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Abstract

An importance sampling technique for linear and non-linear dynamical systems subjected to random
excitations is presented. Applying a transformation of probability measures, controls are introduced in the
system of It #o stochastic differential equations such that the sample trajectories can be influenced in a
predetermined way. As is shown, there exist controls resulting in unbiased zero-variance estimators.
However, these optimal controls are in general not accessible and have to be replaced by sub-optimal ones
derived from an optimization procedure analogous to the first order reliability method known from time-
invariant problems. The efficiency of the proposed Monte Carlo simulation technique is demonstrated by
estimating first-passage probabilities of typical oscillators under external white-noise excitation.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Determining the response of non-linear dynamical systems subjected to random excitations has
been a major research topic during the past decades. Nevertheless, the number of mathematically
exact solutions available is still restricted to a narrow class of systems and to the knowledge of
stationary probability densities or moments only [1–3]. However, in most prominent fields of
reliability assessment of dynamical systems, like e.g., earthquake or bridge engineering, the
excitation is either of intrinsically non-stationary transient nature or at least of ‘‘short duration’’
such that the structural response (or a significant part of it) is non-stationary as well. Moreover,
for assessing the reliability of a dynamical system sufficiently realistically, in addition to the
probabilistic characterization of the response at a certain point in time, a reliability measure
evolving over a time period is most instrumental. The latter can be achieved by utilizing the first-
passage probability, i.e., the probability that the structural response exceeds a prescribed—usually
failure-related—boundary in a certain time interval for the first time. Unfortunately, up to now
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not even in the case of simplest oscillators have exact solutions been obtained for this kind of
problem.
In order to enable assessment of the reliability of randomly excited dynamical systems, different

approximate solution techniques have been proposed, as e.g., stochastic averaging, cumulant-
neglect closure or equivalent linearization, which are applicable for both stationary and non-
stationary problems [3–6]. Despite their indisputable merits, especially in problems involving the
determination of moments of lower order, they lack sufficient accuracy in quantifying structural
responses occurring with low probability—as in the case of extreme load events—which are of
paramount importance in the reliability assessment of engineering structures. The only solution
technique not showing any of the above-mentioned deficits is presumably Monte Carlo
simulation. However, it is most often applied as a last resort only—due to numerical answers
of supposedly limited accuracy or prohibitive computational costs.
Whereas these drawbacks of the Monte Carlo simulation technique are an inherent

characteristic of its crude or direct form, this does not hold for variance reduction techniques
[7,8]. Although this fact is widely recognized for time-invariant problems (cf. Ref. [9]), for
problems in random vibration the application of variance reduction techniques is still eschewed—
despite different, technically sound methods proposed during the last years [10–14]. The most
versatile variance reduction technique appears to be importance sampling utilizing the measure
transformation method [15–18] based on the Girsanov theorem [19], which is known from
stochastic control [20] or system identification problems [21]. Modelling the time evolution of the
structural response by a system of It #o stochastic differential equations, the drift terms of these
equations are changed according to a minimization criterion for the variance of the estimator. In
other words, controls are utilized which allow one to influence the response paths, in addition to
which the unlikeliness of such extreme paths is taken into account by a correction process.
Although there exist controls which result in unbiased zero-variance estimators, these optimal
controls are in general not accessible and have to be replaced by sub-optimal ones—as will be
shown below.
A different and at first sight much simpler approach are so-called (multi-level) splitting methods

which can be traced back at least to Ref. [22]. These methods have been brought to a wider
attention by Refs. [23,24]. Typical applications to civil engineering systems can be found e.g., in
Refs. [25,26]. In multi-level splitting promising sample paths are split into sub-paths at
intermediate levels to increase the number of observations of rare events. As has been reported as
early as in Ref. [24], however, this procedure can possibly result in an increase of the variance of
the estimator. More precarious event is an ‘‘apparent bias’’ [27] of the estimator, when the levels
for splitting are not chosen consistently. Indeed, multi-level splitting requires for being effective
that the splitting is performed along the most likely path leading to an out-crossing [27]. However,
in this case a more effective sampling method like importance sampling can be used right from
start.

2. Dynamical response and Monte Carlo estimators

Assume that the dynamical response of a system at time t (sptpT) is described by a p-
dimensional It #o process XðtÞ ¼ ðX1ðtÞ;X2ðtÞ;y;XpðtÞÞ in terms of the stochastic differential
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equations

dXiðtÞ ¼ aiðt;XÞdt þ
Xq

j¼1

gijðt;XÞ dWjðtÞ ð1Þ

with WðtÞ ¼ ðW1ðtÞ;W2ðtÞ;y;WqðtÞÞ as a q-dimensional unit Wiener process, subject to the
deterministic initial conditions x ¼ ðx1; x2;y; xpÞ; i.e.,

