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Abstract

A new time-domain numerical method is presented for the estimation of noise reduction by the
diffraction and finite impedance of barriers. High order finite difference schemes conventionally used for
computational aeroacoustics, and time-domain impedance boundary conditions are utilized for the
development of the time-domain method. Compared with other methods, this method can be applied more
easily to the problems related to nonlinear noise propagation such as impulsive noise and broadband noise.
Linearized Euler equations in Cartesian co-ordinates are considered and solved numerically. Straight and
T-shaped barriers with and without surface admittance are calculated. In order to assess the accuracy of
this time-domain method, comparison with the results of SYSNOISE software (Ver. 5.3) are made. There
are very good agreements between the results of the present time-domain numerical method and the
boundary element method of the SYSNOISE software.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The increasing magnitude and types of noise generated by road traffic in modern city life have
aroused much interest in the problem of noise pollution, initiating the development of numerical
techniques and simulations concerned with noise reduction measures. One of the simplest and
most effective measures in open space is a suitably shaped and placed absorbing acoustic barrier.
Many methods have been presented to predict the performance of the noise barriers. They can be
classified into three categories, namely, scale-model or full-scale experiments, theoretical
approaches, and wave-based numerical methods.
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Experimental approaches are often used to solve the practical problems including atmospheric
conditions and complex interactions. Scholes et al. [1] performed an experiment with full-scale
barriers on grass-covered ground. May and Osman [2] examined a number of new barrier models
promising improved performance using a 1/16 scale model experiment. Experimental approaches,
however, are more expensive than analytic and numerical methods.

Numerous theoretical techniques have been developed for the prediction of the performance of
the noise barriers. Many of them are based on geometrical ray theory and the diffraction theory of
acoustic waves extended from the optical diffraction theory. These techniques are based on energy
methods and thus ignore phase difference. One of the simplest and most widely used methods is
Maekawa’s empirical diffraction model [3] that provides the insertion loss due to a thin-wall
barrier in terms of the Fresnel number. Kawai et al. [4] developed a simple, approximate
expression for Bowman and Senior’s formula, which is based on Macdonald’s rigorous solution,
again by using the Fresnel number. Pierce [5], Jonasson [6] and Tolstoy [7] improved more
sophisticated mathematical methods for determining the barrier diffraction caused by a two-
dimensional angle or a polygonal line. Kurze and Anderson [8] and Kurze [9] discussed the use of
Keller’s geometrical theory for the asymptotic form of the counterpart of Sommerfeld’s solution
for determining the diffraction of complex barrier shapes in the shadow zone. L’Esperance [10]
proposed a simple method for estimating the insertion loss of a finite-length barrier. Jonasson [11],
Chessell [12] and Isei [13] proposed methods for calculating the noise reduction of a barrier on the
ground of finite impedance. Lam and Roberts [14] introduced a method for the calculation of the
acoustic energy loss produced by the insertion of simple, finite-length, three-dimensional acoustic
barriers. These theoretical approaches, however, cannot deal with the barriers of complex
geometry causing multi-diffraction effects.

Common numerical approaches to estimate barrier performance are wave-based numerical
methods such as the finite element method (FEM) and the boundary element method (BEM). The
wave-based methods solve wave equations, i.e., the Helmholtz equation and thus exactly model
reflection, diffraction and phase interference in the sound field around barriers. Filippi and
Dumery [15] and Terai [16] developed a boundary integral equation technique to analyze the
scattering of sound waves by thin rigid screens in the unbounded regions. Seznec [17] and
Hothersall et al. [18] solved two-dimensional diffraction problems for rigid barriers above a rigid
plane and absorbing barriers above an impedance plane, respectively. Duhamel and Sergent [19]
calculated a sound pressure around the acoustic barrier of an arbitrary cross-section placed over
the absorbing rigid ground, and compared the obtained numerical results with the experimental
data. Morgan et al. [20] assessed the influence of the shape and absorbent surface of railway noise
barriers, using a two-dimensional boundary element model. More recently, Jean et al. [21]
computed the efficiency of noise barriers, considering the different source types such as point
sources, coherent and incoherent line sources. BEM, however, has some difficulties in solving the
problems that include the propagation of broadband or nonlinear noise.

