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Abstract

The reflection of a plane acoustic wave from the seabed is considered. Conditions for the generation of an
interface wave in a thin unconsolidated sediment layer overlying a solid substrate are examined, with
particular attention to a resonance excited at low frequency and near grazing incidence. Assuming that the
sediment layer can be treated as a fluid, the main requirement is for the sediment–substrate impedance ratio
(evaluated at grazing incidence) to be less than �1, and very high reflection loss is shown to arise when this
condition is only just met. The bottom reflection loss is evaluated at resonance for realistic combinations of
seabed parameters, and lower limits are placed on the substrate compressional and shear speeds required
for the high losses to occur. Finally, the influence of a small non-zero sediment rigidity is considered.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

A plane acoustic wave in water incident on the seabed, comprising a thin unconsolidated
sediment layer overlying a uniform solid (rock) substrate, is considered. It is well known that,
given the right conditions, it is possible to excite high-amplitude evanescent waves in a fluid
sediment, resulting in high reflection losses when the acoustic wavelength is comparable with the
sediment thickness. Hawker [1,2] shows that a Scholte wave can be excited at the lower boundary,
the conditions for which are investigated by Hovem and Kristensen [3], who demonstrate the
existence of a second type of interface wave excited at a lower frequency and near grazing
incidence. Ainslie [4] considers the same seabed model as Hovem and Kristensen and investigates
the variation of acoustic intensity with depth and angle, in the sediment layer, for both types of
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waves. Here, attention is focused on the low-frequency feature which is associated with a resonant
evanescent wave. In Section 2 a formula is derived for the resonance frequency and some
illustrative reflection loss calculations are presented. The conditions required for the existence of
both features are described in Section 3, illustrated by examples from the literature. Section 4
calculates the reflection loss vs. angle at resonance and investigates how this function varies with
sediment type for three different substrates based on data from Christensen and Salisbury [5]. It is
shown that exceptionally high losses are incurred, over a broad range of frequencies, when the
combination of sediment and substrate parameters is such that the Section 3 criterion is only just
met. The sediment parameters are chosen to represent different grades of silt, sand and gravel,
using correlations between sound speed, density, attenuation and grain size published by
Hamilton and Bachman [6,7]. Important additional effects due to rigidity of the sediment layer [8]
are acknowledged and these are discussed briefly in Section 5, but mostly ignored for the sake of
simplicity.
Following Cagniard [9], the term ‘Scholte’ wave is used to mean the interface wave that

propagates along the boundary between a fluid and a solid, described in his Appendix II,
consistent with the definition of Morfey [10]. In some earlier work, this type of wave is referred to
as a ‘Stoneley’ wave [1–4,11]. ‘Scholte’ is used here to avoid confusion with the alternative use of
‘Stoneley’ for the interface wave at the boundary between two solids, travelling more slowly than
the shear speed in either medium [10,12].

2. Reflection coefficient

Consider the seabed of Fig. 1, comprising a fluid sediment layer of sound speed c2 and thickness
h; overlying a solid substrate of compressional speed c

p
3 and shear speed cs

3: (The figures use the
shorthand cp and cs for these last two parameters.) The sediment is assumed to be sufficiently thin
to neglect refraction within the layer. It is further assumed that c2; c

p
3 and cs

3 are all larger than c1;
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Fig. 1. Illustration of the seabed model and ray path geometry. The boxes indicate the notation used in each of the

three layers for wave speed ci and density ri:
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the sound speed in water, so that the corresponding critical angles ami exist and are given by

cos ami ¼ c1=c
m
i ; ð1Þ

where c
m
i is any one of c2; c

p
3; cs

3: (In the case of a fluid sediment, the superscript is superfluous for
layer 2.) For an incident plane wave in the water of angular frequency o and grazing angle y1; the
corresponding vertical wave numbers are

gmi ¼ ðo=c
m
i Þsin y

m
i ; ð2Þ

where the angles ymi are related by Snell’s law, such that c
m
i sec y

m
i is a constant. Finally, it is

assumed that energy dissipation occurs either in the sediment or substrate, but not necessarily in
both.
The reflection coefficient can be written in the form [13]

r ¼ ðr12 þ r23Þ=ð1þ r12r23Þ; ð3Þ

where r12 and r23 are the water–sediment and sediment–substrate reflection coefficients

r12 ¼ ðz12 � 1Þ=ðz12 þ 1Þ; ð4Þ

r23 ¼ ½ðz23 � 1Þ=ðz23 þ 1Þ�expð2ig2hÞ: ð5Þ

Notice the two-way phase term in r23; essential to account correctly for interference effects. If the
wave is an evanescent one, then g2 is imaginary and in that case the exponential term represents an
amplitude ratio. The impedance ratios zij are

