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Abstract

The problem of minimizing transmitted vibrations through finitely long periodic structures is addressed.
Bi-coupled periodic element properties and arrangement are tailored to localize the response around the
excitation source within any assigned frequency range. Bi-dimensional analytical maps of the single unit
free-wave propagation domains (stop, pass and complex domains) provide the optimal choice of the cell
properties and ordering. Moreover, the amount of vibration suppression along the periodic structure is also
controlled as it can be described through iso-attenuation curves representing the contour plot of the real
part of the propagation constants. Applications to both undamped and damped beams resting on elastic
supports are illustrated. The response of the periodic structures to harmonic excitations is expressed
through the wave vector method taking into account the effects of wave reflection due to changes in the cell
properties along the structure and boundary conditions. Such computational schemes enables one to
overcome numerical difficulties arising in the transfer matrix formulation for structures with a large number
of periodic units.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Several authors have investigated the possibility of reducing transmitted vibrations in periodic
structures. In Ref. [1], the optimal design of beams on multiple supports to minimize vibration
transmission and stress levels has been pursued. An optimization procedure has been employed to
select suitable slight deviations from periodicity, considering as design parameters the individual
bay lengths and damping values. On the other hand, in Refs. [2,3], vibrations have been reduced
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by introducing intentional spatial periodicity in the otherwise non-periodic structure and resorting
to their propagation properties. In the first work, the authors propose to design periodically
supported piping system. In the latter, aiming at reducing gear mesh vibration, a periodic shaft
has been used to design stop bands in the frequency spectra that correspond to particular
harmonics of the gear mesh contact dynamics; both numerical and experimental results have
shown significant vibration reduction. Recently, in Ref. [4], pass and stop bands of mono-coupled
periodic systems made up of masses connected by mechanical springs have been shown to be
controllable by adding active piezoelectric springs; moreover, vibration localization has been
obtained by randomly disordering the control gains of each active spring. All of the above
analyses have merely relied upon ad hoc numerical investigations on the propagation properties of
the single periodic units in order to optimize the design. Moreover, the influence of the physical
parameters on the amount of vibration reduction has not been fully investigated. More recently,
in Ref. [5], bi-coupled periodic structures have been analyzed on the basis of the transfer matrix
characteristic equation and analytical maps of the single unit free-wave propagation domains
(stop, pass and complex domains) have been derived. From such maps, the role played by the
physical (control) parameters in the wave propagation properties can be readily gathered and
thereby exploited. Based on these results, aiming at reducing the transmitted vibrations, a design
of optimal piecewise periodic structures is proposed in this work. In particular, the periodic cell
properties and arrangement are tailored to localize the response around the excitation source
within any assigned frequency range. The amount of vibration suppression along the periodic
structure is also controlled as it can be described through iso-attenuation curves representing the
contour plot of the real part of the propagation constants. Numerical applications carried-out by
means of the wave vector approach are illustrated for beams resting on elastic supports. The
adopted computational scheme has been devised [6–8] to overcome the numerical difficulties
arising in the transfer matrix formulation [9,10] when the number of periodic units increases; in
particular, the frequency-dependent global transfer matrix, connecting the state variables at the
ends, becomes ill-conditioned since the ratio between its maximum and minimum eigenvalue
increases as well. This problem can be physically interpreted by considering that the transfer
matrix implies rightwards transmission. Therefore, backward decaying waves appear numerically
as growing waves in the opposite direction, thereby amplifying unavoidable numerical errors.
Periodic structures and structures whose periodicity patterns change from one section of the
structure to another (piecewise periodic structures) are analyzed by transforming traditional
transfer matrices for state vectors to transfer matrices for wave vectors enabling the computations
to always proceed in the direction of wave motion.

2. Analytical model and design strategy

In Ref. [5], bi-coupled periodic structures have been analyzed on the basis of the invariants
Ij ð j ¼ 1; 2) of the transfer matrix T and analytical results on the single unit free-wave
(characteristic waves) propagation properties have been derived. According to that paper, an
exhaustive geometrical representation of such propagation properties is achieved by identifying in
the two-dimensional space fIjg the domains in which the four eigenvalues l of T are of the same
type. The regions where both the pairs of l lay on the unit circle are referred to as pass–pass (PP);
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the regions where only one pair of l lays on the unit circle while the other pair is real are referred
to as pass–stop (PS); the regions where only real pairs of eigenvalues occur are the stop–stop (SS)
domains. Moreover, complex regions (C) exist where the eigenvalues are complex conjugate.