XiðsÞ ¼ xi: ð2Þ

Modelling the system response by Eq. (1) does not represent a serious restriction, since a broad
class of practical load cases can be covered by augmenting Eq. (1) with filter equations of the same
type [28].
In reliability assessment of dynamical systems one is generally not interested in an exact

pathwise representation of XðtÞ; but rather in expectations of functionals of the It #o process—the
so-called weak solutions—of the form

vðs; xÞ ¼ E½f ðXs;xðTÞÞ�; ð3Þ

in which f ð�Þ denotes some real-valued function, Xs;xðTÞ is the system response at time T subject to
the initial conditions x at time s; and E½�� is the expected value. Typical examples of vðs; xÞ are the
statistical moments of Xs;xðTÞ; i.e.,

vðs;xÞ ¼ E½X m1

1 ðTÞX m2

2 ðTÞ?X mp
p ðTÞ� ð4Þ

or the probability that the jth component of Xs;xðtÞ exceeds a given barrier xc in the time interval
(sptpT), i.e.,

vðs; xÞ ¼ E I max
sptpT

XjðtÞ > xc

� �� �
ð5Þ

with Ið�Þ denoting an indicator function that equals one if its argument is true, and zero otherwise.
When utilizing Monte Carlo simulation to evaluate Eq. (3), vðs;xÞ is replaced by its sample-

mean formula [8]

#vðs;xÞ ¼ #E½f ðXs;xðTÞÞ� ¼
1

N

XN

i¼1

f ðXs;x
ðiÞ ðTÞÞ ð6Þ

with Xs;x
ðiÞ ðtÞ denoting the ith sample trajectory of Xs;xðtÞ and N representing the number of sample

trajectories. The quantity #vðs; xÞ is an unbiased estimator of vðs; xÞ with variance

Var½#vðs;xÞ� ¼
1

N
Var½f ðXs;xðTÞÞ�: ð7Þ

This variance, or the more commonly used statistical error, which—if it exists—is defined as

e ¼
ðVar½f ðXs;xðTÞÞ�=NÞ1=2

E½f ðXs;xðTÞÞ�
ð8Þ

can be conceived as an indicator of the accuracy of the calculated Monte Carlo estimator. The
main concern in Monte Carlo simulation, therefore, is to obtain an estimator with sufficiently
small statistical error. Whereas this can always be achieved by simply increasing the number N of
sample trajectories, it is rarely a rewarding procedure, since—as can be seen from Eq. (8)—the
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statistical error is inversely proportional to the square root of the sample size N: In other words,
to reduce the statistical error by a factor a; the sample size has to be increased a2 times. This
becomes especially crucial when calculating events of low probability, e.g., to obtain a statistical
error of 50% in calculating an estimator of vðs;xÞ equal to 10�6 a sample size of N ¼ 4	 106 is
needed. Reducing the statistical error to be 10%, however, already requires N ¼ 108 sample
trajectories.
For being still able to apply Monte Carlo simulation in estimating vðs;xÞ in such cases a

variance reduction technique like importance sampling has to be utilized. Importance sampling
can be described roughly as a method to control the sample paths in such a way that the samples
are concentrated in parts of the sample space which are ‘‘most important’’, instead of spreading
them out evenly [8]. However, choosing an arbitrary change of probability measure that makes
the event of interest only happen more frequently is not sufficient at all. Indeed, an arbitrary
change of measure may even result in an estimator with infinite variance. Because of this possible
adverse effect, the design of sampling measures becomes crucial [29].

3. Transformation of probability measures

As has been mentioned above, the evaluation of vðs;xÞ requires weak solutions of Eq. (1) only.
Therefore, the measure transformation method, based on the Girsanov theorem [19,30], can be
applied. Instead of Eq. (1), the stochastic differential equations (i ¼ 1; 2;y; p)

d *XiðtÞ ¼ aiðt; *XÞ dt þ
Xq

j¼1

gijðt; *XÞujðt; *XÞ dt þ
Xq

j¼1

gijðt; *XÞ dWjðtÞ;

dY ðtÞ ¼ �
Xq

j¼1

ujðt; *XÞYdWjðtÞ ð9Þ

are evaluated, augmented by the one-dimensional correction process Y ðtÞ with initial conditions

*XðsÞ ¼ x ð10Þ

and

Y ðsÞ ¼ y; ð11Þ

respectively. The components of the vector uðt; *XÞ ¼ ðu1ðt; *XÞ;y; uqðt; *XÞÞ in Eq. (9) can be
interpreted as controls which allow to influence the structural response. Under certain restrictions
for uðt; *XÞ; which are usually met in practical applications (cf. Ref. [30]), the functional vðs;xÞ of
Eq. (3) is evaluated according to the Girsanov theorem as

vðs; xÞ ¼ E½f ðXs;xðTÞÞ� ¼ E½Y s;yðTÞf ð *Xs;xðTÞÞ�=y: ð12Þ

In other words, the controls uðt; *XÞ will change the It #o process XðtÞ to *XðtÞ; whereas this ‘‘change’’
is taken into account by the Radon–Nikodym derivative

Y s;yðTÞ
y

¼ exp �
Xq

j¼1

Z T

s

ujðt; *XÞ dWjðtÞ �
1

2

Xq

j¼1

Z T

s

ðujðt; *XÞÞ
2 dt

" #
: ð13Þ
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The functional vðs;xÞ of Eq. (12) can be replaced again by its unbiased Monte Carlo estimator

