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Abstract

This article constructs a stochastic model for the response of stay cables of cable-stayed bridges to the
combined effect of wind and rain. It describes a spring-mounted section model of a stay cable in a steady
wind where aerodynamic forces are modified by the dynamics of a mobile liquid rivulet. The motion of the
rivulet is described by a simple stochastic process that, together with aerodynamic forces, models the
complex fluid–structure interaction. Based on measured data for drag and lift coefficients and a static
rivulet location, an analysis of the model suggests a new stochastic excitation mechanism for the rain–wind
induced vibrations of stay cables.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Long steel cables, such as are used in cable-stayed bridges and other structures, are prone to
vibration induced by weather conditions and the structure to which they are connected. Such
vibrations depend on the variation of many parameters that can influence the behaviour of a
bridge structure. If the vibrations of the support (girders and/or towers) fall into certain frequency
ranges, the movements of attached stay cables may become significant due to such parametric
variation. In large-span cable-stayed bridges, parametric resonance of stay cables can be
significant due to the presence of many low-frequency modes in the bridge deck and stay cables
that may be excited. On the other hand, light-to-moderate wind combined with light-to-moderate
rain alone has been observed to excite surprisingly large amplitude vibrations in stay cables in a
number of cable-stayed bridges worldwide [1–3].
Extensive studies on the parametric excitation of stay cables have been published in the

literature (see, for example, Refs. [4–6] and the references cited therein). For vibrations induced by
weather conditions, rain–wind induced vibrations in stay cables have recently become of some
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concern to bridge engineers in many countries (see, for example, Refs. [7–10] and the references
cited therein). This paper seeks an insight into the mechanism leading to such vibrations from a
simple stochastic model that attempts to capture their essential features.
It is believed that the underlying mechanism is similar to that producing ‘‘galloping’’ in cables

that offer an asymmetric profile to aerodynamic flows, i.e., low-frequency, high-amplitude
oscillations that can occur on a prismatic body such as an ice-coated electrical transmission line or
an inclined stay cable in steady-side wind. For an ice-coated conductor, Den Hartog [11]
introduced a stability criterion that specified conditions for galloping to occur. Since then, there
have been extensive investigations of this phenomenon, including static and dynamic wind tunnel
tests on a variety of cross-sections to determine their propensity to gallop. Recent research has
focused on the study of coupled vertical and torsional galloping [12,13], coupled vertical and
horizontal galloping [14,15], and coupled vertical, horizontal and torsional galloping [16–18]. The
stability criteria given in the above literature are derived using the methods of deterministic
aerodynamics and apply directly to prismatic bodies of fixed shape.
However, it has been pointed out that the existence of a mobile rain rivulet may also modify the

aerodynamic forces on a stay cable and lead to a modified excitation mechanism. In wind tunnel
tests, it was observed that the accretion of rain can effectively change the shape of a body by
forming two thin agglomerations of liquid on its surface, whose position depends on wind
pressure distribution, body motion and gravity forces [9]. From wind tunnel investigations
Hikami and Shiraishi [1] argue that the origin of certain rain-induced cable vibrations is rivulet
formation on the cable surface. Furthermore, the results of wind tunnel tests, using an
experimental model of a cable with an artificial rivulet fixed on its surface, cannot be directly
extrapolated to realistic cable vibration processes [10]. Such a model does not allow the rivulet(s)
to react to wind action, cable motion and their mass inertia. Rivulet motion is expected to play an
important role in determining the interaction between cable and rivulet and the changing pressure
distribution around the cross-section of the cable.
The detailed motion of a cable under rain and wind forces is complex. To fully understand its

