Available online at www.sciencedirect.com

SCIENCE DIRECT® JOURNAL OF

@ SOUND AND

ACADEMIC VIBRATION
PRESS Journal of Sound and Vibration 268 (2003) 177-200

www.elsevier.com/locate/jsvi

Letter to the Editor

An improved criterion of Gaussian equivalent linearization
for analysis of non-linear stochastic systems

N.D. Anh*, L.X. Hung

Department of Vibrations, Institute of Mechanics, NCST of Vietnam, Vien Co Hoc 264 Doi Can, Hanoi, Viet Nam
Received 25 September 2001; accepted 16 February 2003

1. Introduction

The criteria for constructing an equivalent linear system are usually based on the minimization
of some specific deviation measure. This technique was first developed for deterministic non-linear
problems. Caughey [1] adapted this technique to apply to stochastic systems. The standard way of
implementing this technique is to minimize a mean square measure of the difference between the
non-linear and the equivalent linear equations. Gaussian equivalent linearization (GEL) proposed
by Caughey is presently the simplest tool widely used for analysis of non-linear stochastic
problems because GEL allows to use up the available analytic results from stochastic linear
systems. There are many other approximate methods such as moment closure, equivalent non-
linear equation, Markov methods, Monte Carlo simulation, etc., which are best suited for simple-
degree-of-freedom systems, with stationary random excitation. For multi-degree-of-freedom
(MDOF) systems, which are prevalent in most engineering applications, these methods are very
difficult to apply; they tend to involve severe analytical complexity, often combined with excessive
computational requirements, in terms of core storage or execution time, and in general extremely
costly. The single exception is GEL, which enables results to be obtained with relative ease, even
in situations where MDOF systems subjected to non-stationary random excitations are of
concern. However, a major limitation of GEL is perhaps that its accuracy decreases as the non-
linearity increases, and for many cases it can leads to unacceptable errors. Therefore, a series of
researches of improving GEL has been done for the past some decades by many authors (see, e.g.,
Refs. [2-13]).

An alternative extension of GEL has recently been proposed by Anh and Di Paola [14]. This
extension is refereed to as ‘local mean square error criterion’ (LOMSEC). The Authors gave initial
tests based on Duffing and Vanderpol oscillators under a zero mean Gaussian white noise.
Following the initial efforts of Anh and Di Paola, Hung examined the proposed technique
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through analysis of a series of diversely various non-linear random systems such as the analysis of
the response moments of simple-degree-of-freedom (SDOF) systems [15,16], the analysis of the
mean up-crossing rate [17] and the exceedance probability of response [18].

The results obtained from the above mentioned researches show advance of LOMSEC,
especially the accuracy of response moments is significantly improved.

However, the theory of the proposed technique and the analyses given by the authors has been
just demonstrated for non-linear random SDOF systems. Therefore, this paper presents a
comprehensive LOMSEC for non-linear random MDOF systems. Thereupon, illustrative
examples which include some SDOF and two-degree-of-freedom systems are given for
demonstration. For comparison with Caughey’s method through the evaluation of accuracy
of the solutions, the systems selected for analysis are ones for that exist the known exact solution
or the solution acknowledged as exact.

2. Gaussian equivalent linearization

First of all, we recall some basic ideas of the method of GEL. Suppose the mechanical structure
discretized by a MDOF system is described by a set of non-linear first order differential equations:

=92+ 10, (M

where a dot denotes time differentiation, z = (zy, 25, ...,zn)T is a vector of state variables, n is a
natural number, ¢ is a non-linear vector function of components of z, f(¢) is a stationary Gaussian
random excitation vector, with zero mean. Suppose that a stationary solution to Eq. (1) exists.
Denote:

e(z) =z —g(2) - f(0). 2)

Eq. (1) can be rewritten in the form:
e(z) = 0. (3)
According to the GEL method, we introduce new linear terms in the expression of e(z) as follows:
e(z)=z2—Az+ Az — g(z) — f(2), 4)

where 4 = {a;;} is a n X n constant matrix. Let vector y be a stationary solution of the linearized
equation:

y—Ay—f(n=0. &)

The vector y is Gaussian since the excitation vector f(¢) is Gaussian. Using Eq. (5) one gets
from (4):

e(y) = Ay — g(»). (6)

Thus, if we consider y as an approximation to the solution of the original non-linear equation (1)
it is seen that e(y) is an equation error which should be minimized from an optimal criterion.
There are some criteria for determining the matrix of linearization, for example, Naess [7], Anh
and Schiehlen [9], Socha and Soong [19], etc. The most extensively used criterion is the mean
square error criterion, Caughey [1], which requires that the mean squares of error be minimum
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(here called as Caughey criterion):

(eXy)y —»min, i,j=1,...,n, (7)

where ¢;(y) are components of e(y). Criterion (7) leads to the necessary condition:
A= g™y Gt ®)

From Eq. (8) it is seen that the matrix of linearization A of the linearized equation (5), in turn,
depends on the statistics of the response. If in matrix A4 higher order joint moments of the
response appear, they can be expressed in terms of second order moments since y is a Gaussian
random vector (see Appendix).