#vðs;xÞ ¼
1

N

XN

i¼1

Y s;1
ðiÞ ðTÞf ð *Xs;x

ðiÞ ðTÞÞ; ð14Þ

whereby the initial condition for the correction process Y ðtÞ is chosen—just for convenience—as
y ¼ 1: Whereas the mean of the estimator in Eq. (14) is not influenced by the choice of the
controls—this is precisely what the Girsanov theorem states—the variance of the estimator is
affected. Hence, by an appropriate choice of uðt; *XÞ; these controls can be utilized for efficiently
reducing the variance of the estimator #vðs; xÞ:

4. Optimal controls

In the above terms, optimal controls unðt; *XÞ ¼ ðun
1ðt; *XÞ;y; un

qðt; *XÞÞ are defined as those
controls for which E½ðY s;1ðTÞf ð *Xs;xðTÞÞÞ2� becomes minimal. This is a well-known problem from
stochastic control theory [20,30]. Defining

rðs;xÞ ¼ min
u1;y;uq

E½ðY s;1ðTÞf ð *Xs;xðTÞÞÞ2� ð15Þ

and assuming that such (optimal) controls indeed exist, the Hamilton–Jacobi–Bellman equation
can be invoked [30]

min
un

1
;y;un

q

Lrðs; xÞ �
Xp

i¼1

Xq

j¼1

gijðs; xÞu
n

j ðs; xÞ
@r

@xi

ðs; xÞ þ
Xq

j¼1

ðun

j ðs;xÞÞ
2rðs;xÞ

 !
¼ 0 ð16Þ

in which the operator L is defined as

Lrðs; xÞ ¼
@r

@s
ðs;xÞ þ

Xp

i¼1

aiðs; xÞ
@r

@xi

ðs; xÞ

þ
1

2

Xp

i¼1

Xp

j¼1

Xq

k¼1

gikðs; xÞgjkðs; xÞ
@2r

@xi@xj

ðs;xÞ: ð17Þ

Unfortunately, Eq. (16) is even more difficult to solve for unðt; *XÞ than evaluating vðs; xÞ directly
from the original system of It #o stochastic differential equations (1). However, it is possible to find
a solution for the optimal controls unðt; *XÞ by a simple reasoning proposed in Refs. [16].
Assume for the time being that the optimal controls unðt; *XÞ are known for which the variance

Var½Y s;1ðTÞf ð *Xs;xðTÞÞ� becomes zero. This implies that the quantity Y s;1ðTÞf ð *Xs;xðTÞÞ is
deterministic, i.e.,

vðs;xÞ ¼ Y s;1ðTÞf ð *Xs;xðTÞÞ ð18Þ

as well as

rðs;xÞ ¼ v2ðs;xÞ: ð19Þ

Inserting Eq. (19) in Eq. (16) and solving for unðt; *XÞ; thereby taking into account that

Lvðs; xÞ ¼ 0; ð20Þ
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the optimal controls are derived as [13,16]

un

j ðt; *XÞ ¼
Xp

i¼1

gijðt; *XÞ

vðt; *XÞ

@v

@ *Xi

ðt; *XÞ: ð21Þ

When utilizing these controls un
j ðt; *XÞ in Eq. (9), #vðs;xÞ of Eq. (14) will be an unbiased zero-

variance estimator of vðs; xÞ; as can be shown by It #o’s formula.
There exists only a mild restriction with respect to the function f ð�Þ of Eq. (3) in applying

Eq. (21), i.e., there has to exist an e > 0 such that either the probability Pðf ð *Xs;xðTÞÞ > eÞ ¼ 1 or
Pðf ð *Xs;xðTÞÞp� eÞ ¼ 1 [13]. In other words, it has to be avoided that f ð�Þ has both negative and
positive outcomes. This restriction, however, can be quite easily removed. In case that f ð�Þ is
bounded from below or above, i.e., f ð *Xs;xðTÞÞ > �k or f ð *Xs;xðTÞÞok; where k denotes an arbitrary
real constant, f ð *Xs;xðTÞÞ can be replaced by f 0ð *Xs;xðTÞÞ ¼ f ð *Xs;xðTÞÞ þ k or f 0ð *Xs;xðTÞÞ ¼
�f ð *Xs;xðTÞÞ þ k; respectively, e.g., in the first case the control is given by

un

j ðt; *XÞ ¼
Xp

i¼1

gijðt; *XÞ

vðt; *XÞ þ k

@v

@ *Xi

ðt; *XÞ ð22Þ

and vðs; xÞ is evaluated as

vðs; xÞ ¼ E½Y s;1ðTÞðf ð *Xs;xðTÞÞ þ kÞ� � k: ð23Þ

If f ð�Þ is unbounded, f ð�Þ can be split in two real-valued functions fwð�Þ > 0 and fyð�Þ > 0; such that
f ð *Xs;xðTÞÞ ¼ fwð *Xs;xðTÞÞ � fyð *Xs;xðTÞÞ; which have to be evaluated separately. In this case vðs;xÞ is
determined by

vðs; xÞ ¼ E½Y s;1
w ðTÞfwð *Xs;x

w ðTÞÞ� � E½Y s;1
y ðTÞfyð *X

s;x
y ðTÞÞ� ð24Þ

It should be noted that in reliability analysis of dynamical systems one is mostly interested in
evaluating probabilities which by definition are non-negative.