behaviour even in light wind and rain involves the analysis of the equations of multi-phase fluid
dynamics, a model for accretion and fluid–solid adhesion and the continuum mechanics of an
elastic structure. Insight can however be gained by analyzing the incompressible fluid flow around
an immersed rigid disc. In regimes where boundary layer separation occurs, nascent vortices can
react on the disc and induce oscillatory motion. The separation points on its circumference often
occur in pairs on opposite sides of a diameter and their motion can ‘‘lock’’ to that of the
oscillating disc. It is believed that, for an appropriate Reynolds number, the location of these
separation points might (in the presence of light rain) act as seeds for the concentration of an
accretion layer of rain on the circumference. Without further detailed experimental information
(or expensive time-consuming computational fluid dynamic simulations) it is difficult to assess
how the buildup of rivulets on cylinders at such locations modify the subsequent aerodynamic
flow around them particularly when the cylinder moves relative to the inflow fluid field. However,
in low ambient wind speeds, experiments with an artificial mobile rivulet on a fixed cylinder
subject to aerodynamic loading do indicate an approach to a steady rivulet oscillation. Describing
the dynamic adhesive forces that bind the rivulets to the perimeter of the disc clearly constitutes a
difficult modelling challenge. Once the profile of the rivulet is decided and its initial location on
the disc ascertained one is confronted with the problem of estimating the aerodynamic forces and
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couples on an asymmetric structure. Wind tunnel test on fixed discs for various rivulet
configurations and wind speeds (in the plane of the disc) offer data for static configurations. They
provide lift, drag and torque coefficients relative to the ambient wind tunnel velocity. In order to
estimate these coefficients for a moving disc with a mobile rivulet relative to its circumference, the
simple strategy of mapping these coefficients into the co-moving frame of the moving disc is
adopted. To model the motion of a rivulet (which indirectly is determined by the complex
dynamics of the boundary layers between the disc, rain and air), a simple stochastic equation is
adopted which accommodates the observed steady state rivulet motion relative to the disc
observed in static tests. This strategy is analogous to the use of ‘‘wake oscillator’’ models that have
been used successfully to model vortex-induced vibrations on cylinders without recourse to
computational fluid dynamics [19]. In further support for this strategy, it has been found that the
deterministic component of such an equation arises naturally from an analysis of the dynamics of
a small mobile mass free to move on a moving cylinder under the action of viscous Stokes’s
friction, non-inertial forces induced by the motion of the circumference in space and aerodynamic
forces [20].
Under gravity, a stay cable sags into a catenary between two fixed supports. It is simpler to

analyze a spring-supported damped section model shown in Fig. 1(a) rather than directly
approach the full three-dimensional cable problem. Motivated by the above, this spring-mounted
section model of a stay cable with one-degree-of-freedom motion in a steady wind with velocity
perpendicular to its length was considered. The aerodynamic forces on it are modulated by a
variable effective cross-section determined by the cable and the moving rivulet(s).
Although rivulets along both upper and lower cable surfaces have been observed in rain–wind

conditions, it is generally believed that the upper one is the dominant one in inducing cable
vibration. Thus, a single rivulet moving on the upper surface of a cable, under the influence of the
wind, gravitational and friction forces will be considered. It will be modelled by a small added-
mass undergoing stochastic motion on the circumference. The motion will be described by the
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response of a band-pass filter. Such a filter can be thought of as an ideal system that, when excited
by white noise input, gives a response whose power spectral density (PSD) induces the PSD of the
moving rivulet. Using this filter and the reported experimental values of steady wind force
coefficients for a cable section model with an artificial static rivulet [7], and data for its location
[1], a stochastic dynamic model will be developed and solved in order to investigate the onset of
rain–wind-induced vibrations of stay cables.

2. Stochastic model of a cable section with a rivulet

The spring-supported model exposed to a steady wind of velocity U blowing from left to right
has an asymmetric cross-section, a spring stiffness k; a structural damping coefficient c; and a
mass m per unit length (including the rivulet under wind–rain conditions). The wind will always
generate a drag force on the cable, and, in wind–rain conditions, a randomly moving rivulet of
water on the surface of the cable can cause a positive or negative lift force on it. Typically, both
the lift and drag vary with the location of the rivulet on the surface of the cable. When the rivulet
moves irregularly, the lift and drag will vary randomly and can be described as stochastic
processes. A quasi-steady analysis of the lift and drag can be determined from steady-state
measurements, where an artificial rivulet is fixed on the surface of cable, i.e., the relative cable-
attitude to wind is characterized by a given angle a ¼ a0 as shown in Fig. 1(a).
If the section model translates vertically with speed dY=dT at time T ; then the relative speed of

the wind, as shown in Fig. 1(b), can be derived from

U2
r ¼ U2 þ

dY

dT

� �2

; tan b ¼
1

U

dY

dT
: ð1Þ

The angle of the wind relative to the rivulet (the angle of attack a) is defined in the aerodynamic
sense. The angle a measured clockwise from the relative wind to the location of the rivulet as
shown in Fig. 1(c) is