The linear equation (5) can be solved together with Eq. (8) by any of the existing analytical
measure using time or frequency domain approaches. Some quite fast cyclic procedures for
numerical solutions for GEL may be used, for example, Atalik and Utku [20]:

(a) Assign an initial value to the instantaneous correlation matrix {yyT).
(b) Use Eq. (8) to construct matrix A.

(c) Solve Eq. (5) for the new instantaneous correlation matrix {yyT).

(d) Repeat steps (b) and (c¢) until results from cycle to cycle are similar.

So, the classical version of GEL as described above, supposes that the minimization of the
equation error may give a minimization of the solution error. It should be noted that up to now
there is no theoretical proof of GEL,; its accuracy has been investigated only by the comparison of
the solutions obtained by GEL with their exact solutions if available or with simulation solutions.
No mathematical link between the equation error and the solution error has been established. For
the full information it should also be noted that there is another version of the mean square error
criterion in which the linearized process y in Eq. (8) is replaced by the original non-linear process
z. In that version the mean square error criterion can give the exact solution, for example, when
the excitation process is white noise one.

3. Local mean square error criterion
3.1. Investigation of the concentrated domain of the response

Denote p(y) the joint probability density function (PDF) of the response vector y to Eq. (5).
Criterion (7) can be rewritten in the explicit form:

+ o0 + 00
[ o[ operdy- min, ©)

Since the integration is taken over all the co-ordinate space ye(—o0;+c0), criterion (9) may be
called as ‘global mean square error criterion’. One may propose a concept, which supposes that
the global mean square criterion (9) can lead to a large error for some non-linear systems,
especially as strong non-linearity. To increase the accuracy, the expected integration should be
taken only in a domain where the response vector y is concentrated, Anh and Di Paola [14].



180 N.D. Anh, L. X. Hung | Journal of Sound and Vibration 268 (2003) 177-200

We can bring out the proposed concept through the analysis of some demonstrative examples,
which prove that the concentrated domain of the response is narrowed when the non-linearity
increases.

3.1.1. Duffing oscillator (non-linear stiffness) under white noise excitation
X+ 2hx + fx 4 ex® = ow(?). (10)

The exact PDF of (10) is known as

P(x) = Cexp{ 4h <§x2 + Zx“) } (11)

g2

where C is the normal constant. Denote Prob{—a<x<a} as probability for the response
dropping in the domain {—a, a}. If Prob{ -} is given, then the domain {—a, a} will be determined
by the following known formula:

a

Prob{—a<x<a}—/ p(x)dx. (12)

Suppose Prob{—a<x<a}= 0.98, using Eqgs. (11) and (12) one gets the value a. Consider the case
of the oscillator’s parameters as follows: 7 = 0.25; ¢ = 1; f = 1; and ¢ (non-linearity) varies. The
numerical results are given in Table 1. Fig. 1 shows graphically numerical results. It is seen that
the response x is concentrated in the limited interval (—a, ) which is narrowed when the non-
linearity ¢ increases.

Table 1
Values a following ¢
& 0.1 0.5 1 5 10 30 50 80 100
a 2.04 1.65 1.46 1.05 0.89 0.69 0.61 0.54 0.51
2 F
175¢
15}
s 125}
l 3 -
L]
075} e
L]
05 4 -
0 20 40 60 80 100
m|

Fig. 1. Values a following .
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3.1.2. Oscillator with non-linear damping under white noise excitation
F+e(—1+xX*+ )5 +x= \/JW(Z). (13)
The exact joint PDF of (13) is known as

P, ) = Cexp{Z| (¥ + ) —05( + )] |, (14)

where C is the normal constant.
For this case, the domain {—a, a} can be determined by the following formula:

Prob{—a<x<a} = /a </Oop(x,)'c) d)'c> dx. (15)

—a o0

Analogously, let Prob{—a<x<a} = 0.98, the corresponding interval (—a, a) are calculated for
parameters: d = 2 and ¢ varies. The results are presented in Table 2 and Fig. 2, which give similar
observations as in the previous example.

3.1.3. Oscillator with non-linear damping and stiffness under white noise excitation

2
w &
X+ 4h (%58 + 7°x2 + Zx“) X 4 ofx + ex® = ow(t). (16)
Table 2
Values a following ¢
€ 0.1 0.5 1 5 10 30 50 80 100
2.92 2.04 1.78 1.36 1.26 1.15 1.11 1.08 1.07
L
275}
25
2.25¢
© 2t
175p
15¢
125 *
- - s ra
0 20 40 60 80 100
|

Fig. 2. Values a following .
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The exact jOil’lt PDF of (16) is known as
(X X) = Cex — l)'Cz + w(z)xz + X 2 (1 /)
pLx, P 2\ 2 2 1 >

where C is the normal constant.

