linear model predicts some physically unreasonable
phenomena. Finally, the following conclusions are drawn from this paper and they provide some
guidelines for the design of optical fiber couplers.

1. With support stiffness as a parameter, the vibration amplitude of the optical fibers reaches the
largest at certain parameter value and decreases as the parameter increases or decreases further.
Such parameter value should be avoided in designing optical fiber couplers.
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Fig. 9. Relative amplitude response of the string with elastic coefficient of the string as parameter in non-linear model

analysis: ........, Ks=500N/m; . . . . , Ks=1000N/m; - - - - -, Ks=5000N/m; . ... ..., Ks=20000N/m; — — —,

Ks=10000N/m; - – - –, Ks=0N/m.
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2. The distribution of the bonding points has an influence on the vibration of the optical fibers,
which means the closer the two middle bonding points are towards the ends of the span, the
larger the vibration becomes. In the design, therefore, the middle bonding positions should be
chosen not close to the ends of the substrate.

3. It is found that the larger the initial tension in the optical fibers, the smaller their vibration. So,
reasonably large initial tension in optical fibers is recommended for the design of optical fiber
couplers.

4. It is also shown that as the elastic coefficient of the optical fibers gets larger, the vibration gets
smaller. Therefore, material with large elastic coefficient is ideal to make optical fibers in
couplers, from a mechanics point of view.
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