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In Ref. [1] Chen investigated the dynamic behavior of a symmetric gyro with linear-plus-cubic
damping. The gyro is mounted on a vibrating base represented by a periodic excitation with the
amplitude f and the frequency o: With the definitions x1 ¼ y; x2 ¼ ’y; the equation of motion
governing the nutation y of the gyro is given by [1]

’x1 ¼ x2;

’x2 ¼ �a2ð1� cos x1Þ
2=sin3 x1 � c1x2 � c2x3

2 þ b sin x1 þ f sin x1 sinot: ð1Þ
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Fig 1. Bifurcation diagram for x1 in the range 32pfp36: (a) motion studied in Ref. [1] and (b) motion obtained with

other starting values.
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Fig. 2. Metamorphoses of the domains of attraction in the phase plane x1x2: (a) f ¼ 32 (coexistence of two periodic

attractors both having the period 1T ; basins are in light- and dark-gray); (b) f ¼ 33 (two periodic attractors with the

period 2T); (c) f ¼ 34:3 (two chaotic attractors indicated in white and in black); (d) f ¼ 34:6 (two chaotic attractors);

(e) f ¼ 35 (the S-shaped chaotic attractor); f ¼ 36 (two coexisting periodic attractors both with the period 4T).
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The numerical results of the dynamics of the gyro as represented in the bifurcation diagram in
Fig. 2 in Ref. [1] with the parameter values a2 ¼ 100; b ¼ 1; c1 ¼ 0:5; c2 ¼ 0:05; o ¼ 2; are very
inaccurate and also incomplete. In their bifurcation diagram with the amplitude f in the range
32pfp36; the transition from the 1T-periodic solution (with T ¼ 2p=o) to the period doubled
2T-solution occurs for fE32:9; the transition 2T-4T for fE34:35; the transition 4T-8T for
fE34:6; the first appearance of the broadest zone of chaotic behavior for fE35:3 and for fE36
the behavior of the system is chaotic. However, the author found the following discrepancies. The
transition 1T-2T takes place for fE32:57; the transition 2T-4T for fE33:91; the transition
4T-8T for fE34:14 and the broadest chaos zone starts near fE34:8: For fE36 the author
obtained 4T-solutions. The corresponding bifurcation diagram is here given in Fig. 1(a). These
results were found with the use of the package DYNAMICS [2]. They have been checked
independently by applying the numerical method described in Ref. [3].

In addition, starting with another set of initial conditions for the numerical integration of
system (1), the author obtained a second sequence of period doubling solutions. These results are
illustrated in Fig. 1(b). The complete bifurcation diagram consists of the conjunction of Figs. 1(a)
and (b). The occurrence of the second cascade of period doubling solutions is confirmed by a
study of the basins of attraction of coexisting periodic or chaotic attractors. The metamorphoses
of the basins of attraction in the phase plane x1x2 with a 400� 400 grid of pixels are summarized
in Fig. 2. For f ¼ 32 Fig. 2(a) shows two domains of attraction (represented in light- and dark-
gray) corresponding to two periodic attractors both with the period 1T : For f ¼ 33 (Fig. 2(b)) the
period of the two coexisting attractors has changed to 2T : With f ¼ 34:3 (Fig. 2(c)) the behavior
becomes chaotic whereby each attractor is generated by two parts. The chaotic attractors are
represented by clusters of black and white dots. For f ¼ 34:6 (Fig. 2(d)) the two parts in each
chaotic attractor merge together. For f ¼ 35 (Fig. 2(e)) the two chaotic attractors merge into one
S-shaped attractor. Fig. 2(f) for f ¼ 36 illustrates the basins of the two periodic attractors each
with the period 4T : These basins are highly fractal.

Finally, the behavior of the gyro in the vicinity of f ¼ 36 is described. At the end of the
broadest zone of chaotic behavior, i.e., at fE35:65; a 4T-solution appears which is symmetric. At
fE35:87 the symmetry of this solution is broken and two coexisting asymmetric solutions with
the same period 4T occur. With f ¼ 36 the co-ordinates (x1;x2) of the Poincar!e section points at
t ¼ 0 are: (0.33580, 0.59994), (�0.13232, �1.44114), (�0.32918, �0.68237), (0.07300, 1.25854) for
the first solution. The co-ordinates of the second solution have opposite signs. A period doubling
cascade is found with the next transition 4T-8T for fE36:04: This sequence of period doubling
solutions ends in the limit with chaotic behavior for fE36:1:
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