z12 ¼
r2g1
r1g2

ð6Þ

and

z23 ¼
r3g2
r2

cos2 2ys
3

gp
3

þ
sin2 2ys

3

gs
3

� �
: ð7Þ

Fig. 2 shows the reflection loss (�20 log10|r|) plotted vs. dimensionless frequency K (defined as
oh=c2) and angle y1 for the parameters of Table 1, corresponding to a sand sediment overlying a
basalt substrate (see Appendix A). The features marked ‘‘S’’ and ‘‘E’’ are due to the excitation,
respectively, of a Scholte wave at the sand–basalt boundary, and a resonant evanescent wave in
the sand layer. The Scholte wave is associated with a large tangential component of intensity at
the bottom of the sediment [4] and travels at a speed (Eq. (2.98) of Ref. [14]) of 1653m/s, in
agreement with the observed grazing angle of 22�. The evanescent resonance is excited near
grazing incidence and for a single sharply defined frequency. In both cases the high losses can be
explained by cancellation between r12 and r23 in the numerator of Eq. (3). For the evanescent
resonance this happens at grazing incidence such that r12E� 1 and r23Eþ 1: The corresponding
frequency then follows by taking the logarithm of Eq. (5):

KE ¼
cot a2
2

ln
ðz0 � 1Þ
ðz0 þ 1Þ

; ð8Þ

where z0 is the impedance ratio z23 evaluated at y1 ¼ 0: For the parameters of Table 1, Eq. (8)
predicts a resonance at a dimensionless frequency KE of 1.1, consistent with Fig. 2. For a sediment
thickness of 1m, this would correspond to a resonance frequency of 320Hz.

ARTICLE IN PRESS

M.A. Ainslie / Journal of Sound and Vibration 268 (2003) 249–267 251



3. Conditions for high loss

3.1. General criterion

It follows by inspection of Eq. (8) that a real solution is possible if and only if

z0o� 1 ð9Þ

and this same inequality ensures that the requirement for a Scholte wave (z23 þ 1 ¼ 0) can also be
satisfied. This is because for the assumed conditions ðcp

3 > cs
3 > c1Þ; z23 increases from z0 at y1 ¼ 0

to a non-negative value at the critical angle. Thus, inequality (9) is a necessary and sufficient
condition for the existence of both S and E features. (The frequency limits between which they
occur are derived in Section 3.2 below.)
From Eq. (7) it is found that

z0 ¼
r3 sin a2

r2
cosec ap

3 � 4tan
2as
3 sec

2 as
3ðcosec a

s
3 � cosec a

p
3Þ

� �
ð10Þ
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Fig. 2. Plane wave reflection loss vs. grazing angle y1 and dimensionless frequency K for a fluid sand sediment overlying

a basalt substrate (see Table 1). Contour levels are 1–10 dB in 1 dB steps.

Table 1

Seabed model for Fig. 2

Layer i Density ri (g/cm
3) Compressional

speed c
p
i (m/s)

Compressional

attenuation bp
i

(dB/l)

Shear speed cs
i

(m/s)

Shear attenuation

bs
i (dB/l)

1 (water) 1.025 1538 0.0 — —

2 (sand) 2.035 1788 0.868 — —

3 (basalt) 2.600 4929 0.100 2462 0.2
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and Eq. (9) can therefore be expressed as a lower limit either on a2

r2 cosec a2or3½4tan
2 as

3 sec
2 as

3ðcosec a
s
3 � cosec a

p
3Þ � cosec a

p
3� ð11Þ

or on ap
3

cosec ap
3o
4tan as

3 sec
3 as

3 � ðr2=r3Þcosec a2
4tan2 as

3 sec
2 as

3 þ 1
: ð12Þ

Figs. 3 and 4 illustrate these two inequalities in graphical form and can be used to predict whether
a particular combination of parameters will result in high losses for a fluid sediment. Fig. 3 shows
threshold values of ðr2=r3Þcosec a2 as a function of cos a

s
3 and

ffiffiffi
2

p
cos ap

3: For a given combination
of c

p
3 and cs

3; one can read off a value for the threshold, equal to 2.6 for the Table 1 parameters.
High losses arise unless this threshold is exceeded. The actual value of ðr2=r3Þcosec a2 for the
sand–basalt seabed parameters is 1.5, less than the threshold and therefore consistent with
observed high losses. The white region of Fig. 3 below indicates combinations of ap

3 and as
3 for

which high losses cannot arise for the mechanisms considered here. Increasing darkness levels in
Fig. 3 indicate an increasing threshold and therefore, for a sediment material selected at random,
increasing likelihood of high losses. The shaded region above the diagonal is forbidden on
physical grounds, corresponding to combinations leading to negative values of the Poisson ratio.
Below the diagonal, there is a more lightly shaded region (in the shape of a delta wing) indicating
the expected range of material properties for rocks, based on Fig. 11 of Ludwig et al. [15].
For the condition on ap