In order to analyze a specific bi-coupled structure, such universal description in the invariant
space is transformed into a physical space by expressing the invariants Ij as functions of two
control parameters. In this work the attention is focused on bi-coupled periodic structures whose
repetitive elements, as sketched in Fig. 1, are given by Euler beams of length l; flexural stiffness
EI ; resting on elastic supports with translational stiffness kt=2; with distributed mass m: For such
periodic elements, the state vector at the coupling point k is given by zk ¼ ðvk;jk;Vk;MkÞ

T; where
v; j and V ; M represent the generalized displacement and force components, respectively. The
selected control parameters governing the propagation properties of a cell are the non-
dimensional frequency and spring stiffness defined as

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo2l4=ðEIÞ4

q
; k ¼ ktl

3=EI : ð1Þ

The dependence of the free-wave propagation characteristics on the spring translational stiffness
and frequency is described in Fig. 2a where the propagation regions map is shown. In the pass
regions waves propagate harmonically without attenuation, whereas in the stop regions waves
decay; harmonic propagation with attenuation occurs in the complex regions. The branches ri; si

and pi bounding the different type of regions have been analytically derived in Ref. [5]; the curves
ri and si are given by

ri; si :¼ ðb; kÞ
17cos b ¼ 0 for i odd

k ¼ 84b3ð17cosh bÞ
sin b

ð17cos bÞ ð17cosh bÞ�sinh b
for i even

8><
>:
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>;









8><
>: ð2Þ

while the curves pi are made up of two branches, piu (upper) and pil (lower), defined in the intervals
bA½np; ðn þ 1Þp	 (n even), having equations

piu;l :¼ ðb;kÞ k ¼
4b3ðcosh b� cos bÞ

ð
ffiffiffiffiffiffiffiffiffiffi
sin b

p
7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh b

p
Þ2







( )

: ð3Þ

Aiming at reducing the transmitted vibrations induced by an excitation with known frequency
bandwidth, the previous findings can be used to delineate a design strategy. This consists in
realizing a piecewise periodic structure made up of the minimum number of dissimilar sections
such that the union of the stop and complex propagation bands of each element covers the whole
frequency range of interest, namely the excitation bandwidth. Such sequence of periodic sections
will be referred to as optimal piecewise periodic structure. Starting from b ¼ 0; a sequence of
optimal values kn is determined as illustrated by the stepwise dashed line in Fig. 2a. This is
obtained by selecting the values kn

i relevant to the intersections between curves ri and si (Fig. 2b)
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Fig. 1. Uniform Euler beam on evenly spaced springs.
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as they assure the widest frequency ranges with the narrowest pass bands (or widest stop bands),
as Fig. 2a shows. To completely match the design frequency range with either SS or C bands,
further optimal kn must be considered, such as any value kn

12;minpkn
12pkn

12;max; needed to bridge kn
1

and kn
2: Once the optimal sequence kn has been determined in the frequency range of interest, the

number of elements must be selected. This number should be sufficiently large to achieve the
desired vibration reduction, according to the decaying properties of the component elements
characterized by the modulus r :¼ jlij of the transfer matrix eigenvalues. Therefore, the amount of
vibration suppression along each element can be quantified through iso-attenuation curves
representing the contour plot of the real part of the propagation constants, as shown in Figs. 3
and 4. Two families of curves cross the SS domains (two real eigenvalues) while only one family
crosses the PS zones (one real eigenvalue). Following Ref. [5], the iso-attenuation curves crossing
the PS and SS zones are given by

k ¼
2b3

7r sin b=ð1 þ r28cos bÞ8r sinh b=ð1 þ r28cosh bÞ
: ð4Þ

ARTICLE IN PRESS

Fig. 2. Propagation zones on the b–k plane: (a) optimal sequences of k for increasing and decreasing frequencies,

(b) closer view around the first PP, (c) closer view of the bridging values kn
12:
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The outlined strategy prevents vibration transmission at all frequencies within the design
frequency range, except for the natural frequencies, where resonance takes place. The natural
frequencies of the overall piecewise periodic structure lay within the union of either pass–pass
and/or pass–stop bands of each section. Therefore, piecewise periodic structures are characterized
by lower modal density than uniformly periodic ones with the same number of elements, this
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Fig. 3. Iso-attenuation curves on the b–k plane.