The domain {—a, a} is determined by (15) and (17), For Prob{—a<x<a} =0.98, h =0.1;
w3 = 1; ¢ = 1 and ¢ varies. The results are presented in Table 3 and Fig. 3.

In all three examples, the obtained results show that the concentrated domain of the response is
narrowed when the non-linearity increases. Therefore, for increasing the accuracy of solutions, the
expected integration should be taken only in a limited domain where the response is concentrated.

3.2. Local mean square error criterion (LOMSEC)

The concept resulted in the LOMSEC which requires

[e;()]— min, ij=1,...n, (18)
where it is denoted
) V1 Yn
M@P/Oﬂ (p) dy. (19)
-1 —n

To be convenient for using LOMSEC, the integration domains in Eq. (19) should be replaced by
non-dimensional ones: y, = %0,, (see Appendix), so (19) is replaced by

N ‘7}1 yna}”
[20)] = / w/ Op0) dy, (20)

ylg}l yno)n

Table 3
Values a following ¢

& 0.1 0.5 1 5 10 30 50 80 100
a 1.80 1.51 1.35 0.99 0.85 0.66 0.58 0.51 0.48

1.8%
16}

14§

0.8F
0.6 -

0 20 40 60 80 100
O

Fig. 3. Values a following .
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where y?, yg, ey yg are given non-dimension positive values, ay1, ...,0,, are square roots of
variances of components yi,s,...,y,. It is noted that as in GEL the values o1, ...,0,, are
considered as independent parameters from a; when minimizing (18). Thus, LOMSEC (18) yields
the necessary conditions similar to (8):

A= [goy" 1y 1)
A cyclic procedure may also be obtained as follows:

(a) Give positive value )9, 19, ..., »°.

(b) Assign an initial value to the instantaneous correlation matrix [yy'].
(c) Use (21) to construct matrix A.

(d) Solve (5) for the new instantaneous correlation matrix [yy'].

(e) Repeat steps (c) and (d) until results from cycle to cycle are similar.

The criterion (20) proves that by the way of changing the limitation of integration domain, the
LOMSEC provides with a series of different approximate solutions, and as ° = co LOMSEC
gives Caughey solution.

The given concept for the proposed criterion implies existence of the optimal values of ¥ for a
specific system, which allow getting as the best approximate solution as possible. However, it is
impossible so far to establish the mathematical link between such values of »° and value of
the system parameters, especially the non-linearity parameter. This is a significant limitation
of the criterion. To deal with this obstacle, a measure realized in Section 4 as below.

For MDOF stochastic non-linear systems, LOMSEC only gives the ultimate result in the
form of numerical, because the analytic calculation is very difficult. Thus, if necessary to
obtain higher accurate result, some numerical methods should be directly applied, for example
Runge—Kutta.

4. Analysis of second moments of response

This section will compare the approximate solutions obtained by using Caughey criterion and
the proposed technique for representative non-linear systems under Gaussian white noise random
excitation. However, LOMSEC solution depends on y® = (39,9, ..., )?), so a question appeared is
that how to choose y” in order to obtain as most improved solution as possible. The idea for study
is as follows:

e Based on the systems for that exist exact solutions, try to find »° corresponding to the exact
solution. We can gain this purpose through solving inverse problem of which the unknown
response moment in the equation for LOMSEC solution is replaced by the known exact one.
There are values »° corresponding to various non-linearity of the system.

e Choose an averaging value )? for obtaining rationally accurate solution at any non-linearity
with concern over strong and mean non-linearity. The )0 can be calculated as follows:
10 = [0%9max + yOmin) /2], where yomax and yOmin are the largest and smallest, respectively,
from the sequence of values y? corresponding to various non-linearity of the system.

e Through a series of systems analyzed, we can recommend a )y for application to any non-linear
system. By this way, the applicability of LOMSEC can approach to reality.
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Example 1. Duffing oscillator (non-linear stiffness): Consider Duffing oscillator (10), where w(?) is
white noise excitation with unit intensity. The exact second moments can be directly found from
PDF (11)

foﬂo szxp{(—4h/02) (([3/2))62 + (8/4)x4)} dx

(W) ="0g : (22)
o Exp{(—4h/a)((B/2)x% + (¢/4)x*) } dx
Suppose ex® = ix, the linearized equation corresponding to (10) is governed by
X4 2hx + (P + A)x = aw(?). (23)
The solution of the linearized equation (23) is to be
2
) o
S — 24
= TE %)
The coefficient of linearization 4 is determined by different criteria.
Using Caughey criterion one gets
< x* > 2
i:8<x2>:3e<x >. (25)

Put (25) in (24) and denote {x ) as the solution obtained by Caughey criterion:

_ 2 2/h
(P B+/B +380’/. 26)

6¢

For LOMSEC one gets

[x4]i0xn
[XZ]iUXO = KYOS < x2 > P (27)

=¢

where (see Appendix)

B foxo *n(r) dt
127 en(ey de
Put (27) in (24) and denote {x ), as the solution obtained by LOMSEC criterion:

B+ /B + Kwea?/h
(32 yg = IV A Koeo (29)

2Kx08

Consider the case f = 1; h = 0.25; ¢ = 1; meanwhile ¢ varies. Use (22) and (29) for finding x?
corresponding to the exact second moments. The results are given in Table 4. Fig. 4 shows
the dependence of LOMSEC solution on the value x?, for ¢ = 100. The averaging value x?
for LOMSEC (29) calculated as (2.95488+2.32620)/2 =2.64054, approximately x? = 2.6.
The numerical results are presented in Table 5 where Eg and E; denote the errors of {(x?)
and {x*) ;¢ versus (x>}, respectively.