3; it is convenient to rewrite inequality (12) as an upper limit on cos
2 ap

3 in
the form

cos2 ap
3

cos2 as
3

o
4tan as

3 sec
3 as

3 � ðr2=r3Þcosec a2
� �2�ð4tan2 as

3 sec
2 as

3 þ 1Þ
2

½4tan as
3 sec

2 as
3 � ðr2=r3Þcos a

s
3 cosec a2�

2
: ð13Þ
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Fig. 3. Contours of (r2=r3)cosec a2 threshold for use with inequality (11). Contour levels are 0–5 in steps of 0.5. The
white region on the right marked ‘‘LOW LOSS ALWAYS’’ indicates conditions for which high losses cannot arise from

the generation of interface waves, irrespective of sediment properties. The black region indicates that high losses are

likely but not inevitable.
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Fig. 4 shows threshold values of 2cos2 ap
3=cos

2 as
3 plotted as a function of cos as

3 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3=r2Þsin a2

p
: It is similar to Hovem and Kristensen’s [3] Fig. 7 except that here any

combination of r3; r2 and c
p
3 is allowed (their Fig. 7 is restricted to c

p
3=cs

3 ¼ 2 and r3=r2 ¼ 5=4),
with the transition region between high and low losses shown explicitly. Fig. 4 annotation is based
on Udden [16] for sediments (y-axis) and Hamilton [17] for rocks (x-axis).
Also apparent from Fig. 3 are absolute upper limits on cos ap

3 and cos a
s
3 of ðO5� 1Þ=2 ¼ 0:618

and 13þO297
� �

=8O2 ¼ 0:955; respectively [4], for which high losses are possible due to interface
waves. A necessary condition is therefore that ap

3 > 51:8
� and as

3 > 17:2
� must both be satisfied,

implying, for a nominal sound speed in water of 1500m/s, that c
p
3 > 2430m=s and cs

3 > 1570 m=s:
In practice, though, the substrate wave speeds need to be considerably larger than these
theoretical limits suggest. To derive more realistic (though approximate) limits, note first that
inequality (11) is a function of sediment properties only on the left-hand side (LHS) and of
substrate properties on the right (RHS). Furthermore, because of correlations between the various
material properties [6,17,18], one can write the RHS and LHS as a function of the critical angle as

3

and sediment density r2; respectively:

RHSðas
3Þ ¼ r3ða

s
3Þ 4tan as

3 sec
3 as

3 �
1þ 4tan2 as

3 sec
2 as

3

1� ðcs
3=c

p
3Þ
2cos2 as

3

� �1=2
8<
:

9=
; ð14Þ

and

LHSðr2Þ ¼ r2 1�
c1

c2ðr2Þ

� �2( )�1=2

: ð15Þ
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Fig. 4. Contours of 2ðcs
3=c

p
3Þ
2 threshold for use with inequality (13). Contour levels are 0–1 in steps of 0.1. The white

region on the right marked ‘‘LOW LOSS ALWAYS’’ indicates conditions for which high losses cannot arise from the

generation of interface waves. Conversely, in the black region high losses are inevitable, irrespective of the substrate

sound speed c
p
3:
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For the functions c2ðr2Þ and r3ða
s
3Þ; respectively, the sound speed vs. density equation is used for

continental terrace sediments from Ref. [6]:

c2ðr2Þ ¼ 2330:4� 1257:0r2 þ 487:7r
2
2 ð16Þ

and curve G from Hamilton’s [17] Fig. 7 (due to Gardner et al. [19])

r3ða
s
3Þ ¼ 0:23

ðcp
3=cs

3Þc1
0:3048cos as

3

� �1=4
; ð17Þ

where all sound speeds are in units of m/s and densities in g/cm3. With these substitutions,
Eq. (15) for the LHS has a minimum of 3.4 g/cm3. High losses are therefore unlikely, unless the
RHS exceeds this value. Assuming a ratio c

p
3=cs

3E2 [18], the condition becomes as
3 > 42

�ðcs
3 >

2020 m=sÞ and hence ap
3 > 68

�ðcp
3 > 4040 m=sÞ: These conditions do not provide rigorous absolute

limits, but reasonable lower bounds on these parameters. The possibility of intermediate shear
speeds (1570–2020m/s) giving rise to high interface wave losses is not ruled out, but such
occurrences are expected to be rare.

3.2. Frequency limits

High losses due to interface waves are generated in a specific range of frequencies, the lower
limit of which is the evanescent resonance frequency KE : The upper limit is less well defined, but
can be estimated by considering the behaviour of r23j j (evaluated at the Scholte angle) with
frequency. At low frequency, this quantity, denoted rsðKÞ; becomes very large due to the z23 þ 1
denominator, and at high frequency it tends to zero due to the exp �2h Imðg2Þ

� �
factor. Therefore,

there must be a maximum frequency for which rsðKÞj j can be equal to unity, thus allowing the
necessary cancellation between r12 and r23: From Eq. (5) one sees that the critical frequency (KS)
above which this cancellation becomes impossible is given by