5. Sub-optimal controls

Utilizing the optimal controls unðt; *XÞ a zero-variance estimator of vðs; xÞ has been obtained.
Closer inspection of Eq. (21), however, reveals that in order to construct unðt; *XÞ the sought
solution vðs;xÞ has to be known in advance. Indeed, we not only have to know vðs; xÞ for a single
set of initial conditions x at time t ¼ s; but we have to know vðt; *XðtÞÞ and its derivatives
@vðt; *XðtÞÞ=@ *Xi for all values of t and *XðtÞ: This is a drawback typical for variance reduction
techniques, which can be essentially characterized as methods to utilize known information about
a problem at hand. In other words, knowing the solution allows one to construct a zero-variance
estimator, but renders Monte Carlo simulation superfluous, whereas not knowing anything means
also that no variance reduction can be achieved [8].
Nevertheless, Eq. (21) can still be utilized advantageously for variance reduction as long as an

approximation %vðs; xÞ for vðs;xÞ is readily available. Then, instead of the optimal controls unðt; *XÞ;
sub-optimal controls %uðt; *XÞ can be constructed. The resulting estimator of vðs; xÞ will furthermore
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be unbiased, but now with non-zero variance [18]

Var½#vðs;xÞ� ¼
1

N
E

Z T

s

Xq

j¼1

vðt; *XÞðun

j ðt; *XÞ � %ujðt; *XÞÞ dWjðtÞ

 !2
2
4

3
5: ð25Þ

As can be seen from Eq. (25), the difference between the two controls %uðt; *XÞ and unðt; *XÞ is
integrated over time. From this follows that the variance can increase with time as long as the
solutions %vðs; xÞ and vðs;xÞ; respectively, depend on the initial conditions. Moreover, choosing the
controls %uðt; *XÞ without taking into account specific characteristics of the dynamical system under
investigation can even result in an increase of the variance as compared to crude Monte Carlo
simulation.
For constructing the sub-optimal controls %uðt; *XÞ; in Ref. [18] it has been suggested to replace

the generally non-linear dynamical systems by equivalent linearized ones. Employing linear
random vibration theory, approximate solutions %vðs;xÞ of vðs;xÞ can be utilized in Eq. (21) to
construct a possible set of sub-optimal controls. Whereas this strategy gives reasonable results for
mildly non-linear dynamical systems, for highly non-linear ones the results have been
unsatisfactory, especially in estimating first-passage probabilities [29]. A procedure which
prevents such unsatisfactory performance is the construction of sub-optimal controls by solving
an optimization problem analogous to the first order reliability method, as has been proposed in
[17,31]. These sub-optimal controls will provide the most likely paths leading to an out-crossing of
the failure boundary and, therewith, result in an efficient variance reduction of the probability
estimates.
Now assume that the boundary of the area that will be out-crossed by the It #o process Xs;xðtÞ of

Eq. (1) at time t ¼ t is described by

gðXs;xðtÞÞ ¼ 0 ð26Þ

Defining, furthermore,

dZiðtÞ ¼ aiðt;ZÞ dt þ
Xq

j¼1

gijðt;ZÞ %u
t
j ðt;ZÞ dt ð27Þ

with initial conditions

ZiðsÞ ¼ xi; ð28Þ

then the most likely path leading to an out-crossing at time t ¼ t is induced by the controls %utj ðtÞ
which minimize the function

bðtÞ ¼
Xq

j¼1

Z t

s

ð %ut
j ðtÞÞ

2 dt

" #1=2
ð29Þ

subject to

gðZs;xðtÞÞ ¼ 0: ð30Þ

In Ref. [17] the function bðtÞ has been coined ‘‘minimal distance function’’. The controls of
Eqs. (29) and (30) can now be utilized in Eq. (9), i.e., the Wiener processes WjðtÞ are changed to
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*WjðtÞ by

d *WjðtÞ ¼ %u
t
j ðtÞ dt þ dWjðtÞ ð31Þ

with the Radon–Nikodym derivative

Rt ¼ exp �
Xq

j¼1

Z t

s

%u
t
j ðtÞ dWjðtÞ �

1

2

Xq

j¼1

Z t

s

ð %ut
j ðtÞÞ

2 dt

" #
: ð32Þ

For estimating the first-passage probability for a certain time interval sptpT ; it has been
suggested in Ref. [17] to employ the control with the smallest value of the minimal distance
function only, i.e.,

bðtnÞ ¼ min
sptpT

bðtÞ: ð33Þ

This method has been successfully applied to crack growth problems [17,32], which are dominated
by a single exit time. For oscillatory systems, however, a considerable underestimation of the
exact results has been reported in Ref. [33]. This is due to the fact that for a time interval sptpT
there will be a considerable interaction between the different controls %utj ðtÞ as well as the
corresponding barriers gðXs;xðtÞÞ ¼ 0 for different times t of out-crossing (cf. Ref. [34]). In other
words, in contrast to fatigue crack growth problems, oscillatory systems show a certain periodicity
of the contributions to the magnitude of the first-passage probability which should be taken
properly into account by the importance sampling scheme [29,31].
To get a better understanding of the above-mentioned interaction of the different controls, a

more detailed look at the change of the excitation processes from WjðtÞ to *WjðtÞ is taken by
utilizing the (arbitrary) controls %ujðtÞ; i.e.,

d *WjðtÞ ¼ %ujðtÞ dt þ dWjðtÞ: ð34Þ

The likelihood of these excitation processes *WjðtÞ with respect to WjðtÞ is given by the Radon–
Nikodym derivative