Fig. 4. Modulus r of the eigenvalues of T: surface r ¼ rðb; kÞ:

F. Romeo, A. Luongo / Journal of Sound and Vibration 268 (2003) 601–615 605



entailing a further beneficial effect on the response. In the ideal undamped structure the reduction
of vibration propagation along the structure implies narrowing of the resonances while the
amplification remains ideally infinite. On the other hand, in real structures a small amount of
damping limits the resonance amplifications; therefore, not only the response at generic
frequencies but also the resonance peaks are lowered.

3. Vibration analysis using wave vectors

In the vibration analysis of periodic and piecewise periodic structures, summarized in this
section, structural members are treated as waveguides which transmit a disturbance from one
location to another as wave motion (see Fig. 5). According to this approach, the equations
governing the problem are derived by meeting transmission, continuity and boundary conditions.
The starting point of the computational scheme is the transformation of state vectors to wave
vectors. Next, continuity conditions at the interface of dissimilar cells as well as boundary
conditions are introduced in terms of wave coordinates.

For piecewise periodic structures the generic section a is composed of Na elements connecting
nodes i and j; according to the transfer matrix approach the state vector at the coupling point j is
related to the state vector at the coupling point i by

xj

f j

 !
¼ TNa

a

xi

f i

 !
; ð5Þ

where, if the elements are coupled through n degrees of freedom, Ta is the ð2n � 2nÞ frequency-
dependent transfer matrix of the single element of section a: A peculiar property of the transfer
matrix is that its eigenvalues are reciprocal pairs (l; 1=l). The 2n state vector can be transformed
to wave vector through the matrix Ua whose columns are eigenvectors of Ta as follows:

xi

f i

 !
¼ Ua

rij

lij

 !
: ð6Þ

As depicted in Fig. 5, the terms r and l hints at right- and left-going waves, respectively. They
represent the amplitudes of the eigenvectors associated to reciprocal pairs with jljo1 and jlj > 1;
respectively; if jlj ¼ 1; the two reciprocal eigenvalues are complex conjugate and the associated
amplitudes split in r and l: Substituting Eq. (6) in Eq. (5) gives

rji

lji

 !
¼ U�1

a T
Na
a Ua

rij

lij

 !
¼

KNa
a 0

0 K�Na
a

" #
rij

lij

 !
; ð7Þ
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Fig. 5. Two-way junction of dissimilar elements and corresponding wave co-ordinates: 3; external constraint; �; internal

constraint.
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where Ka is a diagonal matrix collecting the eigenvalues with jljp1: Rearranging Eq. (7) to follow
the wave propagation direction,

rji

lij

 !
¼

KNa
a 0

0 KNa
a

" #
rij

lji

 !
: ð8Þ

The state vector at the interface of dissimilar cells, such as the coupling point j between nodes i
and k (see Fig. 5), must be continuous in the sense that displacements must be equal and forces
must be in equilibrium, as long as no excitation is applied at the interface. Such continuity
requirement is expressed relating the outgoing waves at the interfaces of cells to the incoming ones
as follows:

lji

rjk

 !
¼

Slr Sll

Srr Srl

" #
rji

ljk

 !
; ð9Þ

where the wave scattering matrix S at the interface j has been partitioned in reflection ðSlr;SrlÞ and
transmission ðSll ;SrrÞ submatrices.

Now refer to the two-way junction shown in Fig. 5 excited by a harmonic forces f i applied at
node i; let N1 ¼ N and N2 ¼ M be the number of elements of Sections 1 and 2, respectively. The
boundary conditions at the ends of the periodic chains allows one to express the outgoing waves in
terms of the incoming ones by means of reflection matrices R as follows:

lij ¼ Ririj þDf i; rkj ¼ Rklkj : ð10Þ

Details on the derivation of the matrices R ðn � nÞ; S ð2n � 2nÞ and D ðn � nÞ can be found in the
appendix. By combining Eqs. (8)–(10) any arrangement of elements at a junction can be solved in
terms of the unknown wave vectors. The core of the computational scheme consists of solving the
above-mentioned sets of equations by condensing the whole unknown wave vector in only
the components entering the domain. Using Eqs. (8) and (9) to eliminate the outgoing waves at
the ends and all the waves at node j; the resolving Eq. (10) are obtained in terms of waves entering
the domain