2 sin y2j jKS ¼ ln
1� zs
1þ zs

����
����; ð18Þ

where zs is the value of z23 evaluated at the Scholte angle. The real part of zs is equal to �1; so KS

is determined by Im(zs), which depends in turn on the imaginary parts of c2; c
p
3 and cs

3: Assuming
that the interface wave attenuation is dominated by absorption in the sediment (rather than in the
substrate), it follows that

zs ¼ �1þ
id2=2p

c2=s
� �2�1��� ���; ð19Þ

where d2 is the sediment absorption coefficient (in nepers per wave length) and s is the Scholte
wave speed, so that Eq. (18) becomes

2 sin y2j jKS ¼ ln
4p c2=s

� �2�1��� ���
d2

: ð20Þ

As defined above, the critical frequency for the Scholte wave KS is the highest frequency for which
perfect cancellation can occur, and the interface wave amplitude is at its highest around this
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frequency, resulting in very high reflection losses. Above it the substrate interaction is reduced and
losses become negligible at significantly higher frequencies. A practical upper limit is about 2KS:
Combining both limits results in the overall condition KEoKo2KS: In other words, ignoring

the (small) imaginary part of c2;

cot a2 ln
z0 � 1
z0 þ 1

� �
o2Ko

2

c2=s
� �2�1h i1=2 ln c2=s

� �2�1
d2= 4pð Þ

" #
: ð21Þ

3.3. Examples

To test inequality (9), six examples of layered seabeds with properties similar to that of Table 1
are selected from recent publications [3,20–22]. The relevant properties of these sediments are
summarized in Table 2, showing the value of z0 and, where applicable, the evanescent resonance
frequency KE : Also included for each seabed are the Scholte wave speed s and critical frequency
KS: Notice that Tollefsen’s Site I does not satisfy Eq. (9) and this explains the low losses observed
for this case in his Fig. 1. (In principle, a Scholte wave can be generated for the Site I parameters,
but only for an evanescent incident wave.) Interpretation for the Continental Shelf site from
Hughes et al. [20], complicated by a non-zero shear speed in the sediment, is left for the discussion
on sediment rigidity in Section 5. In all other cases, the criterion is satisfied and the predicted
resonances are clearly visible in Hovem and Kristensen’s [3] Fig. 3 at 48Hz, Tollefsen’s [21] Figs.
5a (12Hz) and 6a (125Hz) and Ainslie et al.’s [22] Fig. 4b at 15Hz.
Two other sites from Ref. [20] (‘Scotian Shelf’ and ‘Arctic Shelf’) also have thin sediment layers

but are not included in Table 2. The Scotian Shelf parameters are identical to those for the
Continental Shelf except for the sediment thickness and water depth, so the only change would be
a scaling of the frequencies fE and fS; which are inversely proportional to the sediment thickness.

ARTICLE IN PRESS

Table 2

Summary of seabed properties from various sources, in order of increasing shear speed ratio cs
3=c1 from top to bottom

Source c2=c1 c
p
3=c1 cs

3=c1 r3/r2 z0 c2 (m/s) KE h (m) fE (Hz) s (m/s) d2 (Np/l) KS fS (Hz)

TI 1.088 2.109 1.224 1.633 �0.421 1600 N/A 20.0 N/A 1345 0.055 3.53 44.9

HK 1.133 3.133 1.533 1.250 �1.352 1700 1.78 10.0 48.2 1560 0.092 3.74 101.3

TIII 1.172 2.655 1.552 1.378 �1.450 1700 1.38 3.0 124.9 1530 0.115 3.35 301.6

AB2 1.151 3.000 1.600 1.444 �1.761 1727 1.13 20.0 15.5 1613 0.058 4.51 61.9

Table 1 1.163 3.205 1.601 1.278 �1.694 1788 1.14 — — 1653 0.100 3.71 —

HCS 1.219 3.767 1.644 1.182 �2.069 1780 0.76 1.75 122.4 1634 0.143 3.23 523.2

TII 1.088 3.605 2.091 1.576 �2.942 1600 0.82 18.0 11.7 1579 0.116 3.25 46.0

The frequency f is given by ðc2=2phÞK :
AB2=Ainslie et al. [22] (B2).

HCS=Hughes et al. [20] (Continental Shelf).

HK=Hovem and Kristensen [3].

Table 1=This paper (Table 1).

TI=Tollefsen [21] (Site I).

TII=Tollefsen [21] (Site II).

TIII=Tollefsen [21] (Site III).
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The Arctic Shelf sediment has a very high shear speed (800m/s) and cannot be treated, even
approximately, as a fluid.
Ref. [22] results are actually for a layered sediment with sound speed ratio increasing from

1.091 at the top to 1.194 at the bottom. The c2=c1 value quoted here is an effective sound
speed ratio required to reproduce approximately the same resonance frequency as the original
profile [4].
Tollefsen’s Sites I and II are marked in Fig. 4, representing the extremes (softest and hardest

substrates) from Table 2. The other five cases are similar to each other and are represented in Fig.
4 by the Table 1 parameters.