R ¼ exp �
Xq

j¼1

Z T

s
%ujðtÞ dWjðtÞ �

1

2

Xq

j¼1

Z T

s

ð %ujðtÞÞ
2 dt

" #
: ð35Þ

Nevertheless, the same sample paths of *WjðtÞ can also be obtained by utilizing different controls

%utj ðtÞ; i.e.,

d *WjðtÞ ¼ %u
t
j ðtÞ dt þ d **WjðtÞ: ð36Þ

However, this requires excitation processes **WjðtÞ as defined by

d **WjðtÞ ¼ ð %ujðtÞ � %ut
j ðtÞÞ dt þ dWjðtÞ ð37Þ

to start with. The likelihood of those excitation processes **WjðtÞ is given by the ratio

**Rt ¼ exp �
Xq

j¼1

Z T

s

ð %ujðtÞ � %u
t
j ðtÞÞ dWjðtÞ �

1

2

Xq

j¼1

Z T

s

ð %ujðtÞ � %u
t
j ðtÞÞ

2 dt

" #
: ð38Þ

Eq. (38) determines the likelihood that the sample paths generated by utilizing the controls %ujðtÞ
could have also be obtained by utilizing the controls %utj ðtÞ: As can be seen, if the controls %utj ðtÞ are
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similar to the controls %ujðtÞ then there will be a significant contribution to the value of the
probability of out-crossing.
The likelihood that the processes *WjðtÞ are generated by the controls %utj ðtÞ can be determined by

dividing the ratio of Eq. (38) by the ratio of Eq. (35), i.e.,

Rt ¼ exp �
Xq

j¼1

Z T

s

%u
t
j ðtÞ dWjðtÞ �

1

2

Xq

j¼1

Z T

s

ð2 %ujðtÞ � %u
t
j ðtÞÞ %u

t
j ðtÞ dt

" #
: ð39Þ

However, the likelihood that the controls %ut
j ðtÞ are acting instead of the controls %ujðtÞ is not

restricted to a single exit time, but has to be extended to cover the entire time interval sptpT :
Moreover, not all exit times—and consequently not all controls %utj ðtÞ—are equally likely, but they
follow a probability density function wðtÞ: A first order approximation of the density function of
the exit times has been derived in Ref. [31] as

wðtÞ ¼ Fð�bðtÞÞ
Z T

s

Fð�bðtÞÞ dt
� ��1

with sptpT ; ð40Þ

whereby Fð�Þ denotes the cumulative standard Gaussian distribution and bðtÞ is the minimal
distance function of Eq. (29). From this it follows, on the one hand, that the controls %ut

j ðtÞ for the
time interval sptpT have to be chosen with respect to density function of Eq. (40). And on the
other hand, the Radon–Nikodym derivative Rt of Eq. (39) has to be weighted with respect to all
likely controls %utj ðtÞ; i.e.,

1

Y s;1ðTÞ
¼
Z T

s

wðtÞ
1

Rt
dt: ð41Þ

It should be mentioned that Eq. (41) takes implicitly into account the interaction between the
different controls.

6. Time discretization

When determining the solution of the stochastic differential equations (1) by numerical
methods, a discrete time approximation becomes mandatory. Using—without any restriction—an
equidistant time discretization of the interval (sptpT) with step size Dt ¼ ðT � sÞ=M; i.e.,

s ¼ t0pt1p?ptmp?ptM ¼ T with tm ¼ s þ mDt: ð42Þ

Therewith the stochastic differential equations (1) can be written—e.g., in form of the stochastic
Euler scheme—as (i ¼ 1; 2;y; p)

Xiðtmþ1Þ ¼ XiðtmÞ þ aiðtm;XÞDt þ
Xq

j¼1

gijðtm;XÞDWjðtmÞ ð43Þ

with initial conditions

Xiðt0Þ ¼ xi: ð44Þ

It should be noted, that for the following excursus it is not necessary to write Eq. (43) in form of
the Euler scheme. Indeed, any other stochastic integration scheme [15,16] can be utilized.
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Replacing the kth increment of the jth Wiener process by

DWjðtkÞ ¼
ffiffiffiffiffi
Dt

p
zjk ðj ¼ 1; 2;y; q; k ¼ 0; 1;y;M � 1Þ ð45Þ

with zjk being mutually independent standard Gaussian random variates, the functional of Eq. (3)
is approximated by

vðs; xÞ ¼
Z þN

�N

?
ðqMÞ

Z þN

�N

f ðXs;xðtmÞÞjðfÞ df; ð46Þ

whereby jð�Þ is the qM-dimensional joint density function of the standard normal random
variates f:
Describing the boundary of the area which will be out-crossed by the It #o process Xs;xðtÞ at time

tm as

gðXs;xðtmÞÞ ¼ %gðz10;y; zqðM�1ÞÞ ¼ 0; ð47Þ

then the most likely excitation leading to an out-crossing of this boundary is defined as %fm ¼
ð%zm