The objective of this paper is to develop a time-domain numerical method as an alternative
numerical tool for the prediction of the barrier’s efficiency. One of the significant advantages of
time-domain methods over frequency-domain methods is that the problems containing broad-
band-noise or nonlinear noise propagation can be handled relatively easily.

In contrast to the computational fluid dynamics (CFD) that has advanced to a fairly mature
state, computational aeroacoustics (CAA) has only recently come forth as a separate area of
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study. Aeroacoustics problems are governed by the same equations as aerodynamics, but acoustic
waves have their own characteristics that make their computation more challenging. Acoustic
waves are intrinsically unsteady, and their amplitudes are several order smaller than the mean flow
of the very high frequency. Distances from the noise source to the boundary of the computation
domain are also usually quite long. Thus, to ensure that computed solutions are uniformly
accurate over such long propagation distances, numerical schemes must be free of numerical
dispersion, dissipation and anisotropy. To satisfy these requirements, a high order numerical
scheme in both space and time is generally required for CAA. Recent reviews of CAA by Tam [22]
and Wells and Renaut [23] have discussed various numerical schemes currently popular in CAA.
These include many compact and non-compact optimized schemes such as the family of high
order compact differencing schemes of Lele [24] and dispersion relation preserving (DRP) scheme
of Tam and Webb [25]. Recently, impedance boundary conditions in time domain were suggested
by Tam and Auriault [26]. These boundary conditions are the equivalent of the frequency-domain
impedance boundary conditions. High order finite difference schemes optimized in wave number
space, and time-domain impedance boundary conditions are utilized for the development of a new
time-domain method.

The outline of this paper is as follows. The new time-domain numerical method, which consists
of the high order finite difference scheme and the impedance boundary condition, will be
discussed in Section 2. Numerical results for several barriers with locally reacting surface will be
presented in Section 3. In order to assess the accuracy of the time-domain numerical results,
computational results will be compared with the numerical results of BEM obtained from
SYSNOISE software (Ver. 5.3).

2. Time-domain numerical methods

2.1. Optimized finite difference schemes

Two-dimensional linearized Euler equations, governing the propagation of small acoustic
disturbances, may be written in a dimensionless form where the reference quantities are Dx for the
length scale, c (ambient sound speed) for the velocity scale, therefore Dx=c for the time scale, r

N

for the density scale, and r
N

c2 for the pressure scale. The dimensionless linearized Euler
equations are as follows:
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þ
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The vector Q of Eq. (1) represents acoustic sources. The linearized Euler equations in Cartesian
co-ordinates are solved by the DRP finite difference scheme. In the wave propagation theory, it is
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well known that the propagation characteristics of waves, governed by the linear system of partial
differential equations, is determined completely by the dispersion relations. The DRP scheme is
designed so that the dispersion relation of the finite difference scheme is the same as that of the
original partial differential equations. A seven-point stencil DRP scheme is utilized for spatial
discretization. The resolution of the spatial discretization is often represented by the minimum
points-per-wavelength needed to resolve a wave reasonably. The minimum points-per-wavelength
of a seven-point DRP scheme is 5.4 when using the criterion jkDx � %kDxjp0:005 where k and %k
represent the wave numbers of the partial differential equations and finite difference equations,
respectively. Optimized 4-level time discretization (Adams–Bashford method) is used as the
explicit time marching scheme [23]. The DRP scheme, just as all the other high order finite
difference schemes, induces short-wavelength spurious numerical waves. These spurious waves are
often generated at the computation boundaries and interfaces by non-linearity. They are the
pollutants of the numerical solutions. When the excessive amount of spurious waves is produced,
it does not lead only to the quality degradation of the numerical solutions, but also to numerical
instability in many instances. To obtain high-quality time-domain numerical solutions, damping
is, therefore, essential to eliminate the spurious numerical waves of short wavelength. A
conventional method to do this is to add artificial selective damping terms to finite difference
equations. Damping terms were designed to eliminate only the short waves proven by Tam et al.
[27]. The discretized forms of Eq. (1) using the 7-point stencil DRP scheme, the explicit optimized
4-level time-marching scheme, and the artificial selective damping terms can be expressed in the
following forms:

K
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l;m ¼ �
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X
j
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j
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and

Unþ1
l;m;k ¼ Un

l;m;k þ Dt
X3

j¼0

bjK
ðn�jÞ
l;m;k : ð3Þ

The last two terms in Eq. (2) are the artificial damping terms, where dj is the coefficient of
damping stencils and R eD is the mesh Reynolds number ðR eDx ¼ cDx=naÞ that only has the
computational meaning.