�Ri þ KN
1 SlrK

N
1 KN

1 SllK
M
2

KM
2 SrrK

N
1 �Rk þ KM

2 SrlK
M
2

" #
rij

lkj

 !
¼

Df i

0

 !
: ð11Þ

The wave co-ordinates at the intermediate nodes can be derived and transformed back to obtain
the response expressed by state variables; next, the response of the elements is readily evaluated as
a function of the ends’ displacements and rotations. The homogeneous form of problem (11)
furnishes the natural frequencies and the ‘‘mode’’ ðrij ; lkjÞ

T:
When the groups of elements between nodes i and k are identical, the scattering matrix becomes

simply

S ¼
0 I

I 0

" #
ð12Þ
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meaning that the continuity at the junction must be met not only by the state vector but also by
the wave vector. Consequently, system (11) becomes

�Ri KNþM

KMþN �Rk

" #
rij

lkj

 !
¼

Df i

0

 !
: ð13Þ

4. Numerical results

Uniform undamped Euler beams supported by evenly spaced springs (Fig. 1) have been
considered in the numerical investigations. The ends are constrained by sliding supports and a
harmonic excitation is applied at the left end of the periodic beam. According to the design
strategy outlined in Section 2, piecewise periodicity is introduced to reduce transmitted vibrations
in a given frequency range. Willing to reduce the transmitted vibrations induced by excitations
with frequency starting from b ¼ 0; the first optimal value is kn

1 (Fig. 2). Adopting this value of the
spring translational stiffness a pass–pass region (3:092pbpp) is found between a complex
(0pbo3:092) and a stop–stop (ppbp4:220) region; then, a pass–stop band ending at b ¼ 2p
exists. Therefore by composing the whole structure with this type of element, attenuating
vibrations up to b ¼ 3:092 are assured. In order to extend the design frequency range beyond
b ¼ 3:092; the optimal value kn

12;max must be taken into account, thus assuring vibration reduction
up to b ¼ 5:908: Further extension of the design frequency interval for vibration reduction is
achieved by using three types of elements of stiffness, from left to right, kn

1; kn
12;max; kn

2; thus
covering the frequency range 0pbp7:886: If the design goal is to reduce transmitted vibrations
starting from b ¼ 7:886 to 0; then the optimal sequence from left to right would be kn

2; kn
12;min; kn

1:
In principle, any value kn

12;minpkn
12pkn

12;max guarantees the overlay of the frequency range with
either stop or complex bands. Thus both the problems of the choice of kn

12 and of the spatial
arrangement of the sections arise. Concerning this, it is worth noticing that the frequency response
belonging to the stop band of the section closest to the excitation source exhibit the fastest spatial
decay rate. Therefore, aiming at minimizing the spatial extension of the response in the low-
frequency range, the sections must be ordered with increasing stiffnesses, selecting kn

12 ¼ kn
12;max:

Otherwise, to minimize the extension of the high-frequency response, the sections must be ordered
with decreasing stiffnesses, selecting kn

12 ¼ kn
12;min: Indeed, such choices of kn

12 extend at most
upwards and downwards, respectively, the frequency range inhibited by the intermediate section.

The numerical values of the optimal sequence of kn for 0pbp11:308 are reported in Table 1.
The frequency value in each row represents the bound of the range controlled by using elements
with kn up to the actual one.

For a six-span beam made up by equal elements kn
1 ; the displacement magnification factors DA

and DB at the ends of the beam are shown in Figs. 6a and b, respectively. As expected, by
considering the range 0pbp6; the vibration transmission from node A to node B takes place
within the pass–pass and pass–stop bands where two groups of six natural frequencies are also
found. The amount of attenuation varies as the frequency grows. Specifically, by focusing on the
intervals between the spikes of the natural frequencies in the PS band in Fig. 6b, the magnification
factor DB shows a decaying trend. Such behavior can also be inferred by the arrangement of the
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iso-attenuation curves illustrated in Fig. 4. Figs. 6c and d show the magnification factors DA and
DB obtained for a six-span beam made up by two sections of three elements of stiffness kn

1 (left)
and kn

12;max (right), respectively. The remarkable reduction of the transmitted vibrations obtained
with this configuration is shown in Fig. 6d. The noteworthy result is that, except for the natural
frequencies of the ideal undamped system, the vibration reduction concerns all the frequencies of
interest. Such result is evidenced by the narrow spikes around the natural frequencies. Next, in
Figs. 7a–c, the displacement dynamic magnification factor D along the six-bays made up by three
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Fig. 6. Displacement dynamic magnification factors: ((a), (b)) ki ¼ kn
1 ; ((c), (d)) k1;2;3 ¼ kn