10;y; %zm
qðM�1ÞÞ which minimizes

bðtmÞ ¼
Xq

j¼1

XM�1

k¼0

ð%zm
jkÞ

2

" #1=2
ð48Þ

subject to

%gð%zm
10;y; %zm

qðM�1ÞÞ ¼ 0: ð49Þ

To solve Eqs. (48) and (49) standard techniques from first order reliability method can be applied
[35–37]. It should also be emphasized that an analogous formulation is given in Refs. [38,39] for
determining the mean out-crossing rate of randomly excited systems.
With the above given most likely excitation %fm; Eq. (43) is modified such that

*Xiðtkþ1Þ ¼ *XiðtkÞ þ aiðtk; *XÞDt þ
Xq

j¼1

gijðtk; *XÞ %u
tm

j ðtkÞDt

þ
Xq

j¼1

gijðtk; *XÞDWjðtkÞ; ð50Þ

whereby the above utilized controls %u
tm

j ðtkÞ are defined as

%u
tm

j ðtkÞ ¼
1ffiffiffiffiffi
Dt

p %zm
jk ðj ¼ 1; 2;y; q; k ¼ 0; 1;y;M � 1Þ: ð51Þ

Taking into account the unlikeliness of such a modification of Eq. (50), the functional of Eq. (46)
is evaluated by the importance sampling integral [7,8]

vðs;xÞ ¼
Z þN

�N

?
ðqMÞ

Z þN

�N

f ð *Xs;xðtmÞÞ
jð*fÞ

hð*f; tmÞ
hð*f; tmÞ d*f; ð52Þ
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whereby the importance sampling density hð*f; tmÞ in Eq. (52) is defined as

hð*f; tmÞ ¼
1

ð2pÞqM=2
exp �

1

2

Xq

j¼1

XM�1

k¼0

ð*zjk � %zm
jkÞ

2

" #
ð53Þ

and the likelihood ratio is given by

jð*fÞ

hð*f; tmÞ
¼ exp �

1

2

Xq

j¼1

XM�1

k¼0

ð2*zjk � %zm
jkÞ%z

m
jk

" #
: ð54Þ

Inserting in Eq. (54) now the sample ð %utm

j ðtkÞ
ffiffiffiffiffi
Dt

p
þ DWjðtkÞ=

ffiffiffiffiffi
Dt

p
Þ for *z j

jk results in

Rtm
¼ exp �

Xq

j¼1

XM�1

k¼0

%u
tm

j ðtkÞDWjðtkÞ �
1

2

Xq

j¼1

XM�1

k¼0

ð %utm

j ðtkÞÞ
2Dt

" #
: ð55Þ

It should be noted that Eq. (55) is nothing else but a discrete approximation of Eq. (32).
When determining the first-passage probability in the time interval sptpT ; there are—

according to the time discretization—M most likely excitations leading to an out-crossing.
Weighting these excitations by Fð�bðtmÞÞ; i.e., their probability of occurrence, results in the M-
modal importance sampling density for *f [31]

hð*fÞ ¼
1

c

XM
m¼1

Fð�bðtmÞÞhð*f; tmÞ ¼
XM
m¼1

wmhð*f; tmÞ ð56Þ

with the normalizing constant

c ¼
XM
m¼1

Fð�bðtmÞÞ: ð57Þ

The (inverse) likelihood ratio is given as

hð*fÞ

jð*fÞ
¼
XM
m¼1

wm
hð*f;mÞ

jð*fÞ
: ð58Þ

It should be mentioned that Eq. (58) is simply a discrete version of Eq. (41) and that Eqs. (56) to
(58) take implicitly into account the interaction between the different controls.

7. Numerical examples

7.1. Linear oscillator

Before applying the above outlined importance sampling procedure to oscillators with typical
non-linear restoring forces, its very principle is demonstrated for a linear oscillator, described by
the non-dimensional equation of motion

.XðtÞ þ 2Z ’XðtÞ þ X ðtÞ ¼
ffiffiffiffiffi
4Z

p
xðtÞ; X ð0Þ ¼ ’Xð0Þ ¼ 0: ð59Þ

Here xðtÞ is a zero-mean Gaussian white noise with E½xðtÞxðt þ tÞ� ¼ dðtÞ and Z ¼ 0:05 is a viscous
damping coefficient. In the following, it is required to estimate the probability that X ðtÞ crosses up
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the level xc ¼ 4 for the first time in the interval (0ptpT ¼ 50), i.e.,

vð0;xÞ ¼ E I max
0ptpT

X ðtÞ > xc

� �� �
: ð60Þ

For estimating vð0; xÞ; Eq. (59) is written in form of the It #o stochastic differential equations

dX1ðtÞ ¼ X2 dt;

dX2ðtÞ ¼ ð�2ZX2 � X1Þ dt þ
ffiffiffiffiffi
4Z

p
dW ðtÞ:

ð61Þ

Utilizing an equidistant time discretization with step size Dt ¼ T=M; the kth increment DW ðtk ¼
kDtÞ of the Wiener process is replaced by