2.2. Boundary conditions

2.2.1. Farfield boundary condition
For high-quality computed solutions, farfield boundary conditions must sufficiently transmit

outgoing disturbances so that they exit from the computational domain without reflection. Waves
in the linearized Euler equations are classified into three categories: acoustic, entropy and vorticity
waves having distinct wave propagation characteristics, respectively. The acoustic wave consists
of all the physical variables and has its own velocity, u þ c (mean flow velocity+speed of sound).
The entropy wave consists of the density fluctuation alone while the vorticity wave consists of the
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velocity fluctuation alone. Since the latter two waves do not have their own velocity, they only
move downstream frozen at the mean flow velocity. Without the mean flow velocity, only the
acoustic wave goes through the boundary of the computational domain. Therefore, radiation
boundary conditions for the acoustic wave are derived from asymptotic solutions of the linearized
Euler equations. These radiation boundary conditions are applied and their equations are as
follows:

1

VðyÞ
@

@t
þ

@

@r
þ

1

2r

� 	 r

u

v

p

2
6664
3
7775 ¼ 0; ð4Þ

where V ðyÞ ¼ c0½M cos yþ ð1 � M2 sin2 yÞ1=2� , r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:

2.2.2. Wall boundary condition with finite impedance

2.2.2.1. Modelling of impedance. Impedance is defined as the ratio of the acoustic pressure, p to
the acoustic velocity component, vn normal to the treated surface:

Z ¼ p=vn; ð5Þ

where vn is positive when pointing into the surface. The impedance is determined by a complex
quantity, Z ¼ R0 þ iX 0: The use of a complex quantity is needed to account for the damping and
phase shift imparted on sound waves by the acoustically treated surface. Theoretical
investigations [28,29] have improved the understanding of the influence of the finite impedance
surface. For example, soil is not rigid and impervious, but consists of grains of various shapes and
sizes. The gaps between grains form pores that are filled with air and/or water. The sound waves
impinging on the porous ground surface are partly reflected. Some of the sound energy penetrates
into the ground along the air-filled pores, vibrates grains and dissipates due to the viscous friction
and thermal exchanges. This mechanism is indicated in Fig. 1. In this work, the model of Delany
and Bazley [28] is used to calculate the impedance of surface. The normal surface impedance
normalized with respect to characteristic impedance of air ðr0cÞ can be expressed in terms of the
dimensionless parameter, r0f =s: Here, r0 ðkg=m3Þ is the density of air, f (Hz) the frequency, and
s ðN s=m4Þ the specific flow resistivity per unit thickness of the material. Delany and Bazley also
showed that these relations are useful for the calculation of the impedance boundary effect. The
Delany and Bazley’s empirical relation for the fibrous sound absorbing material can be expressed
as follows:

Z2

r0c
¼ 1þ 0:0571

r0f

s

� 	�0:754

þi0:0870
r0f

s

� 	�0:732

: ð6Þ

Fig. 2 shows the comparison between the empirical model Eq. (6) of s ¼ 506 kN s=m4 and the
measurement data [29] for a lawn. There are good agreements in the normalized resistance and
reactance, respectively.

2.2.2.2. Impedance wall boundary conditions. Assuming that the sound field consists of a single
frequency o (o > 0), the pressure and velocity fields of sound waves can be expressed as pðx; tÞ ¼
R e½ #pðxÞeiot� and vðx; tÞ ¼ R e½#vðxÞeiot�: The normalized impedance is defined as Z=r0c ¼ R þ iX :
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It is designed primarily for frequency-domain analysis. Tam and Auriault [26], however, proposed
suitable time-domain impedance boundary conditions that are equivalent to those of the
frequency-domain at the wall surface.