a ¼ a0 þ f� b; ð2Þ

where a0 is the static angle of the rivulet and f ¼ fðTÞ is the fluctuation angle that describes the
motion of the rivulet on the cable perimeter.
The lift and drag forces on the model per unit length (as shown in Fig. 1(c)) are

fl ¼ 1
2
raDU2

r Cl ; fd ¼ 1
2
raDU2

r Cd ; ð3Þ

where ra is the fluid (air) density, D is the cable diameter, Cl ¼ ClðaÞ and Cd ¼ CdðaÞ are the
dimensionless lift and drag coefficients, respectively, which should be measured in a wind tunnel
test for a given Reynolds number. The net vertical aerodynamic force on the model per unit
length is

fy ¼ fl cos b� fd sin b ¼ 1
2
raDU2

r ðCl cos b� Cd sin bÞ: ð4Þ

The equation for vertical motion is taken to be

m
d2Y

dT2
þ c

dY

dT
þ kY ¼ fy: ð5Þ
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Let the structural damping factor x0 ¼ c=2mon; where on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the fundamental frequency

of the undamped system. Introducing the dimensionless displacement y ¼ ðon=UÞY and time
t ¼ onT ; Eq. (5) can be written as

.y þ 2x0 ’y þ y ¼
1

mUon

fy; ð6Þ

where the dot : denotes the differentiation with respect to t: With the dependence of Cl and Cd on
the angle of attack a determined from measurements, the dynamic force fy can be rewritten as

fyðf; bÞ ¼ 1
2
raDU2ð1þ tan2 bÞðClðaÞ cos b� Cd ðaÞ sin bÞ; ð7Þ

where the angle of attack a is itself a function of f and b defined by Eq. (2).
Expanding the dynamic force fyðf;bÞ as a Taylor series expansion with respect to the variable f

and b about f ¼ 0 and b ¼ 0; gives

fyðf; bÞ ¼ 1
2 raDU2½Clða0Þ þ C0

l ða0Þf� ðC0
lða0Þ þ Cd ða0ÞÞb� þ?; ð8Þ

where the prime 0 denotes the differentiation with respect to the angle a:
If the maximum speed of the cable is much less than the wind speed, that is,

1

U

dY

dT
¼

1

U

U

on

dy

dt
on ¼ ’y51 ð9Þ

it follows from Eq. (1) that bE ’y: Thus, neglecting the high order terms in fyðf;bÞ; Eq. (6) becomes

.y þ 2x0 ’y þ y ¼
raDU

2mon

ðClða0Þ þ C0
lða0ÞfðtÞ � ðCdða0Þ þ C0

l ða0ÞÞ ’yÞ: ð10Þ

Let

b0 ¼
raDU

2mon

Clða0Þ; b1 ¼
raDU

2mon

C0
lða0Þ;

x ¼ x0 þ
raDU

4mon

ðC0
lða0Þ þ Cdða0ÞÞ: ð11Þ

Note that the term b0 causes a constant displacement, essentially a shift in the co-ordinate, and
does not affect the dynamic behaviour of the system. Taking %y ¼ y � b0; Eq. (10) can be rewritten
as

.%y þ 2x’%y þ %y ¼ b1fðtÞ: ð12Þ

As discussed above the system becomes stochastic if one adopts a stochastic process for f: In a
wind tunnel investigation it has been reported [1] that, when a cable executes steady vibrations in a
rain environment, a rivulet can oscillate on the surface of the cable with the same period as the
cable lateral motion. Thus, the stochastic equation for the moving rivulet will be described by a
narrowband stochastic process. This motivates the authors to introduce a narrowband filter
equation with a Gaussian stochastic source to describe its motion. Such a filter is an idealization.
When excited by a white-noise input it yields a non-white stationary PSD. Now write

.fþ 2xf of
’fþ o2

ff ¼
ffiffiffiffiffi
S0

p
ZðtÞ; ð13Þ

where the constants of ðE1Þ; xf and S0 will be chosen in such a way to minimize the difference
between the PSD of fðtÞ and the effective PSD of the moving rivulet measured from wind–rain
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tunnel tests or field measurements. The white-noise source ZðtÞ has zero mean, i.e., the PSD of ZðtÞ
and the corresponding correlation function are, respectively,

SZðoÞ ¼ 1; RZðtÞ ¼ 2pdðtÞ; ð14Þ

where d is the Dirac d distribution.