DW ðtkÞ ¼
ffiffiffiffiffi
Dt

p
zk ðk ¼ 0; 1;y;M � 1Þ; ð62Þ

whereby zk are standard normal random variates. Therewith, the response of the oscillator is
given as

X ðtÞ ¼
XM�1

k¼0

ffiffiffiffiffiffiffiffiffiffi
4ZDt

p
zkhðt � kDtÞ; 0ptoMDt ð63Þ

with hð�Þ denoting the unit-impulse response function

hðtÞ ¼
1

o
expð�ZtÞ sinðotÞ; o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
: ð64Þ

For determining the control %utmðtÞ for up-crossing the level xc at time tm ¼ mDt; the quantities
%zm

k in

%u
tmðtÞ ¼

Xm�1

k¼0

1ffiffiffiffiffi
Dt

p %zm
k dðt � tkÞ ð65Þ

have to be chosen now in such a way that, on the one hand, X ðtÞ reaches the level xc at time mDt;
i.e.,

xc �
Xm�1

k¼0

ffiffiffiffiffiffiffiffiffiffi
4ZDt

p
%zm

k hðtm � tkÞ ¼ 0 ð66Þ

and, on the other hand, the b-index

bðtmÞ ¼
Xm�1

k¼0

ð%zm
k Þ

2

" #�1=2

ð67Þ

becomes minimal. As is well known from first order reliability method the solutions to Eqs. (66)
and (67), respectively, are

%zm
k ¼

ðbðtmÞÞ
2

xc

ffiffiffiffiffiffiffiffiffiffi
4ZDt

p
hðtm � tkÞ ð68Þ
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and

bðtmÞ ¼ xc

Xm�1

k¼0

4ZDth2ðtm � tkÞ

" #�1=2

¼
xc

sðtmÞ
ð69Þ

with sðtmÞ denoting the standard deviation of the response X ðtÞ at time tm: Therewith, the controls
are given (in their continuous form) as

%u
tmðtÞ ¼

ffiffiffiffiffi
4Z

p
xc

s2ðtmÞ
hðtm � tÞ; 0ptotm: ð70Þ

In Fig. 1 the control %uT ðtÞ according to Eq. (70) for an up-crossing of the level xc at time T ¼ 50
is displayed. In Fig. 2 a sample path of X ðtÞ is compared with a sample path of *XðtÞ utilizing this
control. Only small differences in the trajectories can be observed until time t ¼ 30: From there
on, however, the control %uT ðtÞ becomes dominant and excites the oscillator clearly in its resonant
frequency such that *xðtÞ crosses up the threshold xc when approaching the end of the time
interval. Moreover, by comparing the values of the control %uT ðtÞ for two times t1 ¼ 1:2 and
t2 ¼ 1:7 in Fig. 3, it becomes evident from the elliptically inward spiraling form that, on the one
hand, there exists a considerable dependency between the controls and, on the other hand, there is
a manifest periodicity of the contributions of the controls in time, which diminishes with
increasing distance from the chosen up-crossing time T :
In Fig. 4 the importance sampling estimators (N ¼ 103) of the up-crossing probability of the

threshold xc ¼ 4 are compared, respectively, with the results from crude Monte Carlo simulation
(solid line, N ¼ 106) and an approximate solution from linear random vibration theory (dashed
line, [40]). As can be seen, there is an excellent agreement between the estimators from importance
sampling and crude Monte Carlo simulation for up-crossing probabilities greater than 1:0	 10�5:
Beyond this value, however, crude Monte Carlo simulation breaks down—despite the enormous
sample size. The importance sampling procedure, on the other hand, is capable to provide
estimates for any absolute value of the first-passage probability. Moreover, as indicated in Fig. 4
by the 99% confidence intervals (cf. Ref. [7]), in case of the importance sampling estimators there
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is only a small statistical error present which is indeed independent of the estimated absolute
value—as should be expected from any consistently working importance sampling procedure.

7.2. Duffing oscillator

Given is a Duffing oscillator under external white noise excitation xðtÞ with E½xðtÞxðt þ tÞ� ¼
dðtÞ; described by the dimensionless equation of motion

.X þ 2Z ’X þ X þ eX 3 ¼
ffiffiffiffiffi
4Z

p
xðtÞ; X ð0Þ ¼ ’Xð0Þ ¼ 0; ð71Þ

whereby Z ¼ 0:05 denotes a viscous damping coefficient and e is the degree of non-linearity. In
Figs. 5 and 6, respectively, the control for an up-crossing of the level xc ¼ 2 at time T ¼ 50 and
the influence of this control on the deflection X ðtÞ of the Duffing oscillator are depicted for a
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degree of non-linearity e ¼ 2: As can be seen, the utilized control %uT ðtÞ results in a strong
amplification of the response of the Duffing oscillator such that it crosses up the threshold xc near
the specified up-crossing time T :
To study the influence of the non-linearity on the estimators of the first-passage probability, e is

varied between 0pep5: In Figs. 7 and 8 the importance sampling estimators (N ¼ 103) of the first
up-crossing probability are compared with the results from crude Monte Carlo simulation (solid
line, N ¼ 106). As can be seen, there is a very good agreement between the two different
estimators. Moreover and maybe even more worthwhile to be pointed out, almost independent of
the degree of non-linearity—at least for values e > 1—there exists a sufficient confidence in the
importance sampling estimators as indicated by the 99% confidence intervals.
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7.3. Oscillator with non-linear damping