For the positive normalized reactance X, the time-domain impedance boundary condition for a
single frequency at the surface is

p ¼ �Rv �
X

o
@v

@t
; ð7Þ

where v is the outward-pointing, normal velocity of the surface ðv ¼ �vnÞ: Application of Eq. (1)
into Eq. (7) leads to the following relation, which is equivalent to the impedance boundary
condition Eq. (7):

@p

@y
¼

o
X

ðp þ RvÞ: ð8Þ

This equation provides ghost values at time level ðn þ 1Þ; pnþ1
�1 of the following form:

pnþ1
�1 ¼

oDy

Xa15
�1

ðRvnþ1
0 þ pnþ1

0 Þ �
X

oDy

X5

j¼0

a15
j pnþ1

j

 !
: ð9Þ

For a high order finite difference scheme, the order of the difference equation is higher than that
of the Euler equations. Thus, additional numerical conditions must be imposed. The pressure
values at the ghost points are used for the extraneous boundary condition at the wall.

To illustrate the accuracy of the time-domain impedance boundary condition, the results of
numerical simulation are compared with theoretical solutions in the frequency domain. A single-
frequency acoustic-wave train is introduced over the absorbing surface. Sources are sinusoidal
coherent line sources, S1 and S4 in the Eq. (1). They are given in the following form:

S1 ¼ S4 ¼ e exp �ln 2
ðx � x0Þ

2 þ ðy � y0Þ
2

r2

� 	� �
cosðotÞ: ð10Þ

Sound waves are reflected off the acoustically absorbing surface, which is characterized by the
flow resistivity, s ¼ 200 kN s=m4: It is equivalent to the property of the grass-covered surface.
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The values of u and p are updated to the next time level by the Eq. (3) at every point on the grid
except ghost point values. Ghost values pnþ1

�1 are calculated by the Eq. (9). Pressure contours over
the full computation domain are shown in Fig. 3. In this computation, the source parameters: e;
x0; y0; r and o are set to 1, 0, 0.5, 0.1 and 2000p; respectively. Pressure distributions at the line of
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a–a and b–b in Fig. 3 are shown in Figs. 4 and 5, respectively. There are good agreements between
the numerical and theoretical results. These results suggest that the time-domain solution
involving the impedance boundary is feasible and accurate.
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3. Numerical simulation for barriers

In order to predict the efficiency of several types of noise barriers, two-dimensional numerical
simulations are carried out. Noise sources are assumed to be coherent line sources defined by
Eq. (10). The surface of barriers is assumed to have a locally reacting surface. To describe the
surface impedance, the empirical model of Delany and Bazley [28] for fibrous materials is used
with the flow resistivity, s ¼ 200 kN s=m4: In order to validate numerical solutions in the time-
domain method, predicted results are compared with those of SYSNOISE software.

Figs. 6 and 7 show geometries and impedance characteristics of barriers considered in this
work. The sound source is 0.5m above the ground and 1.9m to the right of the wall at point (2,
0.5). The receiver point is 2m behind the wall and 0.5m above the ground at point (�2, 0.5). The
origin is always at the bottom left of the wall. The values e and r of Eq. (10) are set to be 1 and 0.1,
respectively. In the following simulations, above-mentioned parameters are kept constant except
when noted otherwise.

Figs. 8 and 9 show applied boundary conditions and root mean square (RMS) pressure
contours over the full computational domain around the straight barrier and T-shaped barrier,
respectively. These plots use a gray scale, ranging from black to white as the amplitude increases.
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These calculations are carried out with a single-frequency source defined in Eq. (10) with the
angular frequency, o; of 680. If there is no sound-absorbing mechanism on the surface, the only
sound-attenuating mechanism is the diffraction at the edge of the barrier. Through the
interference between waves diffracted at the edge of the barrier and reflected off the ground,
specific wave patterns come into being in the shadow region behind the barrier.

To illustrate the propagation of the general broadband sound, time responses are presented for
a 5m tall barrier. At the time when t ¼ 0:0; a Gaussian-like pulse is emitted from a location at
x ¼ 2:5m, y ¼ 2:5m, and time responses are calculated when the center frequency of the pulse is
68Hz.
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Fig. 10 shows the sequence of snapshots of pressure wave fields. In this figure, the pressure
amplitude is colored with the gray scale, ranging from white to black as the amplitude increases.