3.4. Comparison with measured rock properties

The above examples, obtained from Refs. [20,21], are of acoustic measurements made at a
number of sites where the conditions for generating interface waves are satisfied. We can now
speculate on how likely it is for these conditions to arise more generally, by comparison with
measured properties of real rocks. There are two questions of interest:

* Do commonly occurring rocks have shear speeds exceeding the derived threshold of 2.02 km/s?
* Are they covered by thin sediments?

Table 22 from Ref. [23] presents several hundred laboratory measurements of shear speed
in rocks as a function of pressure in the range 10–1000MPa (0.1–10 kbar). Excluding
powdered rock, ash, tuff, breccia and all lunar material, only 10 out of about 300 tabulated
values at 10MPa (extrapolating from a higher pressure where necessary) are less than the
threshold. These 10 are all for sedimentary rocks and soft basalts. Assefa and Sothcott [24]
present shear speed measurements in their Table 1 for 18 samples of seafloor bedrock at
low pressure (10MPa), and of these only two values (both for basalts) are less than this
threshold. A similar picture emerges from Table 7 of Ref. [23] (for rock from the oceanic crust
and upper mantle), Fig. 16 of Ref. [5] (for basalts at 50MPa) and also from Fig. 11 of Ref. [15]
(for a variety of sedimentary, igneous and metamorphic rocks). Thus, the answer to the first
question appears to be ‘Yes’ for many sedimentary rocks, most igneous rocks and all
metamorphic rocks.
Regarding the second question, first one has to quantify what is meant by ‘thin’, and in this

context we just mean, ‘thickness of order one wavelength’. Assuming that a well-defined sediment
layer exists at all, for any given sediment thickness, it is always possible to choose a frequency that
meets this criterion. The answer to the second question, therefore, is ‘Yes, but not necessarily for
the frequencies of interest’.
This reasoning suggests that the conditions for the excitation of both varieties of interface wave

are quite common, provided one is flexible about the choice of frequency. So why are their effects
not observed more often? For a possible explanation, refer to the discussion of sediment rigidity in
Section 5. There it is shown that even when the shear speed of the sediment layer is very low, its
rigidity must be taken into account for a complete description. The effects due to the sediment
shear waves then tend to obscure those of the interface waves.
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4. Behaviour of reflection loss at resonance

The reflection loss vs. angle is now evaluated at the resonance frequency KE for different values
of z0; with particular attention to behaviour close to z0 ¼ �1: The value of z0 is controlled by
varying the sediment type [16] from very fine silt (grain diameter f ¼ 2�8–2�7mm) to medium
gravel (f ¼ 2þ1–2+2mm), keeping the substrate parameters fixed, for three different varieties of
basalt. Correlations for continental terrace sediments are used to calculate geoacoustic properties
from the grain size [6,7]. Fig. 5 shows reflection loss at resonance vs. angle y1 and sediment type
for each of the three basalts which we categorize as ‘hard’ (density r3 ¼ 3:0 g/cm3), ‘medium’
(r3 ¼ 2:7 g/cm3) and ‘soft’ (r3 ¼ 2:4 g/cm3). Compressional and shear speeds are calculated using
the Christensen–Salisbury equations recommended by Hamilton [5,17]. The same recipe,
described in Appendix A in more detail, was used to construct the parameters of Table 1 with
a sediment porosity of 40% (fine sand) and basalt density r3 ¼ 2:6 g/cm3.
For all the three substrate types, one can see a region of fine-grained sediments where losses are

small for all angles, although for the hard basalt this region is confined to very fine silt only, with

ARTICLE IN PRESS

Fig. 5. Plane wave reflection loss at resonance vs. grazing angle y1 and sediment type for (a) hard basalt, (b) medium
basalt and (c) soft basalt. Grain size M is given in phi units. Contour levels are in 1 dB steps starting at 1 dB.
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fB2�8 mm. These low loss regions correspond to z0 exceeding �1 so that inequality (9) is not
satisfied. Strictly speaking, there is no resonance for such combinations, but for illustrative
purposes Fig. 5 uses a nominal resonance frequency of

KE ¼
cot a2
2

����
����Re ln z0 � 1

z0 þ 1

� �� �
ð22Þ

for all values of z0:
For medium basalt (Fig. 5b), there are three distinct regions: the low loss region (z0 > 21) for

fine-grained sediments, a region exhibiting high loss near grazing incidence only, corresponding to
coarse-grained sediments (z0o22), and an intermediate grade of sediments, corresponding
roughly to z0 values between –1 and –2, for which high losses extend over a broad range of angles.
Notice that the Hamilton–Bachman equations have been extrapolated beyond their stated
applicability, and this is indicated by the shaded regions of these graphs.
Fig. 5a for hard basalt is similar, except that the low loss region is almost non-existent. By

contrast, the difference between Figs. 5b and c is striking, especially considering that the density of
the soft basalt differs from that of medium basalt by just 11%. The difference is due to a reduction
in the shear critical angle as