1 ; k4;5;6 ¼ kn
12;max; ((a)–(c))

node A; ((b)–(d)) node B:

Table 1

Optimal sequence of k ð0pbp11:308Þ and associated controlled frequency range bounds; (above) increasing

frequencies, (below) decreasing frequencies

kn b

kn
1 113.750 3.092

kn
12;max 696.500 5.908

kn
2 995.914 7.886

kn
3 3348.137 11.308

kn
3 3348.137 7.272

kn
2 995.914 4.355

kn
12;min 136.823 3.265

kn
1 113.750 0
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sections of two elements of stiffness kn
1 ; k

n
12;max and kn

2 is shown for three adjacent frequency ranges
(3:00pbp4:35; 4:35pbp6:30; 6:30pbp8:0; respectively). For such an undamped structure,
although the peaks of the resonance amplifications are ideally infinite, the dynamic amplification
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Fig. 7. Displacement dynamic magnification factors of optimal six-span ((a)–(c)) and 18-span ((d)–( f)) piecewise

periodic beams in the range 0obo7:886: ((a), (d)) 3:0obo4:35; ((b), (e)) 4:35obo6:30; ((c), (f)) 6:30obo8:0:
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factor near resonance is lower and therefore resonance peaks narrow as one proceeds along the
structure.

In order to highlight the influence of the total number of elements, the dynamic amplification
factor for an 18-bays beam is considered (Figs. 7d–f). Since the dimensionless parameter k must
be kept constant, the dimensional length l and stiffness kt must be decreased and increased,
respectively, if compared with the six-bay beam. In one hand these figures show a faster vibration
attenuation than the six-bay case; the attenuation occurring, as expected, for all frequencies but
the natural ones. On the other hand, by increasing the number of elements the number of peaks
increases as well. The plots refer to an excitation frequency sampling Db ¼ 0:01; and the decaying
trends of the resonance sharp peaks show that the resonances become narrower than the adopted
sampling rate.

Further plots showing the effectiveness of the proposed design strategy are also reported in
Figs. 8 and 9. The propagation bands of each optimal element considered are shown in Figs. 8a, c
and e in terms of the propagation constant m ¼ log l: In Figs. 8b, d and f, sections of the dynamic
magnification factors at the value D ¼ 1:5 for 18-bay uniformly periodic beams composed by
equal elements kn

1 ; kn
12;max and kn

2; respectively, are shown. It is rather evident that vibration
transmission proceeds unaltered along the structure within the pass bands. On the other hand, as
shown in Fig. 9a, by arranging in series the elements (with propagation characteristics depicted in
Fig. 9b) only disturbances coinciding with the natural frequencies can propagate.

From the modal analysis standpoint the vibration transmission inhibition can be explained
through the modal shape localization. However, only the first few modes have been found to be
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Fig. 8. Propagation bands of the first three optimal elements: (a) kn
1 ; (c) kn

12;max; (e) kn
2 : ((b), (d), (f)) Corresponding

sections of the dynamic amplification factor at D ¼ 1:5 for 18-bay periodic beams.
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localized (see e.g. Fig. 10), therefore the high-frequency inhibition could solely be explained
through the cumulative effect of different closely spaced modes; that is to say, modal analysis does
not highlight the phenomenon. The above-mentioned localization pertaining to only the first few
modes is in agreement with Ref. [11], since periodic structures with a finite number of elements are
considered and piecewise periodicity acts as spatially dependent large imperfections in continuous
structures.
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Fig. 9. Propagation along the optimal piecewise periodic beam in the range 0obo7:886: (a) section of the

displacement dynamic magnification at D ¼ 0:1; (b) propagation regions.

Mode 1, β = 3.097 Mode 2, = 3.106

Mode 3, = 3.118

Mode 7, = 3.187

(a)

(c)

(b)

(d)

β

β

β

Fig. 10. ((a)–(c)) Localized modal shapes; (d) non-localized modal shape.
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Damped vibrations are then considered by introducing an hysteretic damping factor Z in the
Euler beam equation of motion. Fig. 11 shows the dynamic amplification factor for the damped
18-bay optimal piecewise periodic beam with Z ¼ 0:01: Besides the expected reduction of the
resonance amplification, vibration transmission is now inhibited at all frequencies including the
natural ones.