As the pulse propagates away from the source, the wave energy spreads out. At the time when
t ¼ 7:4ms, the incident pulse reaches the acoustic barrier. As the time progresses, the incident
pulse strikes the edge of the barrier at t ¼10.4ms and diffracts in all directions, even along the
vertical face of the barrier. The time-domain methods have some advantages over the boundary
element methods in handling broadband noise problems. [26,30]

Excess attenuation (EA) is generally used to evaluate the efficiency of the acoustic barrier. The
excess attenuation is defined as the sound pressure level with a wall divided by the sound pressure
level in the free field:

EA ¼ 20 log10ðjpwall j=jpfreejÞ: ð11Þ

In the calculation of the excess attenuation at multiple frequencies through the time-domain
numerical method, the noise source in Eq. (10) can be expressed in the following form:

S1 ¼ S4 ¼ e exp �ln 2
ðx � x0Þ

2 þ ðy � y0Þ
2

r2

� 	� �X35
i¼1

cos oitð Þ: ð12Þ

Here, oi ¼ 85
 ði � 1Þ þ 170 (Hz). Then, by applying the Fourier transform to the time-history
of the pressure at the receiving point, the excess attenuation at the above frequencies are
determined. This approach is available because the linearized Euler equations are used as the
governing equations.
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Figs. 11 and 12 show the computed excess attenuation from the time-domain method and BEM
of SYSNOISE software for the straight barrier and T-shaped barrier in Fig. 6, respectively. These
computations were carried out with a personal computer (CPU AMD athlon 1.2GHz, RAM
512Mb). It takes the time-domain method 6.0
 104 s to obtain the RMS of sound pressure over
the full computation domain for straight barrier with one-frequency source. The BEM of
SYSNOISE software requires 1.55
 103 s to obtain the same result. In order to calculate the
excess attenuation of barriers shown in Figs. 11 and 12, multiple frequencies are calculated.
Whereas the BEM of SYSNOISE depends on the number of the frequency, the time-domain
method is independent because noise sources can be represented by the Eq. (12). The graph in the
Fig. 13 represents the time required with respect to the number of frequencies. This figure shows
that the necessary time of the time-domain method gets equal to the BEM of SYSNOISE in the
same condition when the number of frequencies is about 39.

The excess attenuation of the T-shaped barrier behaves in a more complicated manner with
respect to frequency than the straight barrier, because the interferences between waves diffracted
by the T-shaped barrier and reflected from the ground become more complex. It is well known
that the overall excess attenuation of the T-shaped barrier is greater than that of the straight
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barrier. This can be explained by the increase in the path difference of the ray from source to
receiver and the increase in the diffraction at the edges. There are however, very good agreements
between the results of the time-domain numerical computation and the BEM of SYSNOISE
software.

Fig. 14 shows the excess attenuation of the straight barrier with and without surface
admittance. The flow resistivity of the non-zero surface admittance is set to be s ¼ 200 kN s=m4;
which is appropriate for the impedance of a grass-covered surface (an absorbing ground). Because
the absorbing surface reduces reflection, the overall attenuation of the absorbing surface is larger
than that of the rigid surface. Fig. 15 shows the excess attenuation of the T-shaped barrier with
and without top surface admittance. The flow resistivity of non-zero surface admittance is set to
be s ¼ 200 kN s=m4; which is the same as that of the straight barrier. Similarly to the case of the
straight barrier, the overall attenuation of the T-shaped barrier with top surface admittance is
greater than that of the rigid surface. At the low frequencies (p250Hz), the effect of the finite
impedance of the absorbing barriers is small enough to be almost negligible. As the frequency
increases from 250Hz, the effect of the finite impedance becomes more significant. The T-shaped
barrier with absorbing top surface provides more visible improvement in excess attenuation than
the straight barrier with full absorbing surface. This performance enhancement has also been
reported by the model experiments [2] and the BEM approach [31].
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4. Concluding remarks

A new time-domain numerical method was proposed as a powerful numerical tool to calculate
the sound propagation around the acoustic barriers with absorbing surfaces. Through the
comparison of the computational results with those of the BEM, the accuracy of the time-domain
method was verified.

Although the main purpose of this work is to develop the time-domain method and to validate
its accuracy, it is evident that the time-domain method has some advantages over boundary
element methods. This time-domain method can handle broadband noise problems more easily.
This approach can also be applied to the problems containing nonlinear noise propagation
phenomena, and especially to impulsive-noise problems. Considering the merits of the time-
domain numerical method, it is clear that the method offers an alternative way to solve the
problems that the boundary element methods previously found it difficult to approach.

Future work will be aimed at applying the time-domain method to the noise barrier problems
containing high-intensity impulsive-noise sources, in which nonlinear noise propagation are
important and broadband noise at the receiving point is concerned.
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