Ko (28)
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Table 4
Values x¥ depending on the non-linearity
& 0.1 1 10 100
(¥, 0.81756 0.46792 0.18890 0.06496
X0 2.95488 2.54211 2.38034 2.32620
0.12
0.11
1 2 5
N
S 0.09
V
0.08
0.07
0.06
0
Fig. 4. Dependence of LOMSEC solution on x?, for ¢ = 100. Denote: - - - - exact, — Caughey, k LOMSEC.
Table 5
Second moment of response
& 0.1 1 10 100
(x*Y (Eg%) 0.80540 0.43426 0.16667 0.05609
(—1.487) (—7.194) (—11.768) (—13.655)
(x*> 16(ELc%) 0.82935 0.46456 0.18162 0.06150
(1.442) (—0.718) (—3.854) (—5.326)
Table 6
Values x? depending on the non-linearity
& 0.1 1 10 100
(XD, 8.71363 1.04180 0.24352 0.07039
X0 1.58223 2.04041 2.21955 2.27553
Another case is also considered namely, for f = —1; h = 0.25; ¢ = 1; ¢ varies. It is seen that the

value x¥ corresponding to the exact moment is reduced even to 1.58 (for the case ¢ = 0.1). For that
reason, the averaging value xU is proposed as (2.04041+2.27553)/2 = 2.15797, approximately
x% = 2.2. The results for this case are presented in Tables 6 and 7 and Fig. 5.
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Table 7
Second moment of response
& 0.1 1 10 100
(x> 6 (Eg%) 4.13873 0.76759 0.20000 0.05943
(—52.503) (—26.321) (—17.871) (—15.570)
(X2 16 (Erg%) 5.67100 0.97602 0.24499 0.07189
(—34.918) (—6.314) (0.604) (2.131)
1.4
13
@ 12
X
V11
2 3 4 5
0.9
0.8
0
Fig. 5. Dependence of LOMSEC solution on x°, for ¢ = 1. Denote: ---- exact, — Caughey, k LOMSEC.
Example 2. Oscillator with non-linear damping following velocity:
X+ 2ex + 2epx° + a)%x = ow(?), (30)

where w(¢) is white noise excitation with unit intensity. The exact solution of (30) has not been
found yet. The solution found by the equivalent non-linearization { x> gy, is regarded as the
exact solution, Roberts and Spanos [5]. The equivalent linearized system corresponding to (30) is

X+ Qe+ pwx+ w%x = ow().

The solution of the linearized equation (31) is

(& =

O.2

2(2e + pw}’
Caughey criterion resulted in below
G

) = 6ep{x%).

1= 2ey

Combining (32) and (33) and using{ X*» = {x? >a)3 one gets the Caughey solution:

0.2

de(1 4+ 3y x%> w%)w%'

<x2 v6 =
LOMSEC criterion resulted in below
1= 2Ky (),

(1)

(32)

(33)

(34)

(35)
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where
0
Jo t*n(r)di
Ko=20" """
fo £2n(r)dt
Combining (32) and (35) one gets the LOMSEC solution as follows:
2
o

AN
(¥u = (1 + 752> K)oy

187

(36)

(37)

Consider the case ¢ = v/ 4¢; co(z) = 1; & = 0.05; and let y varies. The averaging value xg is calculated
as x% = 2.6. The numerical results are presented in Tables 8 and 9 and Fig. 6. It is seen that the
approximate solution obtained by LOMSEC is better than that by Caughey.

Table 8

Values x? depending on the non-linearity

Y 1 3 5 8 10

(XD ENLE 0.4603 0.3058 0.2476 0.2025 0.1835

X0 2.65 2.59 2.58 2.56 2.55

Table 9

Second moment of response

Y 1 3 5 8 10

(XY g (Eg%) 0.4342 0.2824 0.2270 0.1843 0.1667
(=5.7) (-7.6) (-8.3) (—9.0) (-9.1)

(X2 16 (ELg%) 0.4633 0.3045 0.2456 0.2000 0.1810
(0.65) (—0.42) (—0.81) (—-1.23) (—1.36)

I\JH_'_'_,_,-o-"""

X0

Fig. 6. Dependence of LOMSEC solution on x°, for y = 10. Denote: - - - - exact, — Caughey, k LOMSEC.
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Example 3. Oscillator with non-linear stiffness and damping: Consider oscillator with non-linear

stiffness and damping (16), where w(z) is white noise excitation with unit intensity. The PDF (17)
resulted in the following exact solution of (16):

