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1. Introduction

In this paper the following generalized non-linear Van der Pol oscillator equation will be
considered:

Y—I— X(2m+l)/(2n+l) — (0(1 _ XZ)X, (1)

where X = X (¢), m,neN, and where ¢ is a small parameter satisfying 0 <¢< 1. The dot represents
differentiation with respect to time 7. Many researchers have studied the unperturbed non-linear
oscillator equation

X+ f(x)=0. (2)

For instance, Awrejcewicz and Andrianov [1,2] studied Eq. (2) using the so-called small and large
o-method. Using a generalized harmonic balance method Mickens and his co-authors [3—6] also
studied Eq. (2). For a particular case of Eq. (2) with f(X) = X"/®*D some results have been
presented in Refs. [2,3,5,7]. The periods of the periodic solutions for this particular case have been
approximated by Mickens in Refs. [3,5]. Moreover, exact expressions for the periods of the
periodic solutions for this particular Eq. (2) have been given by Van Horssen [7]. Eq. (1) with
m = n = 0 is the well-known Van der Pol equation. Recently, Eq. (1) with m = 0 and n = 1 has
been studied in Ref. [6]. Approximations of the periodic solution are constructed in Ref. [6] by
using the method of harmonic balance. In this paper the recently developed perturbation method
based on integrating factors (see Refs. [§—12]) is used to approximate first integrals and periodic
solutions for the generalized non-linear Van der Pol oscillator (1). In this paper not only
asymptotic approximations of first integrals are constructed but also asymptotic approximations
of the periodic solutions and their periods are determined. The results presented include existence,
uniqueness, and stability properties of the periodic solutions. In this paper it is shown that
straightforward expansions in ¢ can be used to construct asymptotic results on long time-scales.
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This paper is organized as follows. In Section 2 it is shown how approximations of first integrals
can be constructed. It will be shown in Section 3 how the existence, stability, and the period of
time-periodic solutions can be determined from the constructed approximations of the first
integrals. Finally in Section 4, some conclusions will be drawn and some remarks will be made.

2. Approximations of first integrals

In this section it will be shown that the perturbation method based on integrating factors can be
applied to approximate first integrals for a generalized non-linear Van der Pol oscillator. Consider
the following generalized non-linear Van der Pol oscillator equation:

X+ X(2m+l)/(2n+l) _ 8(1 _ X2)X (3)
The unperturbed solutions of Eq. (3) with ¢ =0 form a family of periodic orbits. This family
covers the entire ““phase plane” (X, X). Each periodic orbit corresponds to a constant energy level

E=1X*+[2n+ 1)/2m + 2n + 2)]X@m+21+2/Cn+D To a constant energy level E a phase angle i
can be defined by

v = / X dr
0 \2E —[2n+ 1)/(m + n + 1)]pGm+2n2)/@n+D)
By using the transformation (X, X)— (E, ) it follows that

E: ’SXf = gl(E’l//):

X
: dr )
= 1 — 8/ X = E, > 4

v 0 (2E —[2n+ 1)/(m + n+ 1)]rCm+2n+2)/Cnt1))3/2 /= olby) @
where f = (1 — X?)X. By multiplying the first and the second equation in Eq.(4) by the
integrating factors u; and p,, respectively, it follows from the theory of integrating factors as
presented in Refs. [§-10] that u; and u, have to satisfy

)

oy~ OE’
oy 0 Oy 0
it ot 2= . 5
F aE(ulgl + Ur92), 7 o0 (1191 + 11292) (5

By expanding u; and p, in power series in ¢ and by substituting ¢, g», and the expansions for
the integrating factors into Eq. (5), and by taking together terms of equal powers in &, the usual
O(&")-problems for n =0, 1,2, ... (see also Refs. [9-12]) are obtained. The (/(¢°)-problem is

aMl,o . a,112,0

oy  OE’

O _ Oy Olay _ Ola
ot 0E’ ot oy’

(6)
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and for n>=1 the O(¢")-problems are

a:ul,n _ a:u2,n
ay  OE°
a,ul 8
at’n = - ﬁ(.ul,n—lgl,l + Uy 1921 + Mo )
a:uZn 0
n__ 9 : 7
Py oy (4 p—1910 + Mo p-192.1 + o) (7)

where 911 = g1, €921 = g» — 1. The O(c)-problem (6) can readily be solved, yielding Mo =
hio(E, ¢ —t)and uy o = hoo(E,\ — t) with Ohy /0y = Ohy/OE. The functions A and /g are still
arbitrary and will now be chosen as simple as possible: 4o = 1 and s, = 0, and so (see also Refs.
[8-12])

=1, o =0. ®)

Then, from the order e-problem (7) y;; and p,; can be obtained, yielding

0 r. . -
Hig = 8—E</ (X - XzXz)dl>,

oy = ;;( eSS df). )