3. Stochastic responses

It is clear that if the damping factor x is negative, Eq. (12) yields unstable solutions. This
suggests that the cable with an upper rivulet could become unstable according to the Den Hartog
mechanism, depending on the location of the rivulet. When xp0; the large amplitude dynamic
behaviour of the cable should be determined by higher terms of the expansion of the aerodynamic
forces. Consequently, a non-linear stochastic model should be developed to properly analyze the
non-linear behaviour of the cable.
In practical situations, however, the absolute value of C0

l ðaÞ is expected to be rather small for
rivulets of small size relative to the diameter of the cable. This leads to positive aerodynamic
damping, and the Den Hartog mechanism is not directly useful as an explanation of wind–rain-
induced vibration. In the case of positive aerodynamic damping, since the excitation process ZðtÞ is
assumed stationary and Gaussian, the response process of the linear system will also be stationary
(once transients have decayed away) and Gaussian. Therefore, both input and output processes
are completely specified by their means and correlation functions, or PSD functions. It follows
from Eqs. (12) and (13) that the complex frequency transfer functions are, respectively,

H %yðoÞ ¼
b1

ð1� o2 þ 2ixoÞ
; HfðoÞ ¼

ffiffiffiffiffi
S0

p
ðo2

f � o2 þ 2ixf oof Þ
: ð15Þ

The PSD of the fluctuation angle fðtÞ can then be obtained as

SfðoÞ ¼ HfðoÞHn

fðoÞSZðoÞ ¼
S0

ððo2
f � o2Þ2 þ 4x2f o2o2

f Þ
; ð16Þ

where * denotes complex conjugation. Moreover, the PSD of the response %yðtÞ is

S %yðoÞ ¼H %yðoÞHn

%y ðoÞSfðoÞ ¼ H %yðoÞHn

%y ðoÞHfðoÞHn

fðoÞSZðoÞ

¼
S0b

2
1

½ð1� o2Þ2 þ 4x2o2�½ðo2
f � o2Þ2 þ 4x2f o2o2

f �
: ð17Þ

The correlation function RfðtÞ can be determined directly from

RfðtÞ ¼
Z þN

�N

SfðoÞeiot do ¼
Z þN

�N

S0e
iot

ðo2
f � o2Þ2 þ 4x2f o2o2

f

do: ð18Þ

Setting t ¼ 0; the integral can now be evaluated by standard methods to obtain the square of the
standard deviation of the fluctuation angle fðtÞ: Thus, from Eq. (18),

s2f ¼ Rfð0Þ ¼
Z þN

�N

S0

ðo2
f � o2Þ2 þ 4x2fo2o2

f

do ¼
pS0

2xf o3
f

: ð19Þ
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Similarly, from Eq. (17), the square of the standard deviation of the stochastic response %yðtÞ is

s2%y ¼R %yð0Þ

¼
Z þN

�N

S0b
2
1

½ð1� o2Þ2 þ 4x2o2�½ðo2
f � o2Þ2 þ 4x2f o2o2

f �
do

¼
pS0b

2
1

2o3
f

½ðxþ xf of Þð1þ o2
f þ 4xxf of Þ � of ðxf þ xof Þ�

½ðxþ xf of Þðxf þ xof Þð1þ o2
f þ 4xxf of Þ � of ððxþ xf of Þ

2 þ ðxf þ xof Þ
2Þ�
:

Hence, from Eq. (19)

s2%y
s2f

¼
½xð1þ 4x2fo

2
f Þ þ xf of ðo2

f þ 4x2Þ�b2
1

½xðð1� o2
f Þ

2 þ 4x2f o
2
f Þ þ 4x2of ðxf þ xf o2

f þ xof Þ�
: ð20Þ

The means of the response %yðtÞ and the fluctuation angle fðtÞ can be obtained directly by taking
expectations of the terms in Eqs. (12) and (13) as

m %y ¼ 0; mf ¼ 0: ð21Þ

Thus, my ¼ m %y þ b0 ¼ b0 and sy ¼ s %y:
The spectra of the velocity ’%y can be found by using the relation S’%yðoÞ ¼ o2S %yðoÞ: The stochastic

response derived above makes it possible to carry out parametric studies and to evaluate the
responses amplitude of the stay cables in wind–rain environments.