£ 2 Exp{(—4h/0'2)(%x2 + (R + (8/4)x4)2} dx d

e Jo
(¥e= A N Exp{(—4h/g2)(%x2 + (@} + (e/4)x4)2} dvdi (9
Let 4h(%x2 + (03 /2)x* + (¢/4)xMx = pux, and ex® = ix.
The equivalent linearized system corresponding to (16) is governed by
¥ 4 pux + (0f + 2)x = ow(o). (39)
The solution of the linearized equation (39) is known as
o2
(x*y = e (40)
Caughey criterion resulted in the following linearization coefficients:
J=3e(x*> and ,u:2h<3<x2>+a)é<x2>+%<x2>2>. (41)

It is proved that (X?) = {x*)(w} + ), so the linearization coefficient x in Eq. (41) is to be
= hBwi{x*> +21e{x*>?). (42)

Caughey solution is obtained from (40), (41) and (42)

2
6382<x2>é~ +458w(2)<x2>%; + 8w3<x2>é _Z

=0 43)

By the similar steps one gets the following linearization coefficients for LOMSEC
A= Kwedx*y and p = h{2(K + Hw)wg {x*» + (2K + Lo){x* »?}, (44)
where

B f(j‘o t*n(r) dt o fé"o n(t) dt I foxo *n(r) dt

KXO - 0 > X0 0 > x0 0 . (45)
Jo ©n(1)dt Jo n()de Jo n()de
LOMSEC solution is obtained from (40) and (44)
& KwQK + Lo) (X )]+ e0f(4K + 2K o Hoo + L0) (X7 ) g
2
4 20t (Kw + Ho){x2)2 . — ;—h —0. (46)

Suppose w} = 1, 6% = 1, h = 0.1; ¢ varies. The results are presented in Tables 10 and 11 and Fig. 7.
For LOMSEC solution, the averaging value x° is calculated as x? = 2.3.
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Table 10
Values x¥ depending on the non-linearity
& 0.1 1 10 100
(¥, 0.76773 0.46521 0.19241 0.06663
X0 2.36895 2.30081 2.23646 2.21042
Table 11
Second moment of response
€ 0.1 1 10 100
(x*> 6 (Eg%) 0.66590 0.38157 0.15094 0.05135
(—13.264) (—=17.979) (—21.553) (—22.933)
(X*> 16 (ELg%) 0.78087 0.46533 0.18802 0.06440
(1.712) (0.026) (—2.282) (—3.347)
0.09+
0.08+
N/\ .
¥ 0.07
S S ——
0.06 -
2 3 5
0
Fig. 7. Dependence of LOMSEC solution on x?, for £ = 100. Denote: - - - - exact, — Caughey, ® « « LOMSEC.

Example 4. Two-degree-of-freedom oscillator with non-linear stiffness: Consider the following non-
linear random two-degree-of-freedom system, which was analyzed by Wen Yao Jia and Tong
Fang using an approximate PDF method [21]:

Xi + pixi +

where
U(x1,x2) =

Under the following assumptions:

wi)) =0 = 1,2);

ﬁi = Rk;

1,.2..2 2 4 2.2 o)
+503X5 + A1X] + A3XTX5 + AsX;.

0
U(x1,x2) =wi(t), i=1,2,

4

Cwi(Owi(t + 1)) = 2rk;0;0(t)  (i,j = 1,2);
i=1,2).

(47)

(48)

(49)
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The corresponding Fokker—Planck equation has an exact solution for the stationary PDF:
fx1,x) = CeXp{_gU(xl,XZ)}a (50)
where C is determined by the normalization condition. The exact solutions of (47) are
<x?>€:/OC /SO xff(xl,xz)dxl dx,, i=1,2 (51)
—0 J-w

using (48) original (47) system can be rewritten
X+ ﬂlxl + (D%Xl + 4/11)6? -+ 213)(1)(% = Wl(l),
Xy + ﬁZXQ + OJ§X2 + 4/15)6% + 223)6%)62 = wy(?). (52)

Since the whole linear part in each equation of system (52) only contains an independent variable,
the analytical procedure can be simply conducted similar to the procedure for SDOF systems by
the following substitutes:

4/11)(? + 2/13x1x§ = p|X1,
4/15x§ + 2/13x%xz = PyX2. (53)
The linearized system is governed by the following two-equation system:
X+ Bixi + (0 4+ p)x; = wi(t), i=1,2. (54)
The assumption (53) leads to an equation error as follows:
e = 4/1le + 2/13x1x§ — p1X1,
e = 4/15)6 + 2/13x%x2 — PyX2. (55)
The solution of linearized system (54) is found:

(x> =

i
R(w? + Pi),

6e1 562
= -V =0. 57
<€1apl> > <625P2> 0 &)

Expanding condition (57) and in combination with (55)—(56) we get a closure-equation system
that leads to the Caughey solution:

Vi
12X )6+ 223X ) {3 > g+ 01 {x1 Y6 — 5 =0,

i=1,2. (56)

Caughey criterion yields:

R
1245308 + 23 (x> 6 () 6+ 036 — 1 = 0. (8)
LOMSEC yields:
Bey |11 dey] 27
et =0, |er—2 =0, (59)
9p, —x%0y opa —x0.
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Table 12
Values x9,, x9, depending on the non-linearity
u 0.1 1 10 100
(X, 1.17821 0.60378 0.22519 0.07462
X9, 2.86613 2.53319 2.42279 2.39088
(3>, 0.37680 0.30640 0.16987 0.06766
X9, 3.45000 2.94430 2.59630 2.44672
Table 13
Second moments of responses x; and x;
u 0.1 1 10 100
(x> 6 (Ec1%) 1.15140 0.55671 0.20077 0.06591
(—2.275) (—=7.796) (—10.844) (—11.673)
(X3 16 (ELci %) 1.18163 0.58453 0.21244 0.06986
(0.290) (—3.188) (—5.662) (—6.379)
(3> 6 (Ega%) 0.37664 0.30284 0.16015 0.06122
(—0.042) (—1.162) (—5.722) (—9.518)
(X3 16 (ELca%) 0.37796 0.30849 0.16690 0.06454
(0.308) (0.682) (—1.748) (—4.611)

where (—x?axi, x?o*x,-) are the expected integration domains, ¢,; are square roots of variances of
components x;(i = 1,2), x? is a given positive values. Expanding condition (59) in combination
with (55)—(56), we get a closure-equation system leading to LOMSEC solution:

Y
4K <X} D16+ 23 Hw X1 16430 16 + 01X D16 — 5 =0,

R
T
415K g (301G + 23H g {x1) 16<X0 ) 16 + 23> 16— 5 =0, (60)
where
X 4 X 2
KXQ:M HQ:M i=1,2. (61)

I enwdd " [Maede

Consider the case: R=0.5 6,=p,=0.1;; 01 =2; wy=4; 4,y =43 =As=pu (varies). The
numerical results are presented in Tables 12 and 13, Figs. 8 and 9. For this system, if we choose
the averaging values xV #x) for calculating response moments <{x}>;; and <{x3);g,
respectively, i.e., xJ, =(2.86613 +2.39088)/2=2.62851 and x3,=(3.45000 +2.44672)/2 = 2.94836,
the accuracy will be better for each response moment. Nevertheless, for simplification, here we
choose x! = x3, = 2.8 resulted approximately from (2.62851 +2.94836),2.

In considered systems, the exact solutions are always bigger than Caughey’s ones, meanwhile
LOMSEC solutions vary in accordance with values of the integration domain (x?). In Figs. 4-9 we
can see that the curve of LOMSEC solution always crosses the exact solution at a point in
accordance with a defined value of x? and approaches to Caughey one when x? — oo. This proves
the existence of a value x? in LOMSEC that allows obtaining the exact solution.
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Fig. 8. Dependence of LOMSEC solution on xY, for 4 = 100. Denote: - - - - exact, — Caughey, « e ¢ LOMSEC.
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x20
Fig. 9. Dependence of LOMSEC solution on x3, for u = 100. Denote: - - - - exact, — Caughey, ® « @ LOMSEC.

By the way of choosing the approximate value x? for LOMSEC solution as the above
presented, we gain the accuracy of LOMSEC solution much more improved than that of
Caughey, especially as strong non-linearity. This is the most significant advantage of the proposed
criterion. In a determined non-linearity coverage there exists a point where the error of LOMSEC
solution is zero (the error changes the sign), meanwhile this does not happen for Caughey
solution. However, LOMSEC solution for some cases of weak non-linearity may be worse than
that by Caughey (see Example 4: E; g > Eg> as u = 0.1).

As mentioned in Section 3 that the mathematical link between the expected integration and the
system parameters cannot be found so far. This is a key limitation of the proposed method. In
such situation, an acceptable measure is that to recommend an approximate integration interval
for practical application drawn from the numerical investigation of a series of various non-linear
systems whose exact or simulated solutions found (analogously as the above examples).

5. Analysis of the mean up-crossing rate

In the analysis of non-linear random vibrations, besides the second order moment, the PDF
and the mean up-crossing rate (MCR) of the system responses are some quantities of main
concern. The fact that the analysis of the second order moments using the equivalent linearization
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technique were very much investigated whereas the researches on MCR in the linearization were
rarely made. MCR frequently is used in estimating the reliability or the exceedance probability of
response [7,18,22].

The mean up-crossing rate is the rate at which a differentiable stationary response process X ()
crosses a level X = x with a positive slope. The evaluation of MCR is based on the PDF of the
responses of randomly excited systems as follows:

ve(x) = /0 - Xpe(x, X) dx, (62)

where p.(x, X) is the exact joint PDF of responses x(¢) and x(#), X = dx/dz. So, v, is refereed to as
the exact mean up-crossing rate (EMCR). However, it is difficult to obtain the exact PDF of
randomly excited non-linear systems in practice. Even if the response can be modelled as a
Markov process, the possibility of an exact PDF solution is still much limited. Therefore, some
approximate methods were developed and investigated for estimating the approximate mean
up-crossing rate (AMCR) (see, e.g., Refs. [23,24]).