An approximation F; of a first integral F = constant of system (4) can now be obtained from
Egs. (8), (9), and the theory of integrating factors as presented in Refs. [8—12], yielding

t
Fi=E- a/ (X? - X*Xx?)di, (10)
where
X = +\/2E _ ﬂX(zmHnH)/(an)' (11)
- m+n+1

The elementary procedure to construct | using the integrating factors is for instance given in
Refs. [8-12]. How well F| approximates F in a first integral F = constant follows from the
theorems as presented in Refs. [9-12]. In this case it can be shown that (using the theory as
presented in Refs. [9-12])

dF,
dr
where g1 and ¢, and g, ; and p,; are given by Eqgs. (4) and (9), respectively. In a similar way, a
second (functionally independent) approximation of a first integral can be constructed by taking

= ety 191 + et 1 (92 — 1) = ER(E ), (12)

Hrp = 1, Ui = 0, (13)
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instead of Eq. (8). The O(¢)-problem (7) can now again be solved, yielding

t X
:“11:i / / dr 32(X'2—X2X2) a7 ).
1T OE 0 (E —[2n+ 1)/(m + n 4 D)]rem+2n+2/Cn+1))3/

0 o dr ST W
K1 = @(/ (/o QRE—-[2n+1)/(m+n+ 1)]r(2m+2”+2)/(2n+1))3/2 (X7 = XX )> dt>' (14

An approximation F> of a first integral F = constant of system (4) can now be obtained from
Egs. (13), (14), and the theory of integrating factors as presented in Refs. [8—12], yielding

B(E )= —1)

! X dr N
/ </0 QE —[(2n + 1)/(m + n + 1)]r@m+2n4+2)/Cn+1))3/2 e )> dt] (1

How well F, approximates a first integral F = constant follows from the theorems as presented in
Refs. [9-12]. In this case it can be shown that (using the theory as presented in Refs. [9—12])
dF,

3 = g a9 = 1) =SB ), (16)

where g1 and g», and g, ; and p,; are given by Egs. (4) and (14), respectively.

+ &

3. Approximations of time-periodic solutions

In Section 2 asymptotic approximations of first integrals have been constructed. In this section,
it will be shown how the existence, the stability, and the approximations of non-trivial, time-
periodic solutions can be determined from these asymptotic approximations of the first integrals.
Let T< oo be the period of a periodic solution and let ¢; be a constant in the first integral
F(E,\,t;¢) = constant for which a periodic solution exists. Consider F = ¢; for t=0 and T.
Approximating F by F; (given by (10)), eliminating ¢; by subtraction (using the fact that E(0) =
E(T) for a periodic solution) it follows that

T X(T)
g< / (X2 — X2X?) df> = 0(?) < g< / X - Xx?% dX> = 0(&?). (17)
0

X(0)

Without loss of generality, it can be assumed that at =0 (X(0), X(0)) = (4,0) with 4> 0.
Because of the symmetry of the unperturbed orbits in the phase plane it follows that
(X(T/2), X(T/2)) = (—A4,0). From Eq. (17) it then follows that

A
el(FE) = (0(¢?), where I(E) = 4 / (X — XX?)dX. (18)

0
To have a periodic solution for (3) an energy level E has to be found such that /(E) is equal to zero

(see also [11,13,14]). It should be observed that the same problem (that is, finding zeros of I(F)) is
obtained when the Poincaré return map technique or the Melnikov method is applied (see also
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Refs. [13—16]). To find this energy level E the integral I(E) is rewritten in (using Eq. (11))

L(E)
I(E)y=4L(E)( 1 — 1
= (1-25). 19)
where
4 1/2
L(E) = / 2F — (2”7""1) X @m+2n42)/(2n+1) dx
0 (m+n+1) g
L(E) = / ’ 2 (25— @+ D vomimen 2 dx (20)
’ 0 (m+n+1) :

Now it should be observed that E(r) = 1 X{¢)> + [(2n + 1)/(2m + 2n 4 2)]X (1)@ H202/@m4D) " and

E0) = [(2n + 1)/@2m + 2n + 2)]A@m+2+2/Cn+)  From Eq. (4) it is not difficult to see that E is
constant up to ()(¢) on time-scales of ()(1). By using the transformation X = Au in Eq. (20) and by
using the fact that £ = E(0) + O(e) for 0<¢< T it is easy to see from Egs. (18)—(20) that Eq. (18)
can be rewritten in

4eL(E)(1 — Q) = O(¢") with p> 1, 1)
where
1 (2n+1)/(m+n+1)J
0= 2Ew 2(m, n)) (22)
2n+1 Ji(m,n)
and where
1
Ji(m,n) = / V1 — uCm+2n42)/Cn1) dyy,
0
1
Jo(m, n) = / \/u4 _ 2mE10n+6)/2n+1) dyy. (23)
0

It is easy to see that Ji(m,n) >0 and J,(m,n) > 0 for all values of m,neN. It is also easy to see
from Eq. (22) that dQ/dE > 0. This implies that Q is strictly monotonically increasing. Since Q is
strictly monotonically increasing in E it can be concluded that there exists a unique, non-trivial
E-value such that I(E) = 0. From these results it can be concluded (see also for instance Ref. [11],
Section 4.2) that there exists a unique, non-trivial, stable time-periodic solution for Eq. (3).
Suppose that at 1 = 0 X(0) = 4y and X(0) = 0 for the periodic solution. Then