4. Numerical results and discussion

The steady stochastic properties of the random variables y and f follow from the solutions
above. The stochastic averages involve material parameters that are taken to describe stay cables
in air and aerodynamic data from wind tunnel tests. The diameter D and the mass m per unit
length of the stay cable are chosen as 180 mm and 26 kg=m; respectively. The air density is taken
as 1:293 kg=m3: The natural frequency on is assumed to be 2:12 rad=s:
The experimental values of steady wind force coefficients for an aluminium circular cylinder

with an artificial rivulet in the shape of a fixed solid sphere with diameter d ðd=D ¼ 0:1Þ were
reported in Ref. [7] as shown in Fig. 2. 1 The drag and lift coefficient curves are fitted first to
express the coefficients as functions of the attack angle a and then to obtain their derivatives of
different orders. As indicated in Ref. [7], the diameter ratio of 0.1 is considered to be larger than
the actual diameter ratio of rivulet to cable.
According to a wind tunnel test with rain conditions as reported in Ref. [1], the static angle a0 of

the rivulet2 is a function of the mean wind speed U ; as shown in Fig. 3.
Employing the relation between the static angle a0 of the rivulet and mean wind speed, the

damping factor x is actually a function of mean wind speed U : Based on Eq. (11), the variations of
x with mean wind speed U for a set of structural damping ratios x0 are depicted in Fig. 4. It can be
observed that, within a certain range of wind speed, the damping factor x is negative in the case of

ARTICLE IN PRESS

1The reference position of the angle of attack is different from that in Ref. [7].
2The reference position of a0 is different from that in Ref. [1].

D.Q. Cao et al. / Journal of Sound and Vibration 268 (2003) 291–304 297



a small structural damping ratio x0: If x is negative, the cable is unstable and galloping occurs. The
onset wind speed of galloping relates to the structural damping ratio x0:
Similarly, b0 and b1 are functions of mean wind speed because of the relation between the static

angle a0 of the rivulet and mean wind speed. Based on Eq. (11), the amplitude of b1 with mean
wind speed is depicted in Fig. 5. It is interesting to note that, at about 9:2 m=s wind speed, the
amplitude of b1 increases rapidly with increasing wind speed until the peak amplitude is reached.
After the peak amplitude, the amplitude of b1 decreases to a lower level with further increase of
wind speed.
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The damping factor xf of the filter, which may be estimated from wind–rain tunnel tests or field
measurements, is chosen as xf ¼ 0:02: A typical PSD in the frequency range 0pop3 of the
output of the narrowband filter (13) for of ¼ 1:2 is shown in Fig. 6, where s2f given by Eq. (19)
depends on the constants of ; xf and S0: Based on the measured data from the wind tunnel test, as
shown in Figure 13 of Ref. [1] for the variation of upper rivulet circumferential oscillation with
wind speed, the amplitude of the rivulet motion fðtÞ is about p=18: Thus, the value of sf is about
p=ð18

ffiffiffi
2

p
Þ:

ARTICLE IN PRESS

8 9 10 11 12 13 14 15 16 17
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Wind speed U (m/sec)

D
am

pi
ng

 f
ac

to
r 

ξ

Fig. 4. Damping factor x versus wind speed U : ?; x0 ¼ 0:001; – –, x0 ¼ 0:005; –	–, x0 ¼ 0:010; —, x0 ¼ 0:020:

8 9 10 11 12 13 14 15 16 17
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Wind speed U (m/sec)

E
xc

itt
io

n 
am

pl
itu

de
 |b

1|

Fig. 5. The amplitude of b1 versus wind speed.

D.Q. Cao et al. / Journal of Sound and Vibration 268 (2003) 291–304 299



As mentioned before, when the damping factor x is negative, instead of the linearized model, a
non-linear model should be investigated in the analysis of dynamic response. When the damping
factor x is positive, the response process of the linear system will be stationary (once transients
have decayed away); thus, the stochastic response derived in the last section can be used to
evaluate the response amplitude of the stay cables in wind–rain conditions. The structural
damping ratio is now set to x0 ¼ 0:006 such that the damping factor x is positive for mean wind
speeds of 9, 11, 13 and 15 m=s; respectively.
Fig. 7 shows the PSD in the frequency range 0pop3 of the response %yðtÞ for mean wind speeds