Given is an oscillator with non-linear damping described by the non-dimensional equation of
motion [41]

.X þ 2Z ’Xð1þ ej ’XjnÞ þ X ¼
ffiffiffiffiffi
4Z

p
xðtÞ; X ð0Þ ¼ ’Xð0Þ ¼ 0: ð72Þ

In Eq. (72) Z is a viscous damping coefficient, e denotes a non-linearity parameter and xðtÞ is a
Gaussian white noise with E½xðtÞxðt þ tÞ� ¼ dðtÞ: In the following are choosen Z ¼ 0:05; e ¼ 2 and
n ¼ 2:
In Fig. 9 the control for an up-crossing of the level xc ¼ 2:1 at time T ¼ 40 is depicted. As can

be seen, the non-linearity in the damping term results in an control which deviates strongly from
the control of a linear oscillator as given by Eq. (70). In particular, there is comparatively more
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emphasis on values of the excitation closer to the time of excursion. This is a consequence of the
higher energy dissipation present in the system at large amplitudes of vibration. In Figs. 10 and 11
the first passage probabilities as obtained from the suggested importance sampling approach
(N ¼ 103) together with the 99% confidence intervals are shown. These results are compared to
those from crude Monte Carlo simulation (solid line, N ¼ 106) in the range where they are
available. In Fig. 10 the threshold level xc is varied between 2:0 and 3:0; and in Fig. 11 the length
of the time interval T is varied between 0 and 50: In both cases, the importance sampling results
capture the extremely small probabilities at high threshold levels and at small values of T with a
very high level of confidence.
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7.4. Oscillator with hysteretic restoring force

As a last example a hysteretic oscillator is investigated described by the non-dimensional
equation of motion [42]

.X þ 2Z ’X þ aX þ ð1� aÞZ ¼
ffiffiffiffiffiffiffiffiffiffi
2pS0

p
xðtÞ; X ð0Þ ¼ ’Xð0Þ ¼ 0;

’Z ¼ �gj ’XjZjZjn�1 � b ’XjZjn þ A ’X; Zð0Þ ¼ 0:
ð73Þ

Here Z denotes a viscous damping coefficient, a is the post- to pre-yielding stiffness ratio, xðtÞ is a
Gaussian white noise with E½xðtÞxðt þ tÞ� ¼ dðtÞ; and n; g; b and A are adjustable parameters to
describe the hysteretic behavior. (In the following Z ¼ 0:05; S0 ¼ ð16 pÞ�1=2; n ¼ 1; g ¼ b ¼ 0:5
and A ¼ 1; respectively.) To study the influence of the hysteretic non-linearity on the estimator of
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the first passage probability, the stiffness ratio a is varied between 0pap1; whereby a ¼ 1
describes a linear system.
In Figs. 12 and 13 the control %uT ðtÞ for an up-crossing of the level xc ¼ 15 at time T ¼ 50 and

its influence on the restoring force–deformation relation is shown, respectively. As can be seen, the
control results mainly in permanent deformations in the direction of the threshold xc; with the
major contribution from the last half-period of vibration. It should also be noted that the control
for the hysteretic oscillator shows thereby a substantially different behavior as e.g., the control for
the Duffing oscillator, reflecting the likewise different nature of the respective dynamic systems.
In Figs. 14 and 15 the importance sampling estimators (N ¼ 103) are compared with the crude

Monte Carlo simulation results (solid line, N ¼ 106). Again, there is an excellent agreement
between the estimators for the strongly non-linear behavior when utilizing the stiffness ratio
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a ¼ 0:05; which is also implicitly depicted by the small 99% confidence intervals (see Fig. 14).
Moreover, as can be seen from Fig. 15, when utilizing the importance sampling procedure equally
reliable estimates can be obtained for the entire range of stiffness ratios 0pap1:

8. Conclusions

A versatile importance sampling procedure for linear and non-linear dynamical systems under
random excitations has been presented. The procedure allows one—at least theoretically—to
construct optimal, i.e., unbiased zero-variance estimators of the system response. Nevertheless, by
utilizing sub-optimal controls constructed via the solution of an optimization problem analogous
to the one known from the first order reliability method, the variance of the estimators can be
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decreased drastically as compared to crude Monte Carlo simulation. This is achieved by spending
additional computational effort in the determination of a set of sub-optimal controls. While this
effort is not negligible, it is primarily dominated by the number of random variables used for the
time discretization of the random excitation process. This is due to the numerical gradient
calculations required for the solution of the optimization problem. In this form, it is acceptable
for a sufficiently small number of random variables, i.e., in significantly non-stationary or
transient situations. On the other hand, in a strictly stationary situation the determination of the
most likely excitations turns out to be trivial since the different controls are constructed by simply
shifting one control along the time axis. Moreover, in some special stationary cases only one non-
linear dynamic analysis needs to be carried out as shown in Ref. [43]. This means that for a wide
range of problems the suggested approach can be considered to be extremely efficient. The
advantages become especially clear when considering the system response in the low-probability
regions (distribution tails) which are not accessible to crude Monte Carlo simulation.
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