This section presents the analysis of AMCR using Caughey criterion and LOMSEC. Two
systems chosen for analysis here are taken out from the representative systems presented in the
previous section. Comparisons of AMCRs versus EMCR are also given. It is obvious that
Eq. (62) is EMCR of the original non-linear system, so the equivalent linearization method
resulted in AMCR which can be governed by

va(x) = /OOC Xpa(x, x)dx, (63)

where p4 is the approximate joint PDF obtained from the equivalent linearized system and
considered as the normal

1 x2 X2
palx, x) = exp{—<—+—> }, (64)
2N6,04 202 202
where 62 = (x?),02 = {x*) are the second moments obtained from linearized systems.
X X y

Example 5. Consider again Duffing oscillator (10). The exact joint PDF (10) is known as
2hx? ah(p , € 4
\/Zexp{—T}exp{—?<§x + Zx > }
. 4h(p £ '
ay/ 27 |, exp{—g <§x2 + ZX4> } dx
Using (62) one gets the EMCR as follows:

. M2 . ah(B , e
G Gl T b e W )

4 3
o/ 2= [y° exp{—o_—él <§x2 + Zx“) } dx

Pe(X, %) = (65)

Ve(x) =
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From (63) to (64) and with attention that (x>) = {x?>>(B + A), one gets AMCR

oy = o Fexp{=2/2C2) (B + ) d)exp{—x*/2¢*) }
’ 2ndx2 )/ B+ 4 ’

where /, {x?) are the linearization coefficient and the second order moment, respectively. Denote
4G, {x*» s obtained by Caughey’s and A;q, {x*),;; by LOMSEC, one gets vg(x) and vy g(x),
respectively. The values of 4 and (x?>) are known in Example 1.

Consider the case f=—1; h=0.25; 0 =1; ¢ varies. The expressions for estimation of
MCR are given in Table 14, which are the results obtained from (67) to (68). The graphically
numerical results are shown in Figs. 10a and b for ¢ = 1 and Figs. 11a and b for ¢ = 100. Fig. 10b

(67)

Table 14
Expressions for estimation of MCR

MCR e=1 e =100

Ve(x) 0.10216 exp{0.5x°—0.25x* 0.47541 exp{0.5x°—25x*
ve(x) 0.18166 exp{—0.65139x%} 0.65290 exp{—8.41326x%}
viG(x) 0.16110 exp{—0.51229x%} 0.59363 exp{—6.95507x%}

0175}
0.15
0.125
0.1
0.075

MCR V(x)

0.05
0.025

@)

Log V(x)
w
(6)]

(b)

Fig. 10. (a) MCR, for ¢ = 1. Denote: — v, — — vg, ---- v, . (b) Logarithmic of MCR, for ¢ = 1. Denote: — v, — — vg,
---- VLG
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MCR V(x)

Log V(x)

(b) X

Fig. 11. (a) MCR, for ¢ = 100. Denote: — v,, — — vg, ---- v.¢. (b) Logarithmic of MCR, for ¢ = 100. Denote: — v,,
—— VG, -~~~ VLG

and Fig. 11b show the logarithmic of MCRs in order to compare the tail behavior of AMCRs to
EMCR.

Example 6. Consider again the oscillator with non-linear stiffness and damping (16). The
oscillator has the joint PDF known as (17). By the same steps one gets

- 4h : ?
I's )'cexp{—p (%x2 + %XZ + Zx“) } dx

4h w3 e\’
41 Jo eXp{—g (%xz T Zx4> } drds

Ve(X) = (68)

The equation for estimation of AMCR is the same as (67) in which B is replaced by wj.
Consider the case w% =1, o=1, h=0.25 and ¢ varies. The expressions for estimation of
MCR are given in Table 15. The graphically numerical results are shown in Figs. 12a and b and
Figs. 13a and b.

Through the above-considered examples, it is seen that for small level x the solution v; ¢ is more
closed to the exact solution v, than vg is. The small level x is narrowed when the non-linearity
increases. For larger level x, vg and vy are both generally not good at any non-linearity.
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Table 15

Expressions for estimation of MCR

MCR e=1 ¢ =100

Ve(X) 0.21975 [, xexp{—(0.5%> + 0.5x> + 0.25x*)*}dx 0.52733 [ xexp{—(0.5%% + 0.5x> + 25x*)*}dx
v () 0.21587 exp{—1.78642x%} 0.57688 exp{—12.35790x%}

vig(x) 0.21003 exp{—1.47501x%} 0.55349 exp{—9.85804x7}

MCR V(x)

@

Log V(x)

(b)

Fig. 12. (a) MCR, for ¢ = 1. Denote: — v,, — — vg, ---- v.. (b) Logarithmic of MCR, for ¢ = 1. Denote: — v, — — vg,
---- VLG

6. Conclusions

The most significant advantage of LOMSEC technique is to obtain much more improved
solutions compared with using Caughey criterion, especially as strong non-linearity.