of 9, 11, 13 and 15 m=s; respectively. It is seen that the height of the spectral peak depends on the
mean wind speed.
Fig. 8 shows the standard deviation of the stochastic response yðtÞ against the filter frequency

for mean wind speed of 9, 11, 13 and 15 m=s; respectively. Obviously, the peak response depends
on the filter frequency. According to the wind tunnel test observation [1], the rivulet oscillates in a
circumferential direction with the same period of the cable motion. Thus, the filter frequency is
ofE1 with respect to the dimensionless t:
As indicated in the last section, the absolute value of C0

lðaÞ is expected to be rather small due to
the small size of the rivulet relative to D: In this situation, the damping factor x is positive because
C0

lðaÞ þ CdðaÞ is positive. In the present example, however, since the diameter ratio of rivulet to
cable is 0.1 which is much larger than the actual diameter ratio, the absolute value of C0

l ðaÞ is not
small. So, in order to investigate the stochastic response yðtÞ against the mean wind speed, the
structural damping ratio is set to x0 ¼ 0:08 such that the damping factor x is positive for mean
wind speed range from 9 to 16 m=s; in spite of the actual structural damping ratio being quite
small.
Fig. 9 shows the standard deviation of the stochastic response yðtÞ against the mean wind speed

for filter frequency of 0.9, 1.0, 1.2 and 1.5, respectively. It can be seen that, at a wind speed of
about 9:2 m=s; the standard deviation increases with the increasing wind speed until the peak
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response is reached. After the peak response, the standard deviation decreases to a lower level
with a further increase of wind speed. The peak response depends on the filter frequency. The
peak response is quite small if the filter frequency is far from the natural frequency of the cable.
Based on the measured static rivulet positions on cylinders and drag and lift coefficients from

wind tunnel tests, the above results are qualitatively compatible with the observations of wind–
rain-induced cable vibrations from field measurements. On the other hand, since sY ¼ Usy=on;
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the peak standard deviation can be estimated for x0 ¼ 0:08; xf ¼ 0:02; of ¼ 1:0 and sf ¼
p=ð18

ffiffiffi
2

p
Þ as

sY ¼
Usy

on

¼
9:52

2:12

 3:3899


p

18
ffiffiffi
2

p ¼ 1:8787 ðmÞ:

Thus, the response amplitudes of the cylinder predicted here are somewhat larger than some
measured data, even when the structural damping ratio is taken to be as large as 0.08. This is
probably due to our use of drag and lift coefficients obtained from tests on structures with rivulets
whose size is large compared to the diameter of the cable. Thus, further wind tunnel investigations
of the vibrations of cables with artificial rivulets would be beneficial to the analysis.

5. Conclusions

A stochastic model describing the vertical motion of a spring-mounted model of a cross-section
of a stay cable with a mobile rivulet (produced by the combined effect of wind and rain) has been
constructed. The stochastic response of the model with linearized aerodynamic forces has been
analyzed.
Using experimentally measured static rivulet positions on cylinders and drag and lift

coefficients from wind tunnel tests the dynamics of a single cable has been explored in this
stochastic model. The PSD and standard deviation of certain responses have been calculated. By
varying parameters in the model it is apparent that a stochastic resonant phenomenon can be
induced that depends stochastically on the location of the rivulet. Due to this motion, the cable
experiences stochastic excitation. For appropriate parameters, the system can rapidly evolve to a
stationary stochastic state. In general, the steady stochastic response amplitude depends on Cl and
Cd ; the structural damping ratio x0; as well as the parameters wf ; xf and S0: The dependence of the
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response on these parameters has been explored. Unlike the Den Hartog mechanism (in which
galloping is related to an instability due to effective anti-damping) this model predicts stochastic
resonance with effective positive damping throughout.
In many practical situations, the absolute value of C0

lðaÞ is expected to be rather small for a
small-size rivulet relative to the diameter of the cable. This leads to positive aerodynamic
damping. In such cases, the above analysis suggests a mechanism for large amplitude vibrations of
stay cables due to stochastic excitations by moving rivulets. If the structural damping is such that
this leads to wind–rain-induced galloping, xp0; the dynamic behaviour of the cable could depend
on neglected terms in the expansion of the aerodynamic force and is therefore outside the scope of
the linearized model discussed here. Such non-linear behaviour will be discussed elsewhere.
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