The influence of the number of elements in each optimal section along the structure is
eventually investigated. A set of numerical tests has been carried out on a beam assuming different
combinations of the number of elements in each section while keeping fixed the overall number of
18 bays. Under damped forced vibrations, the integral of the response at the final node, evaluated
on the design frequency range 0obo7:886; is reported in Table 2. In one hand, it can be inferred
that once the optimal sequence is adopted, the number of elements in each section does not
significantly affect the overall achievable vibration reduction since the differences in Table 2
concern small numbers. On the other hand, it can be noticed that the optimization of the number
of elements in each section provides with vibration reductions larger or comparable with those
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Fig. 11. Displacement dynamic magnification factors of the optimal 18-span piecewise periodic damped beam in the

range 0obo7:886; damping factor Z ¼ 0:01: (a) 3:0obo4:35; (b) 4:35obo6:30; (c) 6:30obo8:0:

Table 2

Integral of the response at the final node of 18-bay periodic structures (0pbp7:886); optimal sequence kn
1–kn

12;max–kn
2

Sections Combinations Z ¼ 1% Z ¼ 2%

3 6–6–6 9:33E � 3 5:27E � 3

3 4–7–7 1:68E � 2 1:03E � 2

3 2–8–8 4:96E � 2 3:31E � 2

3 7–4–7 6:59E � 3 3:87E � 3

3 8–2–8 8:38E � 3 4:53E � 3

3 7–7–4 1:17E � 2 6:95E � 3

3 8–8–2 2:98E � 2 1:63E � 2

1 18–0–0 1:66 1:04

1 0–18–0 1:59 6:94E � 1

1 0–0–18 4:96E � 1 2:95E � 1
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obtained by a 1% damping increase in non-optimized sequences. If piecewise periodicity is
removed by composing the periodic beam with only one optimal section, the amount of vibration
reduction decreases by at least two order of magnitudes.

5. Conclusions

The design of bi-coupled periodic structures aiming at reducing the transmitted vibrations by
optimally selecting piecewise periodicity has been proposed in this work. The design is conceived
by simply combining the minimum number of dissimilar elements such that the union of the stop
and complex propagation bands of each element covers the given excitation frequency bandwidth.
The optimal combination of elements is derived from bi-dimensional analytical maps of the single
unit free-wave propagation domains without the need of any calculation. The amount of vibration
reduction increases with the number of elements in each section composing the optimal piecewise
periodic structure; however, the more the elements the more the resonances arising in a given
frequency range. The vibration analysis has been conducted relying on the wave vectors
computational scheme whose main steps have also been illustrated. The effectiveness of the
proposed design strategy has been confirmed through parametric numerical investigations.

Appendix A. Scattering and reflection matrices

Without loss of generality, the scattering matrix S is derived with reference to the interface j of
the scheme shown in Fig. 5. The transformation from state to wave vectors at node j located
between nodes i and k gives

xji

f ji

 !
¼ U1

rji

lji

 !
;

xjk

�f jk

 !
¼ U2

rjk

ljk

 !
: ðA:1Þ

Continuity and equilibrium imply that ðxji; f jiÞ ¼ ðxjk;�f jkÞ so that

U1

rji

lji

 !
¼ U2

rjk

ljk

 !
: ðA:2Þ

In order to express the outgoing waves in terms of the incoming ones, the matrices Ui; i ¼ 1; 2 are
partitioned

Ui ¼
Ui;11 Ui;12

Ui;21 Ui;22

" #
; i ¼ 1; 2 ðA:3Þ

and the following matrices are assembled:

SA ¼
U1;12 �U2;11

U1;22 �U2;21

" #
; SB ¼

�U1;11 U2;12

�U1;21 U2;22

" #
ðA:4Þ
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leading to the sought ð2n � 2nÞ scattering matrix

S�1
A SB ¼ S: ðA:5Þ

The reflection matrices R are also derived referring to the boundary condition of nodes i and k in
Fig. 5. Such matrices are obtained by expressing the boundary conditions in terms of wave
coordinates

Br;irij þ Bl;ilij ¼ f i;

Br;krkj þ Bl;klkj ¼ 0; ðA:6Þ

where the entries in the matrices B are given by elements of the matrices Ui varying according to
the type of constraint. Eq. (10) is obtained by rearranging Eq. (A.6); the reflections matrices R and
the matrix D are given by

Ri ¼ �B�1
l;i Br;i; Rk ¼ �B�1

r;kBl;k; D ¼ B�1
l;i : ðA:7Þ
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