A defined value »° (integration domain) exists in LOMSEC for considered systems that leads to
the exact solution. It means that in principle, it is possible for LOMSEC criterion to find exact
solution, meanwhile this is impossible for Caughey criterion.

By the way of changing the limitation of integration domain, the LOMSEC provides with a
series of different approximate solutions, and as y* = oo LOMSEC gives Caughey solution.

The averaging values 3% for LOMSEC corresponding to the various systems are drawn from the
investigation, which can be efficiently applied for the analysis of analogous non-linear random
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Fig. 13. (a) MCR, for ¢ = 100. Denote: — v,, — — vg, ---- vzg. (b) Logarithmic of MCR, for ¢ = 100. Denote: — v,,

—— VG, -~~~ VLG-

systems, especially for the analysis of moments of responses. Beside the systems presented in the
paper, a series of other diverse non-linear random systems was also analyzed by the authors,
which resulted in the averaging values »° e (2.1-2.7) corresponding to various systems, except
3% = 1.6 for Vanderpol oscillator. For more convenient application of the proposed criterion, a
fixed value 1 applicable for any stochastic non-linear system should be recommended. By a series
of examinations, the recommended value to be y° = 2.5.

Regarding the mean up-crossing rate, the results gained from the examples show that for a
specific system, there exists a limited domain of the response where the AMCR by LOMSEC are
better than that by Caughey criterion; and for larger values of the response than the limited
domain, AMCR by Caughey and by LOMSEC are both generally not good at any non-linearity.

A main limitation of the proposed method is that no mathematical link between the expected
integration and the system parameters is established. This means that for an arbitrary-specific
system, we cannot determine the optimal integration domain, which allows to get the best
approximate solution. In addition, by using the approximate integration domain as recom-
mended, LOMSEC solution for some cases of weak non-linearity may be worse than that by
Caughey.

Due to difficulty in the analytic calculation for multi-degree-of-freedom non-linear systems,
LOMSEC only gives the ultimate result in the form of numerical which may be less accurate than
some numerical methods, for example Runge—Kutta.
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7. Summary

The criteria for constructing an equivalent linear system are usually based on the minimization
of some specific deviation measure. This technique was first developed for deterministic non-linear
problems. Caughey (1959) adapted this technique to apply to stochastic systems. The standard
way of implementing this technique is to minimize a mean square measure of the difference
between the non-linear and the equivalent linear equations. GEL proposed by Caughey is
presently the simplest tool widely used for analysis of non-linear stochastic problems because
GEL allows to use the available analytic results from stochastic linear systems. However, a major
limitation of GEL is perhaps that its accuracy decreases as the non-linearity increases, and for
many cases it can lead to unacceptable errors. Therefore, a series of researches for improving GEL
has been done for the past some decades by many authors.

An alternative extension of GEL was proposed by Anh and Di Paola (1995). This extension is
refereed to as ‘local mean square error criterion’ (LOMSEC). The Authors gave initial tests based
on Duffing and Vanderpol oscillators under a zero mean Gaussian white noise. Following the
initial efforts of Anh and Di Paola, Hung has recently examined the proposed technique through
analysis of a series of diversely various non-linear random systems such as the analysis of the
response moments of SDOF systems, the analysis of the mean up-crossing rate and the
exceedance probability of response.

However, the theory of the proposed technique and the analyses given by the authors has been
just demonstrated for non-linear random simple-degree-of-freedom (SDOF) systems. Therefore,
this paper presents a comprehensive LOMSEC for non-linear random multi-degree-of-freedom
(MDOF) systems. Thereupon, illustrative examples which include some SDOF and two-degree-
of-freedom systems are given for demonstration. For comparison with Caughey’s method through
the evaluation of accuracy of the solutions, the systems selected for the analysis are ones for which
there exist the known exact solution or the solution acknowledged as exact. The obtained results
show efficient applicability of the improved criterion to approach more accurate solutions than
that using the conventional linearization, especially for the analysis of mean square of the
responses.
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Appendix

For a zero mean scalar Gaussian process y, all higher order moments ¢ »*" ) can be expressed in
terms of second order moments: ("> = 1.3.5...2n — 1){y*>".
Analogously, all moments [y?"] in LOMSEC can also be expressed in terms of the second
moments { ) by the formula which is easily provable after replacing variable y = ta,:
D %, = 2T (3P n=1,2,

0
-)a,
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where

0

Y 1 ,
2n = V2 1 = 2”” d d — —t°)2
0] < > s n, 0 / t (t) t an Il(t) = .

y ) 0 \/__e

Impute to n, y° concrete values, one gets T, 0 as a positive constant. In addition, all odd order
moments are equal to zero.
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