3 to 43
�, close to the critical value of 42� calculated in Section 3.1

above. This in turn means that z0 þ 1 becomes a predominantly positive number and thus high
losses are no longer possible for realistic fluid sediment properties. In fact, the resonance
condition is only satisfied—in the extrapolated region of Fig. 5c—by very coarse-grained
sediments (fine gravel and medium gravel). Predictions in this extrapolated region are unrealistic
on three counts: firstly, the Hamilton–Bachman equations do not apply; secondly, even if they
did, the material properties are such that the effects of sediment rigidity cannot reasonably be
ignored; and finally, the extrapolated sediment densities in this region are greater than 2.4 g/cm3,
the density of the soft basalt substrate. For the finer grained sediments ðfo2�2 mmÞ; reflection
losses are mostly less than 1 dB except for a small island of 1–2 dB for very fine sand of diameter
fB2�4 mm: This island is due to a peak in the sediment attenuation coefficient estimated by
Hamilton’s correlation equation (see Appendix A). This same peak in attenuation is responsible
for kinks (discontinuous gradients) in the contours of Figs. 5a and b at the same grain size.
What all the three basalt types have in common is that losses are highest when the value of z0 is

close to (and usually slightly less than) –1. Under these conditions, the value of z23 changes slowly
with angle from z0 at grazing incidence, to –1 at the Scholte angle. Therefore, a Scholte wave is
excited, not just at the precise Scholte angle, but at a wide range of angles either side, merging into
a single feature with the evanescent resonance at grazing incidence. The effects of the Scholte wave
under these conditions are therefore broad not just in frequency but also in angle. Fig. 6 illustrates
this point for the same three basalt substrates, with the sediment type chosen in each case to
maximize the reflection loss at resonance. The y-axis is normalized by dividing by the evanescent
resonance frequency. Figs. 6a and b both represent realistic combinations and the merged feature
is clearly visible in both.
Long-range propagation in shallow water often relies on multiple reflections from the seabed at

low angles. For the combinations considered in Fig. 6, within about an octave of the resonance
frequency, most of the energy from the incident acoustic wave is converted into a Scholte wave at
the sediment–substrate boundary. Thus, a dramatic effect on propagation loss can be expected in
such cases.
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The third combination of medium gravel over soft basalt (Fig. 6c) is included for completeness,
but is considered unrealistic for the reasons outlined above. The effect of sediment rigidity is
discussed in Section 5 below.

5. Effect of sediment rigidity

So far, the effects of substrate rigidity (without which there can be no interface wave) have been
modelled, but the possibility of shear waves in the sediment layer have been ignored by treating it
as a fluid. This may seem reasonable on the grounds that the shear speed of silt or sand is small
compared with its compressional speed, but in practice a small shear speed can have a
disproportionately large effect on reflection loss and hence on shallow water propagation [20].
This is because at low frequency a train of shear waves is generated at the lower boundary and
propagates up through the sediment layer [25]. These waves can influence the reflected field and
have been identified with a series of resonances at regular intervals in frequency [20,26]. These are

ARTICLE IN PRESS

Fig. 6. Plane wave reflection loss vs. grazing angle y1 and normalized frequency K=KE for (a) very fine silt sediment

over a hard basalt substrate (KE ¼ 5:82), (b) medium silt over medium basalt (KE ¼ 4:28) and (c) medium gravel over

soft basalt (KE ¼ 1:67). Contour levels are in 1 dB steps starting at 1 dB.
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referred to as quarter-wavelength (l=4) resonances because they occur when the sediment
thickness is equal to (odd) multiples of the shear wavelength divided by four. Interference between
the resulting additional multipaths and the evanescent compressional wave results in a significant
perturbation to Eq. (3) and hence also to Eq. (8). A convenient approximation to the reflection
coefficient, valid for a small sediment shear speed, is provided by Eqs. (26) and (29) of Ref. [26],
which we write in the form

r ¼
1þ rss

23

� �
r12 þ r

pp
23

� �
� r

ps
23r

sp
23

� �
1þ rss

23

� �
1þ r12r

pp
23

� �
� r12r

ps
23r

sp
23

� �; ð23Þ

where the r
mn
23 superscripts indicate the nature of the incident (m) and reflected (n) wave at the lower

boundary. A detailed analysis of Eq. (23) is beyond the present scope, but its main properties are
illustrated below by evaluating it for the Table 1 seabed parameters, except with a small non-zero
sediment shear speed ðcs

2Þ:
Fig. 7a shows the resulting reflection coefficient vs. frequency for a grazing angle of 2.5� and for

shear speeds of 1, 10 and 100m/s. The shear wave attenuation ðbs
2 ¼ 2:19 dB=lÞ is chosen to match

that of Refs. [20,26]. The fluid sediment case (not shown) follows the solid line ðcs
2 ¼ 1 m=sÞ apart
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Fig. 7. Reflection coefficient rj j2 vs. (a) frequency and (b) sediment shear speed. Other parameters are from Table 1