) 2n+1 2Cn+1) 2m42n42)/2n+1)
1 X2 X(2m+2n+2)/(2n+1) _ A( m+2n+2)/(2n = E 24
2 2m+2n+2 QCm+2n+2)"° 0 (24)

where Ej is the energy such that a periodic solution exists. Obviously, E, satisfies (see also
Egs. (19) and (21))

1 (2n+1)/(m+n+l)J
<2E0 w> 2(m,m) _ 1 (25)

2n+1 Ji(m,n)
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up to O(¢”~') with p > 1. The period of the periodic solution can be calculated up to €(¢”) with
p>1 from Eq. (24), yielding

dXx 2n+1 Qm+2n+2)/(2n+1)
T A — X @mt2n+2)/Qnt1) 26
dt “—Vm+n+ 1\/ 0 ’ 20
jm+n+1dX ! — 41 27
2n+1 dt @m+2n+2)/2n+1) I » T
\/Ao / — X @mt2nt2)/(2nt1)

Then, integrating Eq. (27) with respect to ¢ from 1 =0 to 7/2 yields

1 n—m n
Ty = 4¢) o 4 >m+n/ (28)
’ 2n+1 \/ 1 — u(2m+2n+2)/(2n+1)

Using a standard numerical integration routine period (28) of the periodic solution can easily be
approximated numerically (up to O(e”~!) with p > 1).

or equivalently

4. Conclusions and remarks

In this paper the perturbation method based on integrating factors has been used to
approximate first integrals for a generalized non-linear Van der Pol oscillator equation. From
these approximations, the existence, uniqueness, stability, and the periods of the time-periodic
solutions have been obtained straightforwardly. Compared to most other perturbation method
(see for instance the harmonic balance method in Refs. [3-6] or the small/large 6 method in
Refs. [1,2]) the presented perturbation method gives explicit approximations for the periods
including error estimates. Moreover, the presented perturbation method can be applied to a large
class of problems as has been shown in Refs. [7-12].

Acknowledgements

This research project was sponsored by the Secondary Teacher Development Programme
(PGSM) (Indonesia) and The University of Technology in Delft (The Netherlands).

References

[1] I.V. Andrianov, J. Awrejcewicz, Methods of small and large J in the nonlinear dynamics a comparative analysis,
Nonlinear Dynamics 23 (2000) 57-66.

[2] J. Awrejcewicz, 1.V. Andrianov, Oscillations of non-linear system with restoring force close to Sign(X), Journal of
Sound and Vibration 252 (2002) 962-966.

[3] K. Cooper, R.E. Mickens, Generalized harmonic balance/numerical method for determining analytical
approximations to the periodic solutions of the x*3 potential, Journal of Sound and Vibration 250 (2002) 951-954.

[4] R.E. Mickens, D. Semwogerere, Fourier analysis of a rational harmonic balance approximation for periodic
solutions, Journal of Sound and Vibration 195 (1996) 528-530.

[5] R.E. Mickens, Oscillations in an x*? potential, Journal of Sound and Vibration 246 (2001) 375-378.



S.B. Waluya, W.T. van Horssen | Journal of Sound and Vibration 268 (2003) 209-215 215

[6] R.E. Mickens, Analysis of non-linear oscillators having non-polynomial elastic terms, Journal of Sound and
Vibration 255 (2002) 789-792.
[7] W.T. Van Horssen, On the periods of the periodic solutions of the nonlinear oscillator equation & + x!/@+D = 0,
Journal of Sound and Vibration 260 (2003) 961-964.
[8] W.T. Van Horssen, On integrating factors for ordinary differential equations, Nieuw Archief voor Wiskunde 15
(1997) 15-26.
[9] W.T. Van Horssen, A perturbation method based on integrating factors, SIAM journal on Applied Mathematics
59 (1999) 1427-1443.
[10] W.T. van Horssen, A perturbation method based on integrating vectors and multiple scales, STAM Journal on
Applied Mathematics 59 (1999) 1444-1467.
[11] S.B. Waluya, W.T. Van Horssen, Asymptotic approximations of first integrals for a nonlinear oscillator,
Nonlinear Analysis TMA 51 (2002) 1327-1346.
[12] S.B. Waluya, W.T. Van Horssen, On approximations of first integrals for a system of weakly nonlinear, coupled
harmonic oscillators, Nonlinear Dynamics 30 (2002) 243-266.
[13] W.T. Van Horssen, R.E. Kooij, Bifurcation of limit cycles in a particular class of quadratic systems with two
centers, Journal of Differential Equations 114 (1994) 538-569.
[14] W.T. Van Horssen, J.W. Reyn, Bifurcation of limit cycles in a particular class of quadratic systems, Differential
and Integral Equations 8 (1995) 907-920.
[15] V.I. Arnold, Ordinary Differential Equations, The MIT Press, Cambridge, 1978.
[16] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer, Berlin, 1996.



	On the periodic solutions of a generalized non-linear Van der Pol oscillator
	Introduction
	Approximations of first integrals
	Approximations of time-periodic solutions
	Conclusions and remarks
	Acknowledgements
	References