(y1 ¼ 2:5�).
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from the weak resonances at very low frequency ½K=p ¼ cs
2=ð2c

p
2Þ ¼ 2:8
 10�4 and odd multiples�:

As the shear speed is increased (to 10m/s), the l/4 resonances move to proportionately higher
frequencies and become clearly visible. For the highest shear speed considered (100m/s), the
sequence of l/4 resonances completely alters the character of the spectrum for values of K in the
range 0.1–1.0.
Fig. 7b shows the variation of the low-frequency reflection coefficient, at three different

frequencies, with increasing sediment shear speed. The shaded region on the right indicates a large
shear speed for which the expansion leading to Eq. (23) is no longer valid. The expected sequence
of l/4 resonances is clearly visible. Notice in particular that significant losses (exceeding 3 dB per
bounce) are predicted for shear speeds greater than about 30m/s. For shear speeds exceeding
100m/s the resonances depart noticeably from integer multiples of l/4, as the shear wave
propagation vector moves away from the vertical. In general, the resonance frequency Kn varies
with both grazing angle y1 and sediment shear speed according to

Knðy1; cs
2Þ ¼

ð2n � 1Þpcs
2

2c
p
2

1� cos2 y1ðcs
2=c1Þ

2
� ��1=2

ð24Þ

for integer n > 0: Rearranging for cs
2 gives the shear speed required for a resonance at a given

frequency Kn

cs
2ðy1;KnÞ ¼

2Knc
p
2

ð2n � 1Þp
1þ

2Kn cos y1c
p
2

ð2n � 1Þpc1

� �2( )�1=2

: ð25Þ

Now return to the continental shelf parameters from Table 2, with a sediment shear speed of 170m/s
and attenuation 2.19dB/l. Because of the relatively large shear speed (>100m/s), one expects the
evanescent resonance to be obscured by the shear wave effects, and this is confirmed by Fig. 8
showing rj j2 vs. frequency for the Continental Shelf parameters at a grazing angle of 4�. A direct
comparison is possible with the exact solution from Fig. 10 of Ref. [26], confirming the accuracy
of Eq. (23) for this case. A similar masking effect can be seen in Tollefsen’s [21] Figs. 5 and 6.
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Fig 8. Reflection coefficient rj j2 vs. frequency for HCS parameters from Table 2 (y1 ¼ 4�).
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One can conclude that for sediment shear speeds exceeding 30m/s, the sequence of shear wave
resonances provides an important loss mechanism, comparable in magnitude with that for the
evanescent resonance. Above 100m/s, the shear wave mechanism begins to dominate. Sediment
shear speeds exceeding 100m/s are considered common [27], although Hamilton’s regression
formula has been shown to overestimate the shear speed of muddy sediments [28]. Significantly
lower shear speeds, in the region of 30–80m/s, have been observed in a variety of different near-
surface coastal sediments [28–30]. While the effects of rigidity are important even for these lower
speeds, the fluid sediment analysis provides an essential first step towards understanding the full
problem. There is, nevertheless, a need for further work to extend the applicability of the Section 3
criteria to a solid sediment.

6. Summary and conclusions

The effect on seabed reflection loss of two types of interface waves is described, for the case of a
thin fluid sediment layer overlying a solid substrate. One of these interface waves is the usual
Scholte wave (sometimes referred to as a Stoneley wave). The other is an evanescent resonance
excited near grazing incidence at a well-defined frequency. Particular attention is paid to the
evanescent resonance that leads to high reflection loss. The key determining parameter is the
sediment–substrate impedance ratio evaluated at grazing incidence, denoted by z0; and high losses
are shown to arise if the criterion z0o� 1 is met. This criterion cannot be satisfied unless the
shear critical angle as

3 of the solid exceeds an absolute minimum of 17.2� regardless of sediment
properties. Taking into account the known correlations between geoacoustic properties of the
seabed, it is unlikely to be satisfied unless as

3 also exceeds about 42
�. For a water sound speed of

1500m/s, these critical angle thresholds translate to substrate shear speeds of 1570 and 2020m/s,
respectively. Both thresholds are shown to be exceeded for many commonly occurring bedrocks.
The criterion is presented in both equation and graphical forms, as a lower limit on the
compressional critical angles a2 (Eq. (11) and Fig. 3) and ap

3 (Eq. (13) and Fig. 4). Illustrations are
provided in the form of reflection loss vs. angle and frequency.
Particular combinations of sediment and substrate parameters, chosen such that the criterion

z0o� 1 is only just met, give rise to an apparent broadening of the evanescent resonance in both
angle and frequency. The reason for the broadening is actually a broadening of the Scholte wave
in angle. When z0 is close to (but slightly less than) –1, the conditions for exciting a Scholte wave
are met across a wide range of angles near grazing incidence, and the two effects are thus no
longer distinguishable as separate features in a plot of reflection loss vs. angle.
Complications due to the introduction of rigidity in the sediment layer result in a series of low-

frequency resonances, which place an upper limit on the sediment shear speed for validity of the
fluid sediment theory. For the cases considered, the excitation of sediment shear waves provides
an important additional loss mechanism even for shear speeds as low as 30m/s.
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Appendix A. Construction of seabed model

This appendix describes the procedure used to construct the geo-acoustic parameters for the
seabed model used in the main text. All wave speeds are in units of m/s, densities in g/cm3 and
attenuations in dB/l.

A.1. Substrate properties

The acoustic properties of bedrock vary with temperature and pressure [23,24]. For the present
purpose, the equations due to Christensen and Salisbury [5] at 50MPa are used as recommended
by Hamilton [17]. For a given substrate density r3; the compressional and shear speeds (for basalt)
are calculated as:

c
p
3ðr3Þ ¼ 2330þ 81r3:633 ; ðA:1aÞ

cs
3ðr3Þ ¼ 1330þ 11r4:853 : ðA:1bÞ

These expressions are evaluated in Table 3 for 2 g=cm3pr3p3 g=cm
3: The attenuation coefficients

are bp
3 ¼ 0:1 dB=l and bs

3 ¼ 0:2 dB=l as recommended by Jensen et al. [31].

A.2. Sediment properties

The sediment sound speed and density are evaluated as a function of porosity p using the
correlations published for continental terrace sediments by Hamilton and Bachman [6]

c2ðpÞ ¼ 2502:0� 23:45p þ 0:14p2; ðA:2Þ

r2ðpÞ ¼ ð157:6� pÞ=57:8: ðA:3Þ

Similarly the attenuation coefficient is from Hamilton’s [7] Fig. 5

b2ðpÞ ¼
c2ðpÞ
1000




0:2747þ 0:00527p; po46:7%;

0:04903p � 1:7688; 46:7opo52%;

3:3232� 0:0489p; 52opo65:5%;

0:7602� 0:01487p þ 0:000078p2; 65:5opo90%:

8>>><
>>>:

ðA:4Þ

Notice the peak in attenuation at p ¼ 52%: This is the peak for very fine sand referred to in
Section 4 of the main text. Notice also that p ¼ 65:5% is used as the boundary between Hamilton’s
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Table 3

Basalt compressional and shear speeds vs. density, evaluated using Eq. (A.1)

r3 (g/cm
3) c

p
3 (m/s) cs

3 (m/s)

2.0 3333 1647

2.2 3747 1834

2.4 4274 2098

2.6 4929 2462

2.8 5731 2952

3.0 6700 3597
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[7] ‘mixed sizes’ and ‘silt-clays’ to avoid the small discontinuity that would otherwise arise through
p ¼ 65:0%: The resulting sediment properties are shown in Table 4, at porosity values chosen to
coincide with integer values of M according to Ref. [6]

pðMÞ ¼ 22:01þ 9:24M � 0:365M2 ð1pMp9Þ; ðA:5Þ

where M is the grain size in phi-units [32] given by M ¼ 2log2 (mean grain diameter in mm).
Although the validity of these equations is restricted to porosities in the range 35–85% (Eqs. (A.2)
and (A.3)) and 36–90% (Eq. (A.4)), they are extrapolated to cases with 0opo36%: Eq. (A.5) is
also extrapolated for Mo1 and M > 9:

A.3. Water properties

The density of water is fixed at r1 ¼ 1:025 g/cm3. The sound speed, c1 ¼ 1537:9m/s, is
determined from the sound speed ratio for Hamilton’s [33] ‘silty clay’ (p ¼ 75:9%) of 0.994, from
his Table IB.
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Table 4

Sediment properties vs. porosity p; evaluated using Eqs. (A.2)–(A.5)

p (%) c2=c1 r2=r1 b2 (dB/l) M Sediment type

2.1 1.596 2.63 0.70 �2

Medium gravel

12.4 1.452 2.45 0.76 �1

Fine gravel

22.0 1.335 2.29 0.80 0

Coarse sand

30.9 1.243 2.14 0.84 +1

Medium sand

39.0 1.170 2.00 0.87 +2

Fine sand

46.4 1.115 1.88 0.89 +3

Very fine sand

53.1 1.074 1.76 1.20 +4

Coarse silt

59.1 1.044 1.66 0.70 +5

Medium silt

64.3 1.023 1.58 0.28 +6

Fine silt

68.8 1.009 1.50 0.17 +7

Very fine silt

72.6 1.000 1.44 0.14 +8

Coarse clay

75.6 0.994 1.38 0.13 +9

Medium clay

77.9 0.991 1.35 0.12 +10

The italics indicate extrapolated parameters, some of which are unrealistic and included only for